Vol 30 No 1, 2019

Table of Contents

Articles

Profile of Biofilm-Producing Staphylococcus epidermidis from Intravenous Catheter Colonisation at Prof. Dr. Margono Soekarjo Hospital Purwokerto
Dwi Utami Anjarwati, Wahyu Siswandari, IDSAP Peramarti
DOI:10.14499/indonesianpharm.p.30iss1pp1 [Abstract view:157] [PDF download:71]

Determination of Classification Model and Total Phenolic Content of Local Varvarus Source (Annona muricata L.) Leaf Powder in Different Altitudes Using NIR and FTIR Spectroscopy with Chemometrics
Lesylo Wulandari, Ari Satia Nugraha, Yashinta Nirmala Siowtani
DOI:10.14499/indonesianpharm.p.30iss1pp7 [Abstract view:140] [PDF download:86]

In Vitro Study of the Combination of Doxorubicin, Curcuma xanthorrhiza, Brucea javanica, and Ficus sepatica as a Potential Novel Therapy for Metastatic Breast Cancer
Ika Rahmawati Sutejo, Herwanndhanti Putri, Sri Handayani, Riris Isightiari Jenie, Edy Meyianto
DOI:10.14499/indonesianpharm.p.30iss1pp15 [Abstract view:208] [PDF download:103]

The Force Degradation Study of The Morpholinium 2-[(4-(2-Methoxyphenyl)-5-(Pyridin-4-YL)-4H-1,2,4-Triazol-3-YL) Thio] Acetate
Borys Varynskyi, Andriy Kaplausenko
DOI:10.14499/indonesianpharm.p.30iss1pp25 [Abstract view:98] [PDF download:61]

Inhibitory Activity of Sargassum hystrix Extract and Its Methanolic Fractions on Inhibiting α-Glucosidase Activity
Wistratul Auliya Azizi, Nurifri Ekanarti, Amir Husni
DOI:10.14499/indonesianpharm.p.30iss1pp36 [Abstract view:124] [PDF download:75]

The Properties of Brown Marine Algae Sargassum turbinioides and Sargassum illicifolium Collected From Yogyakarta, Indonesia
Rahma Artemisia, Akhmad Khasir Nugroho, Erna Pravita Setyowati, Ronny Marten
DOI:10.14499/indonesianpharm.p.30iss1pp43 [Abstract view:161] [PDF download:67]

Conjugation of Anti-EpCAM Antibody on Alginate–RIP MJ-30 Nanoparticle through Carbodiimide Reaction as a Model of Targeted Protein Therapy
Hilda Ismail, Ummi H. Ciptasari, M Arief Nur Ikhsan, Fidyia Suryani, Sismandri Sismandri, Ronny Marten, Ag Yuswanto
DOI:10.14499/indonesianpharm.p.30iss1pp52 [Abstract view:105] [PDF download:54]

NanoCurcumin Preparation for Reducing Vcam-1 and IL-6 in High Fat Diet-Induced Hyperlipidemic Rats
Dimas Adhi Pradana, Maulana Ardhii, Arifa Canry Dea Utami Hasyono, Dizhni Meytasiar, Farah Destasia Nabila, Rochmy Iskharah, Lutfi Chabib
DOI:10.14499/indonesianpharm.p.30iss1pp58 [Abstract view:146] [PDF download:76]

Paricalcitol For CKD-MBD Associated With Secondary Hyperparathyroidism: A Case Series Focus On TRAPSb, b-ALP, and DKK-1
Budi Suprapto, Frerky Hartono, Muhammad Ismail, Muhammad Ismail Zuhri, Adisuwanda Adiwardana
DOI:10.14499/indonesianpharm.p.30iss1pp66 [Abstract view:115] [PDF download:53]

Cost Effectiveness Analysis of Rivaroxaban Compared to Warfarin and Aspirin for Stroke Prevention Atrial Fibrillation (SPAF) in the Indonesian healthcare setting
Iwan Dwipranasto, Erna Kristin, Dwi Endarti, Rozidly Taslim Priznon, Alfi Yasmina, Jarir At Thobari, Woro Rukmi Pratiwi, Yolandra Dyah Kartika, Christiana Trijayanti
DOI:10.14499/indonesianpharm.p.30iss1pp74 [Abstract view:124] [PDF download:61]
People

Reviewer
Dr. Erade Perdana Istiyanto, Faculty of Pharmacy, Universitas Sanata Dharma, Indonesia
Dr. Susi Ari Krishna, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
Dr. Taha Nazir, Intellectual Consortium of Drug Discovery & Technology Development Inc., 937 Northumberland Ave Saskatoon Saskatchewan S7L3W8 Canada, Canada
Dr. Gunawan Pamudji Widdodo, Faculty of Pharmacy Setia Budi University Surakarta Indonesia, Indonesia
Dr. Agtha Budi Susiana, Faculty of Pharmacy, Universitas Sanata Dharma, Indonesia
Dr. Endang Lukitaningsih, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
Dr. Adam Hermawan, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
Dr. Utama Budhathoiri, Department of Pharmacy, Kethmandu University, Nepal
Prof. Dr. Rizwan Amrudin, Faculty of Public Health, Universitas Hasanuddin, Indonesia
Dr. Ari Sudarmanto, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
Dr. Dyah Aryani Perwitasari, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia
Dr. Arief Nurrochmad, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
Prof. Dr. Shufeng Zhou, Department of Pharmaceutical Sciences, University of South Florida Tampa, United States
Dr. Triana Hadina, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
Dr. Abdul Wahab, Department of Pharmacy, Kohat University of Science and Technology (KUST), Pakistan
Dr. Montarat Thavorncharoensap, Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Thailand
Dr. Mohammed Enamul Haque Choudhury, Department of Pharmacology, Bangladesh Agriculture University, Bangladesh
Dr. Dipak D Gadade, Shri Bhagwan College of Pharmacy, CIDCO N 6, Aurangabad, India
Dr I Wayan Mudianta, Ganesha University of Education, Bali, Indonesia, Indonesia
Dr. Muti Ikawati, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
Dr. Ning Sugihartini, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

Indonesian J Pharm indexed by:

- Scopus
- DOAJ
- Dimensions
- Google
- Microsoft Academic
- ProQuest
- Oriental OneSearch
- ISJD
- WorldCat
- getCITED
- Library Resources
- Virtual Library: Pharmacy
- Genamics
- CrossRef
- Harvard Library
- CORE
- SOLO
- Stanford University Libraries
- BASE
- CORE
- EBSCO
Paricalcitol For CKD-MBD Associated With Secondary Hyperparathyroidism: A Case Series Focus On TRAP5b, b-ALP, and DKK-1
Budi Suprapti, Frenky Hartono, Muhamad Isqal, Muhamad Isnaeni Zuhri, Adiswardana Adiswardana

Abstract

Chronic kidney disease (CKD) lead to secondary hyperparathyroidism (SHPT) that caused by phosphate retention and hypocalcemia. This condition known as mineral and bone disorder (CKD-MBD). The increase in parathyroid hormone would increase bone turnover that result in an increased risk of bone fractures, and vascular calcification. These will increase the levels of tartrate-resistant acid phosphatase 5b (TRAP5b), and bone-specific alkaline phosphatase (b-ALP), which is a marker of bone turnover, and also dickkopf-related protein 1 (DKK-1), which is an inhibitor of the Wnt pathway. Secondary hyperparathyroidism in CKD also caused by calcitriol deficiency. Paricalcitol is a synthetic calcitrol analogue used to reduce parathyroid hormone (PTH) with minimal calcemic and phosphatemic activity. Vitamin D receptor activation by paricalcitol will decrease TRAP5b, b-ALP, and DKK-1. In this study we reported 9 cases of CKD-MBD with Hemodialysis (HD) and associated with SHPT. Four of nine cases received 5ug paricalcitol every HD (twice a week) while the others five is not. Level of PTH, phosphate, calcium, TRAP5b, b-ALP, and DKK-1 were measured before initiation of study and after three months treatment. According to this study, the paricalcitol administration suppresses the increase in PTH levels, bone turnover and vascular calcification showed by decreasing or suppresses the increase b-ALP, TRAP5b, DKK-1 levels without increasing calcium and phosphate levels.

Full Text:
PDF

References

Mandhare AA., Dhulao SA., Dhulao AS., and Biradar SC. 2015. Review on the Anticancer and In-silico Bindino Studies of
Editorial Team

Editor in Chief
Prof. Sugiyanto Sugiyanto, Universitas Gadjah Mada, Department of Pharmacology and Clinical Pharmacy, Indonesia

Editorial Board
Prof. Dr. Abdul Rohman, Department of Pharmaceutical Chemistry, Faculty of Pharmacy Universitas Gadjah Mada, Indonesia
Prof. Dr. Shufang Zhou, Department of Pharmaceutical Sciences, University of South Florida, Tampa, United States
Prof. Dr. Kazutaka Noyama, Ehime University, Department of Pharmacology, Japan
Prof. Dr. Masashi Kawauchi, Nara Institute of Science and Technology, Division of Gene Function in Animals, Japan
Prof. Dr. Gunawan Indrayanti, Universitas Arlangu, Faculty of Pharmacy, Indonesia
Prof. Dr. Veensh P. Veerapran, See Siddaganga College of Pharmacy, Pharmaceutical Chemistry Department, India
Prof. Dr. Sugeng Endro Nugroho, Universitas Gadjah Mada, Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Indonesia
Prof. Dr. Lee E. Kirsch, University of Iowa, Division of Pharmaceutics and Translational Therapeutics, United States
Prof. Dr. Henk Timmerman, Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, Netherlands
Prof. Dr. Jan von Kool, Vrije Universiteit Amsterdam, Division of Bio-Analytical Chemistry, Netherlands
Dr. Saikat Kumar Basu, University of Lethbridge, Department of Biological Sciences, Canada
Dr. Joseph David Francis Tucci, La Trobe University, School of Pharmacy and Applied Science, Australia
Dr. Chuda Chittasupho, Siriraj Hospital, University of Medicine, Department of Pharmaceutical Technology, Thailand
Dr. Kuswati Kuswati, Universitas Gadjah Mada, Faculty of Pharmacy, Department of Pharmacoeconomics, Indonesia
Dr. Supang Khonde, University of Phayao, Faculty of Pharmaceutical Sciences, Thailand
Prof. Dr. Pudjono Pudjono, Universitas Gadjah Mada, Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Indonesia
Dr. Montarat Thavorncharoenporn, Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Thailand
Dr. Kanula Shankar, Central Institute of Medicinal and Aromatic Plants, India, Department of Analytical Chemistry, India
Dr. Jun-An, Sun Yat-Sen University, Department of Cardiovascular Surgery, China
Dr. Mohammad Emamuddin Chowdhury, Department of Pharmacology, Bangladesh Agricultural University, Bangladesh
Dr. Abdul Wahab, Department of Pharmacy, Kohat University of Science and Technology (KUST), Pakistan
Dr. Tony Hadibarata, Curtin University Sarawak Malaysia, Department of Environmental Engineering, Malaysia
Dr. Shahin Gavanji, Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran, Islamic Republic of

Indonesian J Pharm indexed by:

Scopus® - Dimensions - Google - Microsoft Academic - DOAJ
- ProQuest - Dimensions - Google - Microsoft Academic - DOAJ
- Open Access Resources - Virtual Library: Pharmacy - Genevac - Crossref

This Journal has been published by Faculty of Pharmacy Universitas Gadjah Mada in collaboration with IAI

CITATION ANALYSIS
- SCOPUS
- GOOGLE SCHOLAR

TEMPLATE

TOOLS
- Mendeley
- Grammarly
- EndNote
- Zotero

NOTIFICATIONS
- View
- Subscribe

USER
Paricalcitol for CKD-MBD Associated with Secondary Hyperparathyroidism: A Case Series Focus on TRAP5b, b-ALP, and DKK-1

Budi Suprapti1, Frenky Hartono1, Muhammad Iqbal1, Muh Isnaini Zuhri1 and Aditiasawardana2

1. Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Campus C Jl. Mulyorejo, 10115, Surabaya, Indonesia
2. Department of Nephrology, Faculty of Medicine, Dr. Soetomo Hospital, Jl. Mayjen Prof. Dr. Moestopo No.6-8, Airlangga, 60286, Surabaya, Indonesia

Info Article
Submitted: 6-12-2018
Revised: 9-3-2019
Accepted: 13-3-2019
*Corresponding author
Budi Suprapti
Email: budi-s@ff.unair.ac.id

ABSTRACT
Chronic kidney disease (CKD) lead to secondary hyperparathyroidism (sHPT) that caused by phosphate retention and hypocalcemia. This condition known as mineral and bone disorder (CKD-MBD). The increase in parathyroid hormone would increase bone turnover that result in an increased risk of bone fractures, and vascular calcification. These will increase the levels of tartrate-resistant acid phosphatase 5b (TRAP5b), and bone-specific alkaline phosphatase (b-ALP), which is a marker of bone turnover, and also dickkopf-related protein 1 (DKK-1), which is an inhibitor of the Wnt pathway. Secondary hyperparathyroidism in CKD also caused by calcitriol deficiency. Paricalcitol is a synthetic calcitriol analogue used to reduce parathyroid hormone (iPTH) with minimal calcemic and phosphatemic activity. Vitamin D receptor activation by paricalcitol will decrease TRAP5b, b-ALP, and DKK-1. In this study we reported 9 cases of CKD-MBD with Hemodialysis (HD) and associated with sHPT. Four of nine cases received 5μg paricalcitol every HD (twice a week) while the others five is not. Level of iPTH, phosphate, calcium, TRAP5b, b-ALP, and DKK-1 were measured before initiation of study and after three months treatment. According to this study, the paricalcol administration suppresses the increase in iPTH level, bone turnover and vascular calcification showed by decreasing or suppresses the increase b-ALP, TRAP5b, DKK-1 levels without increasing calcium and phosphate levels.

Keywords: secondary hyperparathyroidism, paricalcitol, TRAP5b, b-ALP, DKK-1

INTRODUCTION
Deranged mineral metabolism in patient with chronic kidney disease (CKD) result not only in bone disease, but a higher risk of cardiovascular disease and reduce survival, through the development of vascular calcification, which is known as CKD-Mineral and Bone Disorder (CKD-MBD). CKD-MBD is a systemic condition that manifests as abnormalities in parathyroid hormone (PTH), calcium, phosphorus and vitamin D; bone abnormalities and extraskeletal calcification which shown by Tartrate-resistant acid phosphatase 5b (TRAP-5b), and bone-specific alkaline phosphatase (b-ALP) (Fukugawa, et al., 2013). In patients with CKD-MBD a calcitriol deficiency leads to the development of secondary HPT (sHPT) both by direct and indirect effects (Liach, et al., 1998). Beside that, calcitriol deficiency also reduces activity of vitamin D receptor that suppressing dickkopf-related protein 1 (DKK-1) expression (Cianferotti, and Demay, 2007).

Paricalcitol is an analogue of calcitriol that suppresses iPTH secretion while having only minor effects on serum level of calcium and phosphate (Lacy, et al., 2011). Levels of iPTH have a positive correlation with bone turnover rate (ie, both resorption and formation) and vascular calcification (Jilka et al., 2010 and Shetty et al., 2016). So that Paricalcitol therapy in CKD-MBD effectively decreases osteoblast activity (b-ALP level) (Coyne et al., 2013), serum TRAP-5b as a marker of bone resorption and DKK-1 as an inhibitor of Wnt pathway that have a role in vascular calcification. The aim of the study was to analyze changes of serum levels calcium, phosphate, intact parathyroid hormone (iPTH),
Table I. Baseline characteristics of the nine cases

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Etiology of ESRD</th>
<th>Body surface area (m²)</th>
<th>HD Duration (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paricalcitol</td>
<td>1</td>
<td>Male</td>
<td>43</td>
<td>NDN</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Male</td>
<td>70</td>
<td>DN</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Male</td>
<td>62</td>
<td>NDN</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Female</td>
<td>64</td>
<td>NDN</td>
<td>1.45</td>
</tr>
<tr>
<td>Without</td>
<td>5</td>
<td>Male</td>
<td>50</td>
<td>DN</td>
<td>1.89</td>
</tr>
<tr>
<td>Paricalcitol</td>
<td>6</td>
<td>Male</td>
<td>51</td>
<td>NDN</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Female</td>
<td>75</td>
<td>NDN</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Male</td>
<td>55</td>
<td>DN</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Female</td>
<td>38</td>
<td>DN</td>
<td>1.72</td>
</tr>
</tbody>
</table>

DN: Diabetic nephropathy; NDN: Non-diabetic nephropathy

TRAP5b, b-ALP, and DKK-1 on CKD-MBD patient with sHPT who received and without paricalcitol for three months.

MATERIAL AND METHODS

This study was cohort prospective observational to evaluate the effect of paricalcitol in CKD-MBD associated with secondary hyperparathyroidism. The inclusion criteria were hemodialysis patient with end stage renal disease and MBD, age more than 18 years, iPTH serum concentration ≥150pg/mL, calcium serum concentration ≤11mg/DL, phosphate serum concentration ≤10.2mg/dL, with or without paricalcitol therapy. The exclusion criteria was patient with severe liver injury with Child-Pugh Score 10-15. Blood serum withdrawn twice, first before paricalcitol therapy and the second was 3 month after paricalcitol therapy. Analyzed was done for the serum concentration of calcium, phosphate, PTH, b-ALP, TRAP5b, and DKK-1.

Case illustration

In this study we present nine patients who developed CKD-MBD with hemodialysis (HD) at a hospital in Surabaya City, Indonesia. The patients grouped into 2 groups, first group contain 4 patients with paricalcitol therapy and second group contain 5 patients without paricalcitol therapy. Baseline characteristics of nine patients (Table I). Serum level of calcium, phosphate, iPTH, TRAP-5b, b-ALP and DKK-1 were measured twice, before initiation of study (t0) and after 3 months (t3). Result of paricalcitol group (Table II) and without paricalcitol group (Table III).

Besides, the correlation test was also performed among serum level of iPTH with TRAP5b, b-ALP, DKK-1 and the correlation of TRAP5b and b-ALP, TRAP5b and DKK-1, also b-ALP and DKK-1.

Case 1: A 45-year-old man with hypertension, end stage renal disease (ESRD). Level of calcium, phosphate, iPTH, b-ALP, TRAP5b, and DKK-1 decreased after 3 months of paricalcitol. Another therapy was also given to this patient such as risedronate, and lanthanum carbonate; Case 2: A 70-year-old man with diabetic nephropathy, hypertension, ESRD. Level of calcium, iPTH, b-ALP, and DKK-1 decreased but level of phosphate, and TRAP5b increased after 3 months of paricalcitol. Another therapy was also given to this patient such as lanthanum carbonate; Case 3: A 62-year-old man with hypertension, ESRD. Level of calcium, iPTH, b-ALP, TRAP5b decreased but level of phosphate, and TRAP5b increased after 3 months of paricalcitol. During treatment level of uric acid also increased from 5.54mg/dL to 7.31mg/dL. Another therapy was also given to this patient such as calcium acetate; Case 4: A 64-year-old woman with hypertension, ESRD. Level of calcium, b-ALP, and DKK-1 decreased but level of phosphate, iPTH, and TRAP5b increased after 3 months of paricalcitol. During treatment level of uric acid also increased from 4.83mg/dL to 6.78mg/dL. Another therapy was also given to this patient such as risedronate, and calcium acetate; Case 5: A 50-year-old man with diabetic nephropathy, hypertension, end ESRD. Patient has history of GERD with treatment of cisapride. Level of calcium, and DKK-1 decreased but level of iPTH, b-ALP, and TRAP5b increased without change on phosphate level after 3 months. Level of uric acid also increased from 6.75mg/dL to 8.54mg/dL; Case 6: A 51-year-old man with hypertension, ESRD. Level of calcium, iPTH, b-ALP, TRAP5b, and DKK-1 increased but level of phosphate decreased after 3 months. Another
Table II Serum levels and changes of calcium, phosphate, iPTH, in paricalcitol group

<table>
<thead>
<tr>
<th>Patient</th>
<th>Calcium (mg/dL)</th>
<th>Phosphate (mg/dL)</th>
<th>iPTH (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t0</td>
<td>t1</td>
<td>t0</td>
</tr>
<tr>
<td>1</td>
<td>9.5</td>
<td>9.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>2</td>
<td>10.8</td>
<td>10.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>3</td>
<td>8.0</td>
<td>8.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>9.4</td>
<td>8.3</td>
<td>-1.1</td>
</tr>
<tr>
<td>Mean</td>
<td>9.4</td>
<td>9.0</td>
<td>-0.4</td>
</tr>
<tr>
<td>SD</td>
<td>1.1</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

therapy was also given to this patient such as calcium acetate; Case 7: A 75-year-old woman with hypertension, ESRD. Level of calcium, phosphate, and b-ALP decreased but level of iPTH, TRAP5b, and DKK-1 increased after 3 months. Another therapy was also given to this patient such as risedronate, and calcium acetate; Case 8: A 55-year-old man with diabetic nephropathy, hypertension, ESRD. Level of phosphate, iPTH, b-ALP, TRAP5b, and DKK-1 increased but level of calcium decreased after 3 months; Case 9: A 38-year-old woman with diabetic nephropathy, hypertension, ESRD. Level of iPTH, b-ALP, TRAP5b, and DKK-1 increased but level of calcium and phosphate decreased after 3 months. Another therapy was also given to this patient such as calcium acetate.

RESULT AND DISCUSSION

Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD) is a systemic disorder of mineral and bone metabolism due to CKD manifested by abnormalities of calcium, phosphorus, PTH, or vitamin D metabolism, abnormalities in bone turnover, mineralization, volume, linear growth, or strength, vascular or other soft tissue calcification (KDIGO, 2009). As kidney function continues to decline and the GFR falls less than 30 mL/min/1.73m² (0.29 mL/s/m²), phosphorus excretion continues to decrease and calcitriol production decreases, causing PTH levels to begin to rise significantly, leading to shPTH (Dipiro, 2013).

The excessive production of PTH leads to hyperplasia of the parathyroid glands, which decreases the sensitivity of the parathyroid glands to serum calcium levels and calcitriol feedback, further promoting shPTH. The most dramatic consequence of shPTH is alterations in bone turnover and the development of renal osteodystrophy (ROD) (Dipiro, 2013). Paricalcitol is a synthetic vitamin D analog which binds to and activates the vitamin D receptors (VDR) in kidney, parathyroid gland, intestine and bone, thus reducing PTH levels and improving calcium and phosphate homeostasis (Lacy et al., 2011).

Level of iPTH in circulation reflects bone turnover, a better correlation of iPTH with bone turnover markers especially TRAP5b and b-ALP has been reported (Fukugawa et al., 2013). DKK-1 change in CKD is not only influenced by iPTH but also by inflammation cytokines such as IL-6 and TNF-α (Lee and Kalluri, 2010; Yao et al., 2011; Yeremenko et al., 2015). Administration of paricalcitol could reduce iPTH level which affected decline bone turnover marker and inhibit Wnt pathway (He et al., 2011; Cozzolino et al., 2014).

Table II, III, IV and V showed that before initiation of study (t0) serum levels of calcium and phosphate were in normal range, while serum levels of iPTH, TRAP5b, b-ALP, and DKK-1 increased from normal range. This is in accordance with the pathophysiology of CKD-MBD. There were a homeostatic between calcium and phosphate by increasing PTH that will increase the impact on bone turnover, and also decreases of VDR activity. Those caused increase of TRAP5b, b-ALP and DKK-1 (Fukugawa et al., 2013; Cianferotti and Demay, 2007; Saliba and El-Haddad, 2009).

Generally, after three month from initiation of study there were no changes on serum levels of calcium and phosphate in 2 groups, while in paricalcitol group iPTH and TRAP5b increased although not as much as in without paricalcitol group. b-ALP and DKK-1 increased in without paricalcitol group while decreased in paricalcitol group.

The selectivity of paricalcitol in VDR has a little effect on absorption of calcium and phosphate in intestine (Lacy et al., 2011; Slatopolsky et al., 2003). Other factors which affect levels of
Table III Serum levels and changes of b-ALP, TRAP5B, and DKK-1 in paricalcitol group

<table>
<thead>
<tr>
<th>Patient</th>
<th>b-ALP (U/L)</th>
<th>TRAP5B (U/L)</th>
<th>DKK-1 (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t₀</td>
<td>t₁</td>
<td>Δ t₁ - t₀</td>
</tr>
<tr>
<td>1</td>
<td>35.3</td>
<td>29.1</td>
<td>-6.2</td>
</tr>
<tr>
<td>2</td>
<td>22.6</td>
<td>21.0</td>
<td>-1.6</td>
</tr>
<tr>
<td>3</td>
<td>31.7</td>
<td>23.3</td>
<td>-8.4</td>
</tr>
<tr>
<td>4</td>
<td>92.1</td>
<td>89.7</td>
<td>-2.4</td>
</tr>
<tr>
<td>Mean</td>
<td>45.4</td>
<td>40.8</td>
<td>-4.6</td>
</tr>
<tr>
<td>SD</td>
<td>31.6</td>
<td>32.8</td>
<td>3.2</td>
</tr>
</tbody>
</table>

iPTH: Intact parathyroid hormone; TRAP5B: Tartrate-resistant-acid-phosphatase 5B; b-ALP: Bone specific alkaline phosphatase; DKK-1: Dickkopf-related protein 1; t₀: time before initiation of study; t₁: 3 months after initiation of study; Δ t₁ - t₀: Change from t₀ to t₁.

Table IV Serum levels and changes of calcium, phosphate, iPTH in without-paricalcitol group

<table>
<thead>
<tr>
<th>Patient</th>
<th>Calcium (mg/dL)</th>
<th>Phosphate (mg/dL)</th>
<th>iPTH (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t₀</td>
<td>t₁</td>
<td>Δ t₁ - t₀</td>
</tr>
<tr>
<td>5</td>
<td>9.4</td>
<td>9.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>6</td>
<td>8.5</td>
<td>9.1</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>9.0</td>
<td>8.7</td>
<td>-0.3</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
<td>8.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>9</td>
<td>8.7</td>
<td>8.4</td>
<td>-0.3</td>
</tr>
<tr>
<td>Mean</td>
<td>8.7</td>
<td>8.7</td>
<td>-0.1</td>
</tr>
<tr>
<td>SD</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table V Serum levels and changes of b-ALP, TRAP5B, and DKK-1 in without-paricalcitol group

<table>
<thead>
<tr>
<th>Patient</th>
<th>b-ALP (U/L)</th>
<th>TRAP5B (U/L)</th>
<th>DKK-1 (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t₀</td>
<td>t₁</td>
<td>Δ t₁ - t₀</td>
</tr>
<tr>
<td>5</td>
<td>88.5</td>
<td>128.9</td>
<td>40.4</td>
</tr>
<tr>
<td>6</td>
<td>52.4</td>
<td>79.3</td>
<td>26.9</td>
</tr>
<tr>
<td>7</td>
<td>61.5</td>
<td>54.0</td>
<td>-7.5</td>
</tr>
<tr>
<td>8</td>
<td>48.9</td>
<td>72.9</td>
<td>24.0</td>
</tr>
<tr>
<td>9</td>
<td>19.2</td>
<td>29.7</td>
<td>10.5</td>
</tr>
<tr>
<td>Mean</td>
<td>54.1</td>
<td>73.0</td>
<td>18.9</td>
</tr>
<tr>
<td>SD</td>
<td>24.9</td>
<td>36.7</td>
<td>18.2</td>
</tr>
</tbody>
</table>

iPTH: Intact parathyroid hormone; TRAP5B: Tartrate-resistant-acid-phosphatase 5B; b-ALP: Bone specific alkaline phosphatase; DKK-1: Dickkopf-related protein 1; t₀: time before initiation of study; t₁: 3 months after initiation of study; Δ t₁ - t₀: Change from t₀ to t₁.

calcium and phosphate are diet intake and other therapies associated with CKD-MBD such as phosphate binder and bisphosphonate (KDIGO, 2009; NKF, 2013).

Phosphate binder used in this study is calcium and lanthanum based. The mechanism of phosphate binder is binding phosphate from food intake in intestine. The risk of hypercalcemia in calcium-based phosphate binder is higher than do lanthanum-based (Salusky, 2006). Meanwhile administration of bisphosphonate such as risedronate will reduce bone resorption so that no caused by increasing level of calcium and phosphate (Martin, et al., 1998; Toussaint, et al., 2009). In paricalcitol therapy there were 2 cases with increase level of iPTH level. This is due the paricalcitol doses have not optimal yet. In this study the evaluation of calcium, phosphate, iPTH, TRAP5B, b-ALP, and DKK-1 was done before initiation and after three months without dose titration of paricalcitol, so the 30% targeted-decrease iPTH was not achieved. According to the recommendation for doses titration of paricalcitol, dose is increased by 0.04μg/kg (maximum 16.8μg) to be adapted levels of iPTH and calcium periodically. If iPTH levels decrease <30% and calcium <11.5mg/dL, the paricalcitol dose should be increased (Lacy, et al., 2011; Martin, et al., 1998).
The elevation of iPTH levels stimulates osteoclast reflected by the elevation of TRAP5b (Saliba and El-Haddad, 2009). This results were shown in case 1 and 2 -paricalcitol group, level of TRAP5b was still high. In case 4 the elevation of TRAP5b was influenced by the elevation of iPTH and also patient has a history hyperuricemia. In this condition level of TRAP5b increased (Zhao, et al., 2012).

Reduction level of iPTH serum is followed by decrease of bone turnover (Martin, and Gonzales, 2007). Actually, in paricalcitol group two cases declined of b-ALP level although the iPTH level increased. This is due to the suppression effects of paricalcitol in osteoblast by Wnt/β-catenin pathway, induced the inhibition in osteoblast proliferation and differentiation (He, et al., 2011; Peterlik, and Cross, 2013). Meanwhile decrease of b-ALP in one case (without paricalcitol group) is caused by risedronate therapy during the study. The similarity of chemical structure between risedronate and pyrophosphate is underlining the inhibition mechanism of bone matrix mineralization (propagation of hydroxyapatite crystal), and finally could suppress b-ALP levels (Nancollas, et al., 2006; Bilezikian, et al., 2008; Recker, et al., 2008).

Decrease of activity stromal VDR due to calcitriol deficiency caused the elevation of DKK-1. Administration of paricalcitol was aimed to reduce DKK-1 by activation of VDR (Cianferotti, and Demay, 2007).

In case 3, after paricalcitol therapy the level of DKK1 increased, it may be caused by the elevation of uric acid (Zhao, et al., 2012). However, the elevation of uric acid is not always increase DKK-1 level, as in case 4. This is because of other factors such as risedronate which had effect in reducing DKK-1 (Memon, et al., 2013). Furthermore, in case 5 (without paricalcitol group) patient has history of gastro-esophageal reflux disease (GERD) with administration of cisapride that may reduce DKK-1 (Storr, et al., 2000; Lyrous, et al., 2014).

Figure 1-3 showed there were positive correlation between iPTH and b-ALP, TRAP5b, DKK-1. Figure 4 showed there was positive correlation between TRAP5b and b-ALP. Secondary hyperparathyroidism on CKD-MBD caused high turnover metabolic bone disease (Martin and Gonzales, 2007; Malluche, et al, 2012) and vascular calcification (Marinou, et al., 2012; Drukeke and Massy, 2016) Characterization of high turnover metabolic bone disease begins with increased osteoclast activity and followed by increased activity of osteoblast (Dimkovic, 2001). Figure 5 and 6 showed no correlation between DKK-1 and TRAP5b; DKK-1 and b-ALP. This results may be caused by level of DKK-1 is not only influenced by iPTH level but also by inflammation cytokines such as IL-6 and TNF-α (Cianferotti, and Demay, 2007; Yao, et al., 2011; Yeremenko, et al., 2015).
The limitations of our study were variation of the patient's comorbid i.e diabetes mellitus type 2 and hypertension that can affect the result, variation of therapy regimen for CKD-MBD i.e phosphate binder and calcium supplement, variation of patient daily activity and food. To ensure these results are needed more samples.

CONCLUSION

The paricalcitol administration suppresses the increase in iPTH level, bone turnover and vascular calcification showed by decreasing or suppresses the increase b-ALP, TRAP5b, DKK-1 levels without increasing calcium and phosphate levels.

REFERENCE

He W., Kang YS., Dai C., Liu Y., 2011. Blockade of Wnt/β-Catenin Signaling by Paricalcitol

Memon AR, Butler JS, O'Riordan MV, Guerin E, Dimitrov BD, Harty JA. 2013. Comparison of Serum Dkk1 (Dickkopf-1) and Bone Mineral Density in Patients on Bisphosphonate Treatment VS no Treatment. J Clin Densitom. 16(1): 118-124

Treatment in Mice. J Bone Miner Metab. 29(2): 141-148

Arthritic Joint. Arthritis Rheumatol. 67(8): 2071-2075
Indonesian Journal of Pharmacy

Country: Indonesia - SJR Ranking of Indonesia

Subject Area and Category:
- Health Professions
- Pharmacy
- Medicine
- Pharmacology (medical)
- Pharmacology, Toxicology and Pharmaceutics
- Pharmaceutical Science

Publisher: Universitas Gadjah Mada - Faculty of Pharmacy

Publication type: Journals

ISSN: 23389486, 23389427

Coverage: 2016-2019

Scope: The journal had been established in 1972, and online publication was begun in 2008. Since 2012, the journal has been published in English by Faculty of Pharmacy Universitas Gadjah Mada (UGM) Yogyakarta Indonesia in collaboration with IAI (Ikatan Apoteker Indonesia or Indonesian Pharmacist Association) and only receives manuscripts in English. Indonesian Journal of Pharmacy is Accredited by Directorate General of Higher Education. The journal includes various fields of pharmaceutical sciences such as: Pharmacology and Toxicology - Pharmacokinetics - Community and Clinical Pharmacy - Pharmaceutical Chemistry - Pharmaceutical Biology - Pharmaceutics - Pharmaceutical Technology - Biopharmaceutics - Pharmaceutical Microbiology and Biotechnology - Alternative medicines.

Quartiles

How to publish in this journal
Contact

Join the conversation about this journal

https://www.scimagojr.com/journalsearch.php?q=21100867470&dp=sid&clean=0
Niar 2 months ago

Why this journal not yet assigned quartile?

reply

Melanie Ortiz 2 months ago

Dear Niar,
Thank you for contacting us. Our data come from Scopus, they annually send us an update of the data. This update is sent to us around April / May every year. Thus, the indicators for 2019 will be available in June 2020. Best Regards, SCImago Team

faridatulain 9 months ago

I like this journal

reply

Melanie Ortiz 9 months ago

Dear user, thanks for your participation! Best Regards, SCImago Team