Indonesia's Policy on Climate Change Mitigation: Constraints and Solutions

Author: Wicaksana, I Gede Wahyu
Source: Advanced Science Letters, Volume 21, Number 2, February 2015, pp. 216-218(3)
Publisher: American Scientific Publishers
DOI: https://doi.org/10.1166/asl.2015.5858

Recently the impact of climate change has been an increasingly important policy issue to the Indonesian government. It makes serious programs to support the global climate change mitigation action. This article is aimed at analyzing the application of Indonesia's climate change policy. The focus is on crucial problems that constrain its effectiveness both at international and domestic levels. The discussions indicate that Indonesia's multilateral diplomacy to protect the environment is affected by the rise of global power politics as the consequence of the contestation between China and the United States. Meanwhile, internal actions are hindered by the complex social, economic, and cultural barriers. The efficacy of the policy is considerably weakened. To conclude, however, this author tries to offer some potential solutions for strategic planning and policy improvement.

Keywords: CLIMATE CHANGE MITIGATION; CONSTRAINTS; INDONESIA; POLICY IMPROVEMENT; SOLUTIONS

Document Type: Research Article
Publication date: 01 February 2015
More about this publication?

We recommend

The Population's View on Climate Change and Mitigation—Inferences for Media and Policy

Synergies between adaptation and mitigation in climate change finance

Selected Peer-Reviewed Articles from the 1st 2014 International Conference on Science and Technology Applications in Climate Change (STACLIM 2014), Sanur, Bali, Indonesia, 17–18 November, 2014

Suparta, Wayan et al., *Advanced Science Letters*, 2015

Climate Change as a Critical Factor to Poverty Reduction in Indonesia

Suyanto et al., *Advanced Science Letters*

Selected Peer-Reviewed Articles from the 2nd International Conference on Global Health (ICGH), Indonesia, 14–16 August, 2017

Wiweko et al., *Advanced Science Letters*

Multiple Criteria Decision Making for Indirect Procurement Division on Electronic Auction at Consumer Goods Company in Indonesia

The reality behind Europe's response to climate change

Phys.org, 2013

The Politics of Climate Change Adaptation

Nives Dolšak et al., *Annual Review of Environment and Resources*, 2018

The Cardio Connection: Hearth Disease Influences Ocular Diseases, Study Says

Cardiology Advisor, 2020

Indonesia to cut emission by 29 percent in 2030

Phys.org, 2015
ADVANCED SCIENCE LETTERS is an international peer-reviewed journal with a very wide-ranging coverage, consolidates research activities in all areas of (1) Physical Sciences, (2) Biological Sciences, (3) Mathematical Sciences, (4) Engineering, (5) Computer and Information Sciences, and (6) Geosciences to publish original short communications, full research papers and timely brief (mini) reviews with authors photo and biography encompassing the basic and applied research and current developments in educational aspects of these scientific areas.

Publisher: American Scientific Publishers
More about this publication?
A Susceptible-Infected-Recovered Model and Simulation for Transmission of Tuberculosis
pp. 137-139(3)
Author: Sale, Syafruddin

Biodegradation of Diesel by Bacteria Isolated from *Scirpus mucronatus* Rhizosphere in Diesel-Contaminated Sand
pp. 140-143(4)
Authors: Purwanti, Ipung Fitri; Abdullah, Siti Rozaimah Sheikh; Hamzah, Ainon; Idris, Musrifah; Basri, Hassan; Muklisin, Muhammad; Latif, Mohd Talib

Observation of the Variations of Very Short-Lived Halocarbon Emissions in Tropical Coastal Marine Boundary Layer
pp. 144-149(6)
Authors: Sentian, Justin; Xiang, Chen Tian; Jing, Huang Chen; Quack, Birgit; Fuhlbrügge, Steffen; Krüger, Kristin; Atlas, Elliot

The Relationship Between Land Use Changes and the Urban Heat Island Phenomenon in Jakarta, Indonesia
pp. 150-152(3)
Authors: Maru, Rosmini; Ahmad, Shaharuddin

Investigation of Flash Flood Over the West Peninsular Malaysia by Global Positioning System Network
pp. 153-157(5)
Authors: Suparta, Wayan; Rahman, Rosnani; Singh, Mandeep Singh Jit; Latif, Mohd Talib

Development of Conjugate Aurora Observation in Iceland
pp. 158-161(4)
Authors: Suparta, Wayan; Kadokura, Akira; Bjornsson, Gunnaugur

Dissemination a Model of Farmer-to-Farmer Learning Process (FFLP) and Its Technologies to Local Administration Organizations for Improving the Agricultural Extension Service
pp. 162-164(3)
Authors: Taweekul, Krailert; Kamsiripiman, Kanya; Mangkhang, Charin; Maneekul, Jarune; Siwarom, Siwarak

Tropospheric Ozone Response on Climate Change in Malaysia
pp. 165-168(4)
Authors: Sentian, Justin; Yat, Alan C. N.; Chong, Lilian Z. W.
An Investigation of the Effect of Expansion Valve Coefficient to the Heat Pump Performance
pp. 169-172(4)
Authors: Rais, Sandi; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

Electrooculography Detection from Recorded Electroencephalogram Signals by Extended Independent Component Analysis
pp. 173-176(4)
Authors: Turnip, Arjon; Soetraprawata, Demi

Input Modification for the Ease of Reaching Consistency Ratio Acceptance in Decision Support System Implementation Using Analytic Hierarchy Process
pp. 177-180(4)
Author: Andriana, Dian

The Effect of Land Cover Changes on Surface Temperature and Precipitation in the Southeast Asia Region
pp. 181-184(4)
Authors: Sentian, Justin; Kong, Steven S. K.

A Preliminary Study of Cold Surges and Precipitation During the Northeast Monsoon Season Over Malaysia
pp. 185-188(4)
Authors: Shariff, Ahmad Ridzuan; Singh, Mandeep Singh; Chellappan, Kalaivani; Suparta, Wayan; Tangang, Fredolin; Salimun, Ester; Muhammad, Maszidah; Abdullah, Mardina; Islam, Mohammad Tariqul

Contiguous Uniform Deviation for Artificial Neural Network Pattern Recognition
pp. 189-191(3)
Author: Andriana, Dian

Environmental Sustainability: Research Growth and Trends
pp. 192-195(4)
Authors: Goni, Feybi Ariani; Shukor, Syaimak Abdul; Mukhtar, Muriati; Sahran, Shahnorbanun
Biosorption Ability of Microalgae *Scenedesmus dimorphus* for Cr (VI) and Cd in Aqueous Solution
pp. 196-198(3)
Authors: Putri, Lily Surayya Eka; Fauziah, ; Dasumati, .

Genetic Diversity of *Enhalus acoroides* (L.) Royle from Coastal Waters of Pramuka Island, Lembongan Island, and Waigeo Island, Indonesia, Based on Microsatellite DNA
pp. 199-202(4)
Authors: Pharmawati, Made; Putra, I Nyoman Giri; Syamsuni, Yuliana Fitri; Mahardika, I Gusti Ngurah Kade

Characterization of GPS and Meteorological Parameters for Mesoscale Convective Systems Model over Tawau, Malaysia
pp. 203-206(4)
Authors: Suparta, Wayan; Putro, Wahyu Sasonko; Singh, Mandeep Singh Jit; Asillam, Mhd Fairos

Assessing Level of Productivity with Data Envelopment Analysis Technology in Senior High School (SMA) Dumai, Riau, Indonesia
pp. 207-209(3)
Authors: Rozamuri, Arif Murti; Suradi, Nur Riza Mohd; Suparta, Wayan

Influence of Job Satisfaction to Organizational Citizenship Behavior Among Senior High School Teachers in South Sulawesi, Indonesia
pp. 210-212(3)
Author: Rahman, Ulfiani

Characteristics of Galactic Cosmic Ray in LEO/NEqO Orbit During a Solar Minimum
pp. 213-215(3)
Authors: Suparta, Wayan; Zulkeple, Siti Katrina

Indonesia's Policy on Climate Change Mitigation: Constraints and Solutions
pp. 216-218(3)
Author: Wicaksana, I Gede Wahyu
Molecular Characterization of Extended-Spectrum β-Lactamases-Producing *Lebsiellapneumoniae* Isolated from Clinical Specimens at a Tertiary-Referral Hospital in Denpasar, Bali, Indonesia

Authors: Fatmawati, Ni Nengah Dwi; Tarini, Ni Made Adi; Budayanti, Ni Nyoman Sri; Yuliandari, Putu
Advanced Science Letters
ISSN: 1936-6612 (Print); EISSN: 1936-7317 (Online)
Copyright © 2000-2021 American Scientific Publishers. All Rights Reserved.

EDITORIAL BOARD

EDITOR-IN-CHIEF
Professor Ahmad Umar
Department of Chemistry, College of Science and Arts
Promising Centre for Sensors and Electronic Devices (PCSED)
Najran University, P.O. Box: 1988, Najran 11001, Kingdom of Saudi Arabia
Phone: +966-534-574-597
Fax: +966-7-5442-135
Email: advsci.asp@gmail.com

ASIAN EDITOR
Dr. Katsuhiko Ariga, PhD
Advanced Materials Laboratory
National Institute for Materials Science
1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN

ASSOCIATE EDITORS
Diederik Aerts (Quantum theory, Cognition, Evolution theory)
Brussels Free University, Belgium.

Yakir Aharonov (Physics, Quantum Physics)
School of Physics and Astronomy, Israel.

Peter C. Aichelburg (Gravitation)
University of Vienna, Austria.

Jim Al-Khalili (Foundations of Physics, Nuclear Reaction Theory)
University of Surrey, UK.

Jake Blanchard (Engineering Physics, Nuclear Engineering)
University of Wisconsin–Madison, USA.

Simon Baron-Cohen (Cognitive Neuroscience)
University of Cambridge, UK.

Franz X. Bogner (Cognitive Achievement)
University of Bayreuth, Germany.

John Borneman (Anthropology)
Princeton University, USA.

John Casti (Complexity Science)
Internationales Institut für Angewandte Systemanalyse, Austria.

Masud Chaichian (High Energy Physics, String Theory)
University of Helsinki, Finland.

Sergey V. Chervon (Gravitation, Cosmology, Astrophysics)
Ulyanovsk State Pedagogical University, Russia

Kevin Davey (Philosophy of Science)
University of Chicago, Chicago, USA.

Tania Dey (Colloids/Polymers/Nanohybrids)
Canada.

Roland Eils (Bioinformatics)
Deutsches Krebsforschungszentrum Heidelberg, Germany.

Thomas Görnitz (Quantum theory, Cosmology)
University of Frankfurt, Germany.

Bert Gordijn (Nanoethics, Neuroethics, Bioethics)
Radboud University Nijmegen, The Netherlands.

Ji-Huan He (Textile Engineering, Functional Materials)
Soochow University, Suzhou, China.

Nongyue He (Biosensors/Biomaterials)
China.

Irving P. Herman (Materials and Solid State Physics)
Columbia University, USA.

Dipankar Home (Foundations of Quantum Mechanics)
Bose Institute, Kolkata, India.

Jucundus Jacobit (Climate, Global Change Ecology)
University of Augsburg, Germany.
Yuriy A. Knirel (Bioorganic Chemistry)
N. D. Zelinsky Institute of Organic Chemistry, Russia.

Arthur Konnerth (Neurophysiology, Molecular Mechanisms)
University of Munich, Germany.

G. A. Kourouklis (Physics Solid State Physics)
Aristotle University Thessaloniki, Greece.

Peter Krammer (Genetics)
Deutsches Krebsforschungszentrum Heidelberg, Germany.

Andrew F. Laine (Biomedical Engineering)
Columbia University, USA.

Minbo Lan (Organic Functional Materials)
China.

Martha Lux-Steiner (Physics, Materials Science)
Hahn-Meitner-Institut Berlin, Germany.

Klaus Mainzer (Complex Systems, Computational Mind, Philosophy of Science)
University of Augsburg, Germany.

JoAnn E. Manson (Medicine, Cardiovascular Disease)
Harvard University, USA.

Mark P. Mattson (Neuroscience)
National Institute on Aging, Baltimore, USA.

Lucio Mayer (Astrophysics, Cosmology)
ETH Zürich, Switzerland.

Karl Menten (Radioastronomy)
Max-Planck-Institut für Radioastronomie, Germany.

Yoshiko Miura (Biomaterials/Biosensors)
Japan.

Fred M. Mueller (Solid State Physics)
Los Alamos National Laboratory, USA.

Garth Nicolson (Illness Research, Cancer Cell Biology)
The Institute for Molecular Medicine, Huntington Beach, USA.

Nina Papavasiliou (DNA Mutators, Microbial Virulence, Antiviral Defence, Adaptive Immunity, Surface Receptor Variation)
The Rockefeller University, New York, USA.

Panos Photinos (Physics)
Southern Oregon University, USA.

Zhiyong Qian (Biomedical Engineering, Biomaterials, Drug Delivery)
Sichuan University, CHINA.

Reinhard Schlickeiser (Astrophysics, Plasma Theory and Space Science)
Ruhr-Universität Bochum, Germany.

Surinder Singh (Sensors/Nanotechnology)
USA.

Suprakas Sinha Ray (Composites/Polymer Science)
South Africa.

Koen Steemers (Architecture, Environmental Building Performance)
University of Cambridge, UK.

Shinsuke Tanabe (Environmental Chemistry and Ecotoxicology)
Ehime University, Japan.

James R. Thompson (Solid State Physics)
The University of Tennessee, USA.

Uwe Ulbrich (Climat, Meteorology)
Freie Universität Berlin, Germany.

Ahmad Umar (Advanced Materials)
Najran University, Saudi Arabia.

Frans de Waal (Animal Behavior and Cognition)
Emory University, USA.

EDITORIAL BOARD
Filippo Aureli, Liverpool John Moores University, UK
Marcel Ausloos, Université de Liège, Belgium
Martin Bojowald, Pennsylvania State University, USA
Sougato Bose, University College, London, UK
Jacopo Buongiorno, MIT, USA
Paul Cordopatis, University of Patras, Greece
Indonesia’s Policy on Climate Change Mitigation: Constraints and Solutions

I Gede Wahyu Wicaksana
Department of International Relations, Faculty of Social and Political Sciences Universitas Airlangga, Jalan Airlangga 4-6 Surabaya, 60286, Indonesia

Recently the impact of climate change has been an increasingly important policy issue to the Indonesian government. It makes serious programs to support the global climate change mitigation action. This article is aimed at analyzing the application of Indonesia’s climate change policy. The focus is on crucial problems that constrain its effectiveness both at international and domestic levels. The discussions indicate that Indonesia’s multilateral diplomacy to protect the environment is affected by the rise of global power politics as the consequence of the contestation between China and the United States. Meanwhile, internal actions are hindered by the complex social, economic, and cultural barriers. The efficacy of the policy is considerably weakened. To conclude, however, this author tries to offer some potential solutions for strategic planning and policy improvement.

Keywords: Indonesia, Climate Change Mitigation, Constraints, Solutions, Policy Improvement.

1. INTRODUCTION
Recently the issue of climate change, and its massive impact on Indonesia’s development, has received greater attention from the government. For example, on a state visit to Pittsburgh USA in September 2009, President Susilo Bambang Yudhoyono affirmed that the Indonesian government was committed to launch the policy to reduce emissions of greenhouse gases up to 26% by 2020.1 Now the new government of President Joko Widodo reaffirms this commitment. It sends a signal that the successive leadership sustains the promised plan and action on containing global warming.

The plan is notably underpinned by the fact of Indonesia has become one of the world’s largest emitters of greenhouse gases, albeit there is no universal agreement on exact estimate.2 By making considerable endeavor to save the environment, Indonesia can contribute in significant ways to the global effort to reduce the systemic effect of climate change.

2. INDONESIA’S CLIMATE CHANGE POLICY
The objective of Indonesia’s climate change policy is to set up multilateral institutions to meet the goal of the advancement of a norm-based practice of global and national environmental governance. This position is preoccupied by the liberal thinking emphasizing on the obligation of every government to provide their people with sufficient public goods including environmental protection.3

This ideal must be comprehended in the broader context of events whereby Indonesia and other countries will be possibly suffered from the ramification of the serious impact of weather disturbances. Hence, the Indonesia’s mitigation action is directed to capture two areas of urgency. The first area shows the political will to endorse the agenda of enlargement, accommodation and institutionalization of international regimes governing the global project of environmental protection in which strengthening climate change policy becomes their core objective. The second area is concerned with the national movement spurred to raise the standard of environmental governance and security. It encompasses strategies to cope with environmental damages adversely precipitated by overwhelming industrialization and unresolved illegal business activities. In December 2007 the Indonesian government was successful to hold the United Nations Climate Change Conference in Bali. At the event, the participants reiterated the important role of international cooperation forum, such as the Kyoto Protocol to the United Nations Framework Convention on Climate Change, in order to control global emissions of greenhouse gases in safe limits.4 Given the fact of Indonesia is a large greenhouse gases emitter, the momentum of the Bali meeting and the announced Road Map give a significant credit to the government to step forward in favor of the effective global warming easing program. Indonesia’s clear stance on climate change issue paves the way for intensive communications and collaboration with other countries. In the Asia Pacific region Indonesia develops an incentive mechanism for intergovernmental projects of emission reduction. At the Southeast Asian forum, the Association of South East Asian Nations (ASEAN) sponsors collective arrangement to create intraregional framework for climate change mitigation.5 The goodwill, in turn, adds value to
the appropriateness of diplomacy to progress policy on climate governance.

International climate change action is accompanied by domestic measures. Regulations and instruments are established to apply the policy to confine local activities leading to the surge of emissions of greenhouse gases. Forestry and energy sectors are projected as the central point of domestic mitigation response. On forestry sector, rules have been approved to curb emissions coming from forest dreadful conditions. To this end, the program of REDD (reduction of deforestation and forest degradation) is carried out under the supervision of the central government. The local governments act as coordinating instruments with their execution authority. The enactment of REDD for forest protection is equipped with the law stipulated in the Presidential Decree number 61/2011 which enforces criminal sanctions to those defying the REDD in particular with the employment of the scheme for land use and land use of forest change (LULUFC). By undertaking the REDD program, the Indonesian government is engaged in the global mitigation effort of the United Nations.

On energy sector, since 2005 the Indonesian government, through the coordination of related state’s agencies responsible for finance, economic, environmental, and energy affairs, has embraced policies on the production of clean and achievable energy for a number of utilities. The program has been concentrated on the construction of efficient hydro-electric and geo-thermal source of power to supply energy needs of the industry sector. This is expected to be a feasible energy production plan to work on the requirement of environmental security and governance. The cost can be reduced due to the increase of supply. In doing so, the role of intergovernmental partnership and incentive has been operational. Thus, the Indonesian government is optimistic to fulfill the target of reduction of greenhouse gases up to 26% in 2020.

To accelerate the governmental policy execution, multi-track initiatives have also been taken. The government, civil society, and corporates work hand-in-hand to heighten the national climate change action. The focus of their movement is on the prevention of large-scale forest destruction and the promotion of environmental rehabilitation system for local communities. Civil society encourages individual’s and group’s participation in safeguarding their environment. Corporates with their social responsibility project construct numerous programs which are designed to boost the quality of environmental education and public infrastructures.

3. POLICY CONSTRAINTS

There are three constraints on the application of Indonesia’s response to climate change. Such constraints are derived from external and internal circumstances under which the reach of action is narrowed, and subsequently they affect the effectiveness of the policy.

Firstly, the unexpected behavior of the great powers and also key actors—China and the United States—in the global climate change regime. Their policies are based on individual interests that are often conflicting to each other. The result is paradox. Both China and the United States acknowledge membership in international organization, but they regard that enmeshment does not necessarily mean to be loyalty towards the organizational decision and procedure. This position disturbs the feasibility of any international regimes established for climate change mitigation. China and the United States represent nearly 50% of the global CO emissions. This figure reflects the magnitude of their economic indispensability of greenhouse gases. When China shows increasingly assertive attitude, the United States proves vengeance as though the powerful can do anything. The direct implication of the Chinese and American recalcitrant policies to the international norm-based response to climate change is raising the cause of failure of the process of norm socialization and accommodation.

In this vein, Indonesia’s effort to strengthen the global institution working for climate change mitigation program also fails. In relation to economic and political power Indonesia is weaker than both China and the United States. The imbalance of power restricts Indonesia to pursue high point of diplomatic concession from the more powerful states. As a result, Indonesia tends to be entangled in a dilemmatic situation of following each party within the process of international negotiation on climate change. Despite Jakarta’s assumed interest in global climate regime, its space for maneuver has been limited by the great powers competition.

Secondly, Indonesia’s progressive move towards global warming containment faces formidable barriers prompted by domestic structures. Local governments do not always operate in synergy with the central government’s conduct of policy. Under the mode of governance called desentralisasi andotonomi daerah, local governments may issue mining permits. For the sake of local development this practice can contribute a lot to increase local income. Nevertheless, overambitious opening of mining area incites more environmental costs. Now there are about 11,000 mining companies operating throughout the country. Of this large number, there are only 2,000 companies that have legal permit. Moreover, illegal mining is accompanied by many kinds of activities violating the governmental rules and policy, of which the REDD is the most affected. A recent report informs that the fiasco of the REED scheme in Indonesia is worrying. About 45% of the whole projects do not go to plan. This is mainly caused by incompatibility between the control government’s policy and the local government’s interests.

Thirdly, social and cultural factors in many cases impede the effectiveness of the government’s climate change policy. Local communities resist the REDD program for economic as well as traditional reasons. Renewable energy generation is halted because some elements of the society want to retain the use of fossil fuels. In the more conservative community, geo-thermal power source is rejected on account of cultural reasons such as the preservation of traditional heritage. These examples reveal social phenomena of the climate change policy adaptation. The government has to take such non-technical obstacles into account, or otherwise the policy will be unable to lift the level of societal support.

4. CONCLUSION

Aware of the aforementioned constraints, a creative response must be taken. There are, however, opportunities and potential solutions to support strategic planning and improve the realization of the policy on climate change. This is important to note that these approaches will need a combined focus of actions in order to be successful.
In attempts to develop a more effective global order for climate change mitigation, Indonesia needs to develop a map of strategic partnership with firm direction. This strategic design should include international actors and countries across the world which pursues similar policy objectives with that of the Indonesian. Holding all directions policy will not be beneficial for Indonesia’s response to climate change. More importantly, Indonesia must work together with reliable partners to set up fair and practical guiding principles, so that the cooperation is fruitful for both sides. Focusing the effort of regime development on the immediate neighbors such as ASEAN member countries will be more representative and feasible. At least it may be easier for Indonesia to share common interests in regional environmental issue.

Endorsing the international policy, it becomes an imperative for the government to develop an advanced national policy on climate change response on which applicable as well as adaptable technologies receive high attention. Capacity to install technology alone is not enough. It has to be fortified by the strong political will translated into the course of action. For example, Indonesia can cooperate with developed countries on the development of climate change mitigation technologies or build them with local resources, yet they are required well-founded guidance and ground whereby the utilization does not engender social resistance, conflict of interests between government agencies, and cultural vulnerabilities. This is an initiative to create comprehensive social, political and technological responses to the problem of global warming.

References and Notes
5. U. S., ASEAN leaders meet to discuss cooperation on economy, climate change, Foreign Policy Bulletin 1, 118 (2010).
11. Tim Badan Litbang Kehutanan and Taman Nasional Menjuliet, Review on illegal logging as a threat to forest resource and the implementation of REDD in Indonesia.

Received: 18 September 2014. Accepted: 20 October 2014.
J Lab Physicians

The Journal of Laboratory Physicians is a double-blinded peer-reviewed Open Access journal.

thieme.com

Advanced Science Letters

discontinued in Scopus as of 2017

Country

United States

H Index

26

Subject Area and Category

Computer Science

- Computer Science (miscellaneous)

Energy

- Energy (miscellaneous)

Engineering

- Engineering (miscellaneous)

Environmental Science

- Environmental Science (miscellaneous)

Mathematics

- Mathematics (miscellaneous)

Social Sciences

- Education

Health (social science)

Publisher

American Scientific Publishers

Publication type

Journals

ISSN

19366612, 19367317

Coverage

2010-2017

Scope

Information not localized

Join the conversation about this journal
Fast Publication Journals
Peer Reviewed, Open Access Impact Factor Journals. Quick Processing. Open access Journal

gnpublication.org

Quartiles

<table>
<thead>
<tr>
<th>Category</th>
<th>Year</th>
<th>Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>2011</td>
<td>Q2</td>
</tr>
<tr>
<td>Computer Science</td>
<td>2012</td>
<td>Q3</td>
</tr>
<tr>
<td>Computer Science</td>
<td>2013</td>
<td>Q2</td>
</tr>
<tr>
<td>Computer Science</td>
<td>2014</td>
<td>Q4</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (miscellaneous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering (miscellaneous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health (social science)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (miscellaneous)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Citations per document

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0.000</td>
</tr>
<tr>
<td>2011</td>
<td>1.667</td>
</tr>
<tr>
<td>2012</td>
<td>1.424</td>
</tr>
<tr>
<td>2013</td>
<td>0.383</td>
</tr>
<tr>
<td>2014</td>
<td>0.288</td>
</tr>
<tr>
<td>2015</td>
<td>0.231</td>
</tr>
<tr>
<td>2016</td>
<td>0.194</td>
</tr>
<tr>
<td>2017</td>
<td>0.208</td>
</tr>
<tr>
<td>2018</td>
<td>0.215</td>
</tr>
<tr>
<td>2019</td>
<td>0.279</td>
</tr>
</tbody>
</table>

Total Cites

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>600</td>
</tr>
<tr>
<td>2012</td>
<td>1.2k</td>
</tr>
<tr>
<td>2014</td>
<td>1.6</td>
</tr>
<tr>
<td>2016</td>
<td>0.8</td>
</tr>
<tr>
<td>2018</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Self-Cites

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>0.4</td>
</tr>
<tr>
<td>2014</td>
<td>0.8</td>
</tr>
<tr>
<td>2016</td>
<td>0.4</td>
</tr>
<tr>
<td>2018</td>
<td>0.2</td>
</tr>
</tbody>
</table>

SJR

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>0.3</td>
</tr>
<tr>
<td>2013</td>
<td>0.225</td>
</tr>
<tr>
<td>2015</td>
<td>0.3</td>
</tr>
<tr>
<td>2019</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Cites per document

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>0.4</td>
</tr>
<tr>
<td>2014</td>
<td>1.2</td>
</tr>
<tr>
<td>2016</td>
<td>0.8</td>
</tr>
<tr>
<td>2018</td>
<td>0.4</td>
</tr>
</tbody>
</table>

External Cites per Doc

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>0.4</td>
</tr>
<tr>
<td>2014</td>
<td>0.8</td>
</tr>
<tr>
<td>2016</td>
<td>0.4</td>
</tr>
<tr>
<td>2018</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Dear Editor-in-chief,

I have published an article in this Journal. The details of the article as follows:

- **External Cites per Doc**: The number of citations received by a journal's documents during the three previous years, excluding self-citations.

- **Cites per Doc**: Total number of citations received by a journal's documents.

- **% International Collaboration**: Percentage of articles signed by researchers from more than one country.

- **Citable documents**: Articles including substantial research (research articles, conference papers, and reviews).

- **Non-citable documents**: Articles other than research articles, reviews, and conference papers.

- **Cited documents**: Articles that have been cited at least once.

- **Uncited documents**: Articles not cited during the following year.

Laboratory Medicine Journal

J Lab Physicians publishes original research, review articles, case reports, and more

thieme.com

Metrics based on Scopus® data as of April 2020

MANOJIT DE 5 months ago

Dear Editor-in-chief,

I have published an article in this Journal. The details of the article as follows: