Editorial Board

1. Prof. Michael Bratyshchak (Lviv Polytechnic National University) – Editor-in-Chief
2. Prof. Volodymyr Starchevskiy (Lviv Polytechnic National University) – Deputy Editor-in-Chief
3. Dr. Olena Shyshchak (Lviv Polytechnic National University) – Executive Secretary
4. Prof. Zoryan Filkh (Lviv Polytechnic National University)
5. Prof. Stanislav Voronov (Lviv Polytechnic National University)
6. Prof. Victor Yavorskiy (Lviv Polytechnic National University)
7. Prof. Miroslav Malovaniy (Lviv Polytechnic National University)
8. Prof. Volodymyr Novikov (Lviv Polytechnic National University)
9. Prof. Iosyp Yatchyshyn (Lviv Polytechnic National University)
10. Prof. Roman Gladyshevskiy (Lviv National University named by I.Franko)
11. Prof. Boris Zimenkovskiy (Lviv National Medical University)
12. Prof. Anatoliy Starovoit (General director “Ukrkoks”, Dnipropetrovsk)
13. Prof. Witold Brostow (University of North Texas, USA, Doctor Honoris Causa of Lviv Polytechnic National University)
14. Prof. George Broza (Hamburg-Harburg Technical University, Germany)
15. Prof. Victor Castano (National Autonomous University of Mexico, Mexico)
16. Prof. Elizabete Lucas (Federal University of Rio de Janeiro, Brazil)
17. Prof. Witold Waclawek (Opole University, Poland)
18. Prof. Oleh Suberlyak (Lviv Polytechnic National University)
19. Prof. Cemil Ibis (Istanbul University, Turkey)
20. Prof. Omari Mukbaniani (I. Javakhishvili Tbilisi State University, Georgia)
Chemistry & Chemical Technology
Vol. 11, No. 1, 2017

Papers

- The New 1,2,3-Triazolylanthracene-9,10-Diones: Synthesis and Computer Bioactivity Screening
 Maryna Stasevych, Viktor Zvarych, Volodymyr Lunin, Mykhailo Vovk and Volodymyr Novikov

- Synthesis of Heterocyclic Thioamides and Copper(II) Coordination Compounds Based on Them
 Anatoliy Ranskiy, Natalia Didenko and Olga Gordienko

- Correlation between in silico and in vitro Results of 1-(Benzoyloxy)urea and its Derivatives as Potential Anti-Cancer Drugs
 Sukho Hardjono, Siswando Siswodihardjo, Purwanto Pramono and Win Darmanto

- Structural, Morphological and Optical Properties of Nanoproducts of Zirconium Target Laser Ablation in Water and Aqueous SDS Solutions
 Vyacheslav Karpukhin, Michael Malikov, Tatyana Borodina, George Valyano, Olesya Golobolova and Dmitry Strikanov

- Influence of Propylene Units Stereoregularity in Modified Ethylene-Propylene-Diene Elastomers on the Ozone Resistance of Covulcanizates with Acrylonitrile-butadiene Rubbers
 Nadezda Livanova, Anatoliy Popov, Vladimir Shershnev and Gennady Zaikov

- Oligoetherols with S-Trazine Ring Based on Hydroxymethyl Derivatives of Methyl Ethyl Ketone
 Dorota Glowacz-Czerwonka

- Carboxy Derivative of Dioxydiphenylpropane Diglycidyl Ether Monomethacrylate as an Additive for Composites
 Michael Bratychak, Oksana Iatsyshyn, Olena Shyshchak, Olena Atsakhova and Helena Janik

- Polyolefin Compositions: Study of Properties of the Flame Retardants Crosslinking Compounds
 Olena Chulieieva and Volodymyr Zolotaryov
• Studies of Thermal Stability of Epoxy Compounds for Glass-Fiber Pipes
 Oleg Karandashev and Viacheslav Avramenko
• Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil
 Siti Wafiroh, Murobbiyatul Wathoniyyah, Abdulloh Abdulloh, Yanuardi Rahardjo and Mochamad Zakki Fahmi
• Development of Combustion Model in the Industrial Cyclone-Calciner Furnace Using CFD-Modeling
 Roman Havryliv and Volodymyr Mystruk
• Structuring of Collagen of the Dermis during Rawhide Formation
 Anatoliy Danylkovych, Viktor Lischuk and Olexander Zhyhotsky
• The role of Gypsum in Portlandite Stone Structure Formation
 Yaroslaw Yakymchko and Bogdan Chekansky
• Alkaline Factor in Cements with Glass Powder
 Victor Shevchenko and Galyna Kotsay
• Characteristics of Biofilm Formation Process in the Bioelectrochemical Systems, Working in Batch Mode of Cultivation
 Liudmyla Zubchenko and Yevhen Kuzminskiy
• About the Problem of Biological Processes Complicated by Mass Transfer
 Vasyl Dyachok, Serhiy Huhlych, Yuri Yatchyshyn, Yulia Zaporojets and Viktoria Katysheva
• The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17x8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium
 Elizaveta Kostenko, Lyudmila Melnyk, Svitlana Matko and Myroslav Malovanyy
• Coal Tar Viscosity when Dissolving Coke Oven Gas Deposits
 Pasternak Oleksandr, Bannikov Leonid and Smirnova Anna
• Professor Oleh Suberlyak – 70th Anniversary
 Volodymyr Skorokhoda and Volodymyr Levytskyi
Correlation between in silico and in vitro Results of 1-(Benzoyloxy)urea and its Derivatives as Potential Anti-Cancer Drugs

Suko Hardjono, Siswandro Siswodihardjo, Purwanto Pramono and Win Darmanto

Abstract:
1-(Benzoyloxy)urea and its derivatives were synthesized by modified Scotten-Bauman reaction with adding benzoyl chloride or homologs to hydroxyurea in tetrahydrofuran. Structure characterization was conducted based on ultra-violet (UV-VIS) spectrum, infrared (FT-IR), H nucleus magnetic resonance (1H NMR), C nucleus magnetic resonance (13C NMR) and mass spectrometry (MS). In silico test to predict anti-cancer activity of 1-(Benzoyloxy)urea and its derivatives in ribonucleotide reductase enzyme (PDB: 2EUD) was done using Molgro Program. The anti-cancer activity test was performed in vitro by using MTT method to HeLa cell lines. In silico test result (Rerank Score) was correlated relative to anti-cancer activity (logI/IC50). There was a significant linear relationship between in vitro and in silico anti-cancer activity.

References:
CORRELATION BETWEEN IN SILECIO AND IN VITRO RESULTS
OF 1-(BENZOLOYLOXY)UREA AND ITS DERIVATIVES AS POTENTIAL ANTI-CANCER DRUGS

1Faculty of Pharmacy, Universitas Airlangga,
Jl. Darmawangsa Dalam Surabaya 60282, Indonesia, suko.hardjono@yahoo.com
2Faculty of Science and Technology, Universitas Airlangga Surabaya, Indonesia

Received: January 26, 2016 / Revised: February 22, 2016 / Accepted: June 20, 2016

© Hardjono S., Siswodihardjo S., Pramono P., Darmanto W., 2017

DOI:

Abstract. 1-(Benzoyloxoy)urea and its derivatives were synthesized by modified Scotten-Bauman reaction with adding benzoyl chloride or homologs to hydroxyurea in tetrahydrofuran. Structure characterization was conducted based on ultra-violet (UV-VIS) spectrum, infrared (FT-IR), H nucleus magnetic resonance (1H NMR), C nucleus magnetic resonance (13C NMR) and mass spectrometry (MS). In silico test to predict anti-cancer activity of 1-(benzoyloxoy)urea and its derivatives in ribonucleotide reductase enzyme (PDB: 2EUD) was done using Molegro Program. The anti-cancer activity test was performed in vitro by using MTT method to HeLa cell lines. In silico test result (Rerank Score) was correlated relative to anti-cancer activity (log10IC50). There was a significant linear relationship between in vitro and in silico anti-cancer activity.

Keywords: 1-(benzoyloxoy)urea, derivatives, in silico test, in vitro test, rerank score.

1. Introduction

In Indonesia cancer is the fifth leading cause of death after heart disease, stroke, respiratory disease and diarrhea. Nearly six percent or 13.2 million of Indonesian people suffer from cancer and need early treatment. According to WHO, one person is dying every 11 minutes in the world because of cancer, and there is one new cancer patient every 3 minutes [1]. Based on the Report of National Basic Health Research 2013, the prevalence of tumor/cancer in Indonesia is 1.4 % per 1,000 people [2].

Cancer treatment can be carried out in several forms: surgery, radiation photo, immunotherapy, stem cell and chemotherapy [3]. Chemotherapy still remains one of the alternatives in cancer treatment, whether it can be done alone or collectively with other forms of treatment. There are some anti-cancer drugs used, including hydroxyurea.

Hydroxyurea was first synthesized in 1869, and its effect in slowing down the growth of leukocyte cells was first observed in 1928. Its clinical use as an anti-cancer compound began in the 1960s [4]. Hydroxyurea is antineoplastic that performs an activity to slow down the work of ribonucleotide reductase enzyme. The enzyme function is to convert ribonucleotide into deoxyribonucleotide. If the enzyme’s work slows down, DNA biosynthesis will also slow down. The activities of hydroxyurea are called cytotoxic and antineoplastic that exhibits a special effect on S phase and disturbs cell cycle in phases of G2 and S [5]. Hydroxyurea is a derivative of urea that is used in myeloproliferative syndrome, chronic myelogenous leukemia (CML), polycythemia vera, and essential thrombocytosis [6].

To predict the activity of the compound, in silico test is carried out via computer simulation. In silico test is the method used to initiate discovery of new medicines and improve efficiency in the optimization of the main compounds activity [7]. The activity of synthesized medicinal compound can be predicted from the energy of molecular interaction between a receptor and ligand. The interaction energy can be illustrated with rerank score. In silico test is administered by docking molecule of the potential medicinal compound with the selected receptor. Docking is an attempt to streamline ligand that is a small molecule into the receptor that is a big protein by
considering the characteristics of both and the relation between each other [8].

The substitution of the lead compound will result in changes in physicochemical properties, namely lipophilic, electronic, and steric characteristics [9]. To design and develop new drugs, the physicochemical properties of drug molecules can be predicted before a new compound is synthesized and purified. In 1972, Topliss proposed an operational scheme or diagram to synthesize the analog in drug design. The diagram was built on the basic assumption of Hänisch method, a certain substituent of which can alter relative activity towards the main compound based on the change of hydrophobic, electronic effect, and steric effect [10]. In this study hydroxyurea derivative was synthesized with the addition of benzoyl and homolog that boost lipophilic, electronic, and steric characteristics to improve cytotoxic activities. The synthesized homolog was 1-(benzoyloxy)urea with its derivatives: 1-(2-chlorobenzoyloxy)urea, 1-(4-chlorobenzoyloxy)urea, 1-(2,4-dichlorobenzoyloxy)urea, 1-(4-bromobenzoyloxy)urea, 1-(4-trifluoromethylbenzoyloxy)urea, 1-(4-methylbenzoyloxy)urea, 1-(4-t-butylbenzoyloxy)urea, 1-(4-methoxybenzoyloxy)urea and 1-(4-fluorobenzoyloxy)urea.

Before synthesis the impact of in silico test of the compound 1-(benzoyloxy)urea and its nine derivatives and ribonucleotide reductase enzyme (PDB:2EUD) was assayed. Ribonucleotide reductase enzyme was used as the main target or anticancer compound receptor-like HU, 1-(benzoyloxy)urea, and its derivatives. The compound formed a complex structure with the crystal structure of ribonucleotide reductase enzyme 1, which was 2EUD. 2EUD was selected because it is the receptor of gemcitabine [11]. The acquired result was the number of hydrogen bonds between the investigated compound and 2EUD, and the interaction energy value between them, which was reranked score. The aim of in silico test in the present study is to scrutinize the interaction between 1-(benzoyloxy)urea and its derivatives with 2EUD, from the standpoint of predicting anti-cancer activities.

2. Experimental

2.1. Materials

The used materials were: benzoyl chloride and its derivatives (Sigma-Aldrich, p.s.), tetrahydrofuran (Merck, p.a.), triethylamine (Merck, p.s.), ethanol (Merck, p.a.), DMEM (Dulbecco's Modified Eagle Medium) culture media, Methylthiazolyl-diphenyl-tetrazolium bromide (MTT) reagent (Sigma-Aldrich), Sodium dodecyl sulfate (SDS) reagent (Sigma-Aldrich).

2.2. Methods

In silico test was performed by complexing the test compound with GCQ that is ligand found in 2EUD. GCQ is the depiction of gemcitabine, cancer that resembles the action like hydroxyurea. The computer programs that were used were ChemBio Draw and Molegro Virtual Docker. In silico test, the test compound resided in the cavity like GCQ. The yielded result was hydrogen bond number between the test compound and 2EUD, and the number of interaction energy between the test compound and 2EUD in the form of Rerank Score. In the present study, in silico test aims to understand the interaction between 1-(benzoyloxy)urea and its derivatives and 2EUD in order to forecast anti-cancer activities.

The synthesis was done by adding benzoyl chloride or homolog to tetrahydrofuran, to the mixture of hydroxyurea in tetrahydrofuran. Triethylamine was used as the catalyst. The mixture was stirring constantly with a magnetic stirrer at 268 K. [12, 13]. The purity of the results was determined with the melting point and thin-layer chromatography. Recrystallization was carried out with a hot ethanol. To ensure that the synthesized compound was in accordance with the expected one, structure characterization was conducted based on UV-VIS, FT-IR, 1H NMR, 13C NMR and MS analyses [14]. Synthesis reaction mechanism of 1-(benzoyloxy)urea and its derivatives can be seen in Fig. 1.

![Fig. 1. Synthesis reaction mechanism of 1-(benzoyloxy)urea and its derivatives](image-url)
The results of the determination of percent yield, melting point and Rf of 1-(benzoyloxy)urea derivatives

<table>
<thead>
<tr>
<th>Compound</th>
<th>Symbol</th>
<th>Yield, %</th>
<th>Melting point, K</th>
<th>Rf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-(Benzoyloxy)urea</td>
<td>BOU</td>
<td>53.3</td>
<td>401-402</td>
<td>0.80</td>
</tr>
<tr>
<td>1-(4-Chloro-benzoyloxy)urea</td>
<td>4-CIBOU</td>
<td>59.5</td>
<td>462-463</td>
<td>0.73</td>
</tr>
<tr>
<td>1-(4-Methyl-benzoyloxy)urea</td>
<td>4-CH3BOU</td>
<td>22.8</td>
<td>434-435</td>
<td>0.84</td>
</tr>
<tr>
<td>1-(4-Methoxybenzoyloxy)urea</td>
<td>4-OCH3BOU</td>
<td>21.4</td>
<td>449-450</td>
<td>0.82</td>
</tr>
<tr>
<td>1-(4-Tert-butylobenzoyloxy)urea</td>
<td>4-CH3C6H13BOU</td>
<td>46.8</td>
<td>395-396</td>
<td>0.86</td>
</tr>
<tr>
<td>1-(4-Trifluoromethyl-benzoyloxy)urea</td>
<td>4-CF3BOU</td>
<td>14.7</td>
<td>453-454</td>
<td>0.92</td>
</tr>
<tr>
<td>1-(4-Bromobenzoyloxy)urea</td>
<td>4-BrBOU</td>
<td>13.4</td>
<td>471-472</td>
<td>0.64</td>
</tr>
<tr>
<td>1-(4-Fluorobenzoyloxy)urea</td>
<td>4-FBOU</td>
<td>37.1</td>
<td>437-438</td>
<td>0.80</td>
</tr>
<tr>
<td>1-(2,4-Dichlorobenzoyloxy)urea</td>
<td>2,4-DICIBOU</td>
<td>15.4</td>
<td>405-406</td>
<td>0.89</td>
</tr>
<tr>
<td>1-(2-Chlorobenzoyloxy)urea</td>
<td>2-CIBOU</td>
<td>10.4</td>
<td>402-403</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Cytotoxic activity was determined via in vitro test by using HeLa cells. The steps were conducted based on the protocol of Cancer Chemoprevention Research Center [15]. The main solution was dissolved gradually with DMEM culture media, so a series of standard solution was obtained. HeLa cell culture was prepared on the microplate with 96 wells, with the form of cell suspension with the density of 8000 cells/well. With a prior study, the value of IC50 that illustrates activities of the test compound was earned. To calculate quantitative structure-cytotoxic activity relationships, IC50 was modified to log (1/IC50).

The correlation between the in silico test result of rerank score (RS) of 1-(benzoyloxy)urea compound and its derivatives with log (1/IC50) which depicted the cytotoxic activity of in vitro test result, was calculated with SPSS program.

3. Results and Discussion

3.1 (Benzoyloxy)urea: white crystal; UV spectrum, λ max (nm) in ethanol 204 and 244; IR spectrum, ν (cm⁻¹) in KBr pellet: 3131 and 3205 (–NH₂), 3273 (–NH), 1747 (–C=O ester) 1686 (–C=O amide), 1581 (–C=C aromatic) and 1103 (–C=O), 703 (–C=H aromatic); ¹H NMR spectrum, δ (ppm) in DMSO D6: 9.77, s, H (–NH), 7.99, d, J = 6.3 Hz, 2H (Ar-H); 7.63, m, J = 2.9 Hz, 3H (Ar-H), 6.56, s, 2H (–NH₂); ¹³C NMR spectrum (δ ppm) in DMSO D6: C atom in 146.9, 159.2, 133.7, 129.3, 128.7, and 127.6; Mass Spectrometer spectrum (m/e): 135 (C₆H₄O₂⁺); 105 (C₅H₄O⁺); 77 (C₆H₅⁺).

3.2 (4-Chlorobenzoyloxy)urea: fine white crystal; UV spectrum, λ max (nm) in ethanol: 204 and 244; IR spectrum, ν (cm⁻¹) in KBr pellet: 3407 and 755 (–C=H aromatic); 3092 (–NH), 3221 and 3184 (–NH₂), 1750 (–C=O ester), 1723 (–C=O amide), 1596 (–C=C aromatic) and 1011 (–C=O); ¹H NMR spectrum, δ (ppm) in DMSO D6: 9.81, s, 1H (–NH), 8.00, d, J = 9 Hz, 2H (Ar-H); 7.66, d, J = 8.6 Hz, 2H (Ar-H); and 6.60, s, 2H (–NH₂); ¹³C NMR spectrum (δ ppm) in DMSO D6: C atom in 164.1, 159.1, 138.6, 131.2, 128.8, and 126.4; Mass Spectrometer spectrum (m/e): HRMS (m/z): calculated mass for C₁₉H₁₄N₂O₄Cl⁻ (M⁻+H⁻) 215.0223 and measured mass 215.0193.

3.3 (4-Methylbenzoyloxy)urea: white crystal; UV spectrum, λ max (nm) in ethanol: 206 and 242; IR spectrum, ν (cm⁻¹) in KBr pellet: 3449 (–NH₂), 3333 (–NH), 1749 (–C=O ester), 1683 (–C=O amide), 1589 (–C=C aromatic) and 1013 (–C=O), 747 (–C=H aromatic); ¹H NMR spectrum, δ (ppm) in DMSO D6: 9.70, s, 1H (–NH), 7.96, d, J = 7.9 Hz, 2H (Ar-H); 7.41, d, J = 7.8 Hz, 2H (Ar-H), 6.52, s, 2H (NH₂); 2.40, s, 3H (CH₃); ¹³C NMR spectrum (δ ppm) in DMSO D6: C atom in 164.9, 159.2, 144.1, 129.4, 129.2, 125.0 and 21.2; Mass Spectrometer spectrum (m/e): HRMS (m/z): calculated mass for C₁₉H₁₅N₂O₄Cl⁻ (M⁻+H⁻) 209.8079 and measured mass 210.0198.

3.4 (4-Methoxybenzoyloxy)urea: white crystal; UV spectrum, λ max (nm) in ethanol: 210 and 260; IR spectrum, ν (cm⁻¹) in KBr pellet: 3446 (–NH), 3171 (–NH₂), 3013 (–C=H aromatic), 1757 (–C=O ester), 1687 (–C=O amide), 1607 (–C=C aromatic), 1509 (–C=C aromatic) and 1112 (–C=O); ¹H NMR spectrum, δ (ppm) in DMSO D6: 9.67, s, 1H (NH); 7.49, d, J = 9 Hz, 2H (Ar-H); 7.02, d, J = 9 Hz, 2H (Ar-H); 6.52, s, 2H (NH₂) and 3.85, s, 3H (CH₃); ¹³C NMR spectrum (δ ppm) in DMSO D6: C atom in 164.6, 163.4, 159.3, 131.5, 119.5, 113.9, and 55.5; Mass Spectrometer spectrum (m/e): 135 m/z (C₆H₄O⁺), 120 m/z (C₅H₃O⁺) and 107 (C₇H₇O⁺).

3.5 (4-Tert-butylobenzoyloxy)urea: fine yellowish white crystal; UV spectrum, λ max (nm) in ethanol: 204 and 242; IR spectrum, ν (cm⁻¹) in KBr pellet: 3505 (–NH); 3285 and 3215 (–NH₂), 1750 (–C=O ester), 1699 (–C=O amide), 1582 and 1459 (–C=C aromatic); 1012 (–C=O);
and 702 (-CH aromatic); 1H NMR spectrum, δ (ppm) in DMSO-D$_6$: 9.93, s (NH); 7.92, d, $J = 8.55$ Hz, 2H (Ar-H); 7.53, d, $J = 8.64$ Hz, 2H (Ar-H); 6.53, s, 2H (NH$_2$); and 1.32, s, 9H (3CH$_3$); $^1^3$C NMR spectrum (δ ppm) in DMSO-D$_6$: C atom in 164.8, 159.2, 156.8, 129.2, 125.4, 124.8, 34.9, and 30.3. Mass Spectrometer spectrum (m/e); HRMS (m/z): calculated mass for C$_{12}$H$_7$N$_2$O$_3$ (M$^+$+H$^+$) 237.1239 and measured mass 237.1252.

1-(4-Trifluoromethylbenzoyloxoy)urea: white crystal; UV spectrum, λ max (nm) in ethanol: 226 and 274; IR spectrum, ν (cm$^{-1}$) in KBr pellet: 3438, (NH); 3231 and 3186 (-NH$_2$); 1751 (-C=O ester); 1717 (-C=O amide); 1515 and 1432 (-C=O aromatic); 1014 (-C-O-) and 771 (-C-H aromatic); 1H NMR spectrum, δ (ppm) in DMSO-D$_6$: 8.89, s, 1H (NH); 7.81, d, $J = 8.1$ Hz, 2H (Ar-H); 7.88, d, $J = 8.9$ Hz, 2H (Ar-H); 6.65, s, 2H (NH$_2$); $^1^3$C NMR spectrum (δ ppm) in DMSO-D$_6$: C atom in 163.9, 159.1, 132.4, 131.5, 131.4, 130.2, and 125.7; Mass Spectrometer spectrum (m/e); HRMS (m/z): calculated mass for C$_{12}$H$_{11}$N$_2$O$_3$ 249.0487 and measured mass 249.0458.

1-(4-Fluorobenzoyloxoy)urea: white crystal; UV spectrum, λ max (nm) in ethanol: 206 and 244; IR spectrum, ν (cm$^{-1}$) in KBr pellet: 3469 (NH); 3225 (NH$_2$); 1746 (-C=O ester); 1720 (-C=O amide); 1589.67 (-C=O aromatic); 1008.68 (-C=O-); 750 (-C=H aromatic); 1H NMR spectrum, δ (ppm) in DMSO-D$_6$: 9.79, s, 1H (NH); 7.90, d, $J = 3.42$ Hz, 2H (Ar-H); 7.81, d, $J = 8.82$ Hz, 2H (Ar-H); 6.57, s, 2H (NH$_2$); $^1^3$C NMR spectrum (δ ppm) in DMSO-D$_6$: C atom in 165.7, 159.1, 131.8, 131.2, 129.4, 129.2, 127.8 and 126.8; Mass Spectrometer spectrum (m/e); HRMS (m/z): calculated mass for C$_{12}$H$_{10}$NBr (M$^+$+H$^+$) 258.9718 and measured mass 258.9738.

1-(4-Fluorobenzoyloxoy)urea: white fine crystal; UV spectrum, λ max (nm) in ethanol: 204 and 234; IR spectrum, ν (cm$^{-1}$) in KBr pellet: 3418 (NH); 3175 and 3083 (-NH$_2$); 1746 (-C=O ester); 1715 (-C=O amide); 1606 and 1507 (-C=C aromatic); 1160.47 (-C=O) and 760 (-C=H aromatic); 1H NMR spectrum, δ (ppm) in DMSO-D$_6$: 9.78, s, 1H (NH); 8.06, m, $J = 17.1$ Hz, 2H (Ar-H); 7.38, m, $J = 20.7$ Hz, 2H (Ar-H); 6.68, s, 2H (NH$_2$); $^1^3$C NMR spectrum (δ ppm) in DMSO-D$_6$: C atom in 170.7, 164.0, 159.4, 132.1, 133.0, 124.2, 115.3 and 116.3; Mass Spectrometer spectrum (m/e); HRMS (m/z): calculated mass for C$_{12}$H$_{12}$N$_2$O$_3$F (M$^+$+H$^+$) 199.0519 and measured mass 199.0511.

1-(2,4-Dichlorobenzoyloxoy)urea: fine yellowish white crystal; UV spectrum, λ max (nm) in ethanol: 223 and 242; IR spectrum, ν (cm$^{-1}$) in KBr pellet: 3411 (NH); 3314 and 3170 (NH$_2$); 1755 (-C=O ester); 1682 (-C=O amide) and 1556 and 1470 (-C=O aromatic); 1111 (-C=O-) and 758 (-C=H aromatic); 1H NMR spectrum, δ (ppm) in DMSO-D$_6$: 9.93, s, 1H (NH); 7.93, d, $J = 21.5$ Hz, 1H (Ar-H); 7.79, s, 1H (Ar-H); 7.56, d, $J = 10.53$ Hz, 1H (Ar-H); 6.59, s, 2H (NH$_2$); $^1^3$C NMR spectrum (δ ppm) in DMSO-D$_6$: C atom in 163.1, 158.9, 137.8, 133.7, 132.8, 130.3, 127.5, 126.3; Mass Spectrometer Spectrum (m/e); HRMS (m/z): calculated mass for C$_{12}$H$_{12}$N$_2$O$_3$ (M$^+$) 248.9823 and measured mass 248.9841.

1-(2-Chlorobenzoyloxoy)urea: white crystal; UV spectrum, λ max (nm) in ethanol: 230 and 280; IR spectrum, ν (cm$^{-1}$) in KBr pellet: 3481 (NH); 3276 and 3207 (NH$_2$); 1739 (-C=O ester); 1685 (-C=O amide); 1590 and 1437 (-C=O aromatic); 1116.67 (-C=O) and 744 (-C=H aromatic); 1H NMR spectrum, δ (ppm) in DMSO-D$_6$: 9.91, s, 1H (NH); 7.99, d, $J = 7.47$ Hz, 1H (Ar-H); 7.54, m, $J = 18.45$ Hz, 3H (Ar-H); 6.56, s, 2H (NH$_2$); $^1^3$C NMR spectrum (δ ppm) in DMSO-D$_6$: C atom in 163.9, 159.0, 133.7, 132.8, 131.4, 130.7, 127.6, and 127.2; Mass Spectrometer spectrum (m/e); HRMS (m/z): calculated mass for C$_{12}$H$_{12}$N$_2$O$_3$Cl (M$^+$+H$^+$) 215.0233 and measured mass 215.0192.

The results of in silico and in vitro tests on 1-(benzoyloxoy)urea compound and its derivatives are presented in Table 2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Symbol</th>
<th>IC$_{50}$ µM/ml</th>
<th>Log (1/IC$_{50}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-(Benzyloxoy)urea</td>
<td>BOU</td>
<td>-79.9432</td>
<td>0.42</td>
</tr>
<tr>
<td>1-(4-Chlorobenzoyloxoy)urea</td>
<td>4-CIBOU</td>
<td>-82.7887</td>
<td>0.47</td>
</tr>
<tr>
<td>1-(4-Methylbenzoyloxoy)urea</td>
<td>4-CH$_3$BOU</td>
<td>-85.2089</td>
<td>0.43</td>
</tr>
<tr>
<td>1-(4-Methoxybenzoyloxoy)urea</td>
<td>4-OCH$_3$BOU</td>
<td>-86.5856</td>
<td>0.40</td>
</tr>
<tr>
<td>1-(4-Tert-butylbenzoyloxoy)urea</td>
<td>4-CBOU</td>
<td>-91.4471</td>
<td>0.35</td>
</tr>
<tr>
<td>1-(4-Trifluoromethylbenzoyloxoy)urea</td>
<td>4-CF$_2$BOU</td>
<td>-86.0949</td>
<td>0.33</td>
</tr>
<tr>
<td>1-(4-Bromobenzoyloxoy)urea</td>
<td>4-BrBOU</td>
<td>-85.1651</td>
<td>0.37</td>
</tr>
<tr>
<td>1-(4-Fluorobenzoyloxoy)urea</td>
<td>4-FBOU</td>
<td>-82.9755</td>
<td>0.42</td>
</tr>
<tr>
<td>1-(2,4-Dichlorobenzoyloxoy)urea</td>
<td>2,4-DICBOU</td>
<td>-81.0833</td>
<td>0.49</td>
</tr>
<tr>
<td>1-(2-Chlorobenzoyloxoy)urea</td>
<td>2-CIBOU</td>
<td>-81.1349</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Modification of the parent structure of 1-(benzoyloxy)urea was done by using a Topliss model approach. It is expected to increase the activity of the structure modifications, namely: Cl; CH₃; OCH₃; i-C₆H₄; CF₃; Br and F at the para-position; two Cl-groups at the ortho- and para-position; and Cl-group at the ortho-position. Each group was added to the benzene of 1-(benzoyloxy)urea, by nucleophilic substitution reactions between hydroxyurea and nine benzoyl chloride derivatives containing this cluster.

1-(2-Chlorobenzoyloxy)urea and 1-(4-chlorobenzoyloxy)urea were more lipophilic than 1-(benzoyloxy)urea, therefore it was expected they penetrate more easily the cell walls. The Cl-group was added into 1-(benzoyloxy)urea to strengthen the bonds between compounds and the receptor. 1-(2,4-Dichlorobenzoyloxy)urea had lipophilic properties to penetrate more easily the cell walls. 1-(4-Bromobenzoyloxy)urea with Br-group had also lipophilic properties, therefore it was able to penetrate easily the cell walls. 1-(4-Trifluoromethylbenzoyloxy)urea had a high lipophilicity in order to penetrate easily the cell walls. 1-(4-Fluorobenzoyloxy)urea contained fluoro-groups which had the nature of electron-withdrawing groups larger than chlorine groups. 1-(4-Methoxybenzoyloxy)urea had methoxy groups of poor lipophilicity resulted in poor penetration to the cell walls. However, this compound had a high electron booster to facilitate drug binding receptor. 1-(4-Tert-butilbenzoyloxy)urea with tert-butil groups had high lipophilic properties to be able to penetrate cell walls as well as electron booster to facilitate drug binding receptor.

The illustration of activity prediction via in silico, which is rerank score and activities of test compound in the form of IC₅₀ value of 1-(benzoyloxy)urea and its derivatives can be seen in Figs. 2 and 3.

It is noticeable from Fig. 2, that 1-(4-tert-butilbenzoyloxy)urea has the smallest RS. This demonstrates that the energy bond between the compound and 2EUD is the smallest or the bond between both is the most stable one. It illustrates that 1-(4-tert-butilbenzoyloxy)urea is predicted to exhibit the highest activity.

It is obvious from Fig. 3 that 1-(4-tert-butilbenzoyloxy)urea has the smallest value of IC₅₀ or the smallest value compared to other derivative is required to kill 50% of HeLa cells. The result indicates that 1-(4-tert-butilbenzoyloxy)urea exhibits the highest activity.

The linear correlation between log (1/IC₅₀) and RS value of 1-(benzoyloxy)urea and its derivatives was analyzed with SPSS, and the result can be illustrated below:

$$\log \frac{1}{IC_{50}} = -0.022 \pm 0.005>R - 1.414 \pm 0.383 \ (1)$$

where RS is Rerank Score

This equation was obtained by calculating from 10 compounds (n=10) resulting in regression coefficient $R = 0.859$ at significance of 0.001.

Linear regression curve is depicted in Fig. 4.
According to the linear regression curve between log(1/IC₅₀) and the RS value of 1-(benzoyloxy)urea and its derivatives, it can be inferred that the smaller the RS value, the bigger the value of log(1/IC₅₀) and vice versa. The smaller the value of IC₅₀, the greater the activity.

On the measurement value Rerrank Score, binding energy indicates the amount of energy required to form a bond between the ligand and the receptor. The smaller the binding energy means that more stable bonds. The more stable binding of ligands to the receptor, it can be predicted that its activity is also getting bigger. The smaller the RS value of a compound, the greater the in silico predictive activity. It shows a negative correlation between in silico and in vitro tests of 1-(benzoyloxy)urea and its derivatives. This means that the lower RS value shows the higher anti-cancer activity.

4. Conclusions

There is a linear correlation between activity prediction via in silico that is RS and cytotoxic activities via in vitro on HeLa cells from a series of 1-(benzozikos)urea and its derivatives. The correlation can be illustrated by the equation

\[\log \frac{1}{IC_{50}} = -0.022 (\pm 0.005) \times RS - 1.414 (\pm 0.383). \]

Acknowledgements

We thank Indonesian Directorate General of Higher Education (DIKTI) for funding this research. We are grateful to Prof. Honda from Hoshi University, Japan, who helped to interpret the MS spectra data, Prof. Supargiyono, DTM & H., SU., Sp.Par (K), of the Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, for the cytotoxic activity study facilities.

References

КОРЕЛЯЦIЯ IN SILICO TA IN VITRO РЕЗУЛЬТАТІВ ДОСЛІДЖЕННЯ 1-(БЕНЗОДIЮКСI)СЕЧОВИНИ I ЇЇ ПОХІДНИХ ЯК ПОТЕНЦIЙНИХ ПРОТИРАКОВИХ ПРЕПАРАТІВ

Анотація. За модифікованою реакцією Шміттена-Брукмана з додаванням пептидного бензлуоксаму або інших гомологів до гідроксиду аммоній в тетрахілідуруфuranу синтезовано 1-(бензодіюксі)сечовину та її підоходи. Структурну синтезуючих реакцій підтверджено UV-Vis та інфракраснових спектрохімічними методами 1H-NMR, 13C-NMR і мазь-західницьким. Дослідження in silico спостерігає противіракову активність 1-(бензодіюксі)сечовини та її підоході у феномені рібокомбінаторудекаментів (PDB:2EUD) проведено за допомогою програми Molegro. Протираційну активність за методом in vitro визначено за допомогою методу ММГ до компіт клітин HeLa. Показано, що результати in silico (Rerrank Score) кореляють з результатами in vitro (log(1/IC₅₀)). Визначено лінійну залежність між результатами in silico та in vitro.

Ключові слова: 1-(бензодіюксі)сечовина, похідні, in vitro, in silico.