Asian Pacific Journal of Tropical Biomedicine

Editorial Board

Editors-in-Chief

Jeffrey M. Bethony
Clinical Immunology Lab., George Washington University Medical Center, Washington, District of Columbia, USA

Santiago Mas-Coma
Fac. of Pharmacy, Universitat de València, Valencia, Spain

Malcolm Jones
Sch. of Veterinary Sciences, University of Queensland, Gatton, Queensland, Australia

Vanessa Steenkamp
Dept. of Pharmacology, Fac. of Health Sciences, University of Pretoria, Arcadia, South Africa

Nazni Wasi Ahmad
Medical Entomology Unit, Inst. for Medical Research, Kuala Lumpur, Malaysia

Iván Dario B. Vélez
Columbia Society of Parasitology and Tropical Medicine, University of Antioquia, Medellin, Colombia

Editor-in-Chief Elect.

Shunhai Qu
Hainan Medical University, Hainan, China

Deputy Editors

Jong-Yil Chai
Dept. of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
Asian Pacific Journal of Tropical Biomedicine Editorial Board

Pierre Roques
ImmunoVirology Division, Institute of Emerging Diseases and Innovative Therapies - IMETI, Fontenay-aux-Roses, France

Alcides Troncoso
Dept. of Microbiology and Infectious Diseases, Universidad de Buenos Aires, Buenos Aires, Argentina

Stephen Munga
Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya

Associate Editors-in-Chief

Giuseppe La Torre
Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy

Odir António Dellagostin
Center for Technology Development, Federal University of Pelotas, Pelotas - RS, Brazil

Sung-Jong Hong
College of Medicine, Chung-Ang University, Seoul, The Republic of Korea

Hassan Vatandoost
Dept. of Medical Entomology and Vector Control, Sch. of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Maria José Ferreira
Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal

Leonard Ernest Gustavin Mboera
The National Institute for Medical Research Tanzania, Dar es Salaam, Tanzania

Editors

Viroj Wiwanitkit
Dept. of Laboratory Medicine, Chulalongkorn University, Bangkok, Thailand

Saravanan Thangamani
Dept. of Pathology, University of Texas Medical Branch, Galveston, Texas, USA

Laura Bongiovanni
Faculty of Veterinary Medicine, Università di Teramo, Teramo, Italy

Statistical Editors

Khaled Khatab
Health Economics Modelling and Medical Statistics, Sheffield Hallam University, Sheffield, England, UK

Sarath Chandra Janga
Department of Biohealth Informatics, Indiana University, Indianapolis, Indiana, USA

Executive Editors

Salah Akkal
Department of Chemistry, University of Constantine, Constantine, Algeria

Hervé Hoste
French National Institute for Agricultural Research, Université de Toulouse, Toulouse, France

Thomas N. Tully
School of Veterinary Medicine, Louisiana State University, Louisiana, USA

Barbara R. Conway
Department of Pharmacy, University of Huddersfield, Huddersfield, England, UK
Lynn Yan
Editorial Office, Asian Pacific Journal of Tropical Biomedicine, Haikou, China

Autumn Pan
Editorial Office, Asian Pacific Journal of Tropical Biomedicine, Haikou, China

Editorial Board Members

Vittorio Sambri
Department of Specialistic, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy

Qiushui He
Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland

Bindu Sukumaran
Emerging Infectious Diseases Programme, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore

Suhail Ahmad
Department of Microbiology, Kuwait University, Kuwait City, Kuwait

Indra Vythilingam
Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia

Wael Mohamed Abou El-Makarem El-Deeb
College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia

Ben Slama Karim
Dept. of Biotechnology, University of Tunis El Manar, Tunis, Tunisia

Bing Huang
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China

Xiao-Nong Zhou
Chinese Centre for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China

Nahid Einollahi
Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

Munir Aktas
College of Veterinary Medicine, Firat University, Elazig, Turkey

José Manuel Lorenzo Rodríguez
Centro Tecnolóxico da Carne (CTC), Galicia, Spain

Giovanni Benelli
Insect Behaviour Group, Università di Pisa, Pisa, Italy

Jeong Hwan Shin
Coll. of medicine, Inje University, Busan, The Republic of Korea

Luis Ignacio González Granado
Immunodeficiencies Unit, Hospital 12 de Octubre, Madrid, Spain

Abhishek Mathur
Dept. of Research and Development, National Centre of Fungal Taxonomy, New Delhi, India
Ahmed Ismail
Dept. of Healthcare Quality Management, Supreme Council of Health, Doha, Qatar
Américo David Rodríguez Ramírez
Centro Regional de Investigación en Salud Pública, Chiapas, Mexico
Xue-Jie Yu
Dept. of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
Arun Kumar
Dept. of Biochemistry, Shri Shankaracharya Institute of Medical Sciences, Bilai, India
Chia-Kwung Fan
Department of Molecular Parasitology and Tropical Diseases, Taipei Medical University, Taipei, Taiwan
Cyrille Bisseye
Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA)/LABIOGENE, Université de Ouagadougou, Ouagadougou, Burkina Faso
Dongmi Kwak
Coll. of Veterinary Medicine, Kyungpook National University, Daegu, The Republic of Korea
Donovan Anthony McGrowder
Dept. of Chemical Pathology, University Hospital of The West Indies, Kingston, Jamaica
Farouk El Allaki
Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe, Quebec, Canada
Gabriel Trueba
Environmental and Biological Sciences, Universidad San Francisco de Quito, Quito, Ecuador
Gordana J. Dragovic Lukic
Department of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
Hanspeter Marti
Swiss Tropical and Public Health Institute, Basel, Switzerland
Herbert Auer
Dept. of Medical Parasitology, Medizinische Universität Wien, Vienna, Austria
Hetron Mweemba Munang'andu
Dept. of Basic Sciences and Aquatic Medicine, , Norges veterinærhøgskole (NVH), Oslo, Norway
Irma Khachidze
Dept. of Behavior, Cognition Functions and Human Psychophysiology, Beritashvili Institute of Physiology, Tbilisi, Georgia
Jean-François Faucher
Service des maladies infectieuses et tropicales, Hôpital Minjoz, Besançon cedex, France
José A. Oteo
Dept. of Infectious Diseases, Hospital San Pedro-CIBIR, Logrono, Spain
Juraj Majtán
Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava-Staré Mesto, Slovakia
Kalman Imre
Dept. of Animal Production and Veterinary Public Health, Banat University of Agricultural Sciences and Veterinary Medicines, Timisoara, Romania
Kingsley Badu
Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana

Lala Ravaomanarivo
Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar

Liwang Cui
Dept. of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA

Luís R. Silva
Faculty of Engineering (FEUP), Universidade do Porto, Porto, Portugal

M. Fawzi Mahomoodally
Dept. of Health Sciences, University of Mauritius, Moka, Mauritius

Mamadou C. Baldé
Institut Pasteur de Guinée, Cheikh Anta Diop University, Kindia, Guinea

Milkyas Endale
Department of Chemistry, Hawassa University, Hawassa, Ethiopia

Mochammad Hatta
Molecular Biology and Immunology Laboratory for Infectious Diseases, Dept. Microbiology, Hasanuddin University, Makassar, Indonesia

Moses Samje
Faculty of Health Sciences, University of Bamenda, Bambili, Cameroon

Muftah A.M. Shushni
Department of Pharmacognosy, Tripoli University, Tripoli

Muhammad Akram
Faculty of Medical and Health Sciences, The University of Poonch, Azad Jammu and Kashmir, Pakistan

Musso Munyeme
School of Veterinary Medicine, University of Zambia, Lusaka, Zambia

Nguyen Hoang Loc
College of Sciences, Hue University, Hue, Viet Nam

Obembe Olawole
Dept. of Biological Sciences, Coventry University, Ota, Nigeria

Pius Mpiana
Faculty of Science, University of Kinshasa, Kinshasa, Congo

Polrat Wilairatana
Fac. of Tropical Medicine, Mahidol University, Bangkok, Thailand

Pravin Malla Shrestha
Energy Biosciences Institute, University of California, Berkeley, California, USA

Rebuma Firdessa
Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany

Rinaldo Poncio Mendes
Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, Brazil

Robin A.J. Nicholas
Faculty of Health and Medical Sciences, University of Surrey, Surrey, England, UK
Research Intelligence
Antiviral activity of the dichloromethane extracts from *Artocarpus heterophyllus* leaves against hepatitis C virus

Achmad Fuad Hafid1,2, Chie Aoki-Utsuno3, Adita Ayu Permasari1, Myrnya Adianti1, Lydia Tumewu1, Aty Widawaryantti1,2, Sri Puji Astuti Wahyuningsih9, Tutik Sri Wahyuni1,2, Maria Inge Lusida1,4, Soetjipto1,5, Hak Hotta6

1Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
2Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya 60286, Indonesia
3Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomoegoka, Suma-ku, Kobe 654-0142, Japan
4Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia
5Department of Biochemistry, Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia
6Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
7Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, 1-5-6 Minatojima-mirinminachi, Chuo-ku, Kobe 650-0047, Japan

ARTICLE INFO

Objective: To determine anti-viral activities of three *Artocarpus* species: *Artocarpus altilis*, *Artocarpus camansi*, and *Artocarpus heterophyllus* (A. heterophyllus) against Hepatitis C Virus (HCV).

Methods: Antiviral activities of the crude extracts were examined by cell culture method using Huh7/7-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCV activities was determined by time-of-addition experiments. The effect on HCV RNA replication and HCV accumulation in cells were analyzed by quantitative reverse transcription-PCR and western blotting, respectively.

Results: The dichloromethane (DCM) extract of *A. heterophyllus* exhibited strong anti-HCV activity with an inhibitory concentration (IC50) value of (1.5 ± 0.6) μg/mL without obvious toxicity. The DCM extract from *Artocarpus altilis* and *Artocarpus camansi* showed moderate anti-HCV activities with IC50 values being (6.5 ± 0.3) μg/mL and (9.7 ± 1.1) μg/mL, respectively. A time-of-addition studies showed that DCM extract from *A. heterophyllus* inhibited viral entry process through a direct virucidal activity and targeting host cells. HCV RNA replication and HCV protein expression were slightly reduced by the DCM treatment at high concentration.

Conclusions: The DCM extract from *A. heterophyllus* is a good candidate to develop an antiviral agent to prevent HCV grant reinfection following liver transplantation.

1. Introduction

Hepatitis C Virus (HCV) infection is a major health problems that lead to liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Approximately 170 million people of world population are chronically infected with HCV [1-3]. HCV exhibits high genetic diversity and different genotypes which are classified into seven (1-7) genotypes with 67 confirmed and 20 provisional subtypes [4]. In
HCV-positive patients, the cumulative risk of developing hepatocellular carcinoma in the 40–74 age group is 21.6% among males and 8.7% among females [5].

HCV is a small enveloped virus with a positive-sense, single-stranded RNA genome that encodes a large polyprotein consisting of three structural proteins and seven nonstructural proteins. The structural proteins of enveloped glycoproteins E1 and E2 are responsible for virus binding to the receptor molecules on cell surface, such as scavenger receptor class B type 1 (SR-B1), CD81, claudin 1, and occludin [1]. Meanwhile, the nonstructural proteins of p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B are responsible for viral RNA replication and viral particle construction [6–8].

The current treatment of HCV infection has markedly changed in the recent years. The direct acting antiviral agents (DAAs) combined with Interferon (IFN) have been approved and new IFN-free regimen combinations are recently available in many countries. DAAs targets nonstructural proteins of HCV which results in the disruptions of the viral replication and infection. Currently approved DAAs consist of NS3 protease inhibitors such as simeprevir, asunaprevir and vaniprevir, NS5A inhibitors such as daclatasvir and ledipasvir; and NS5B RNA-dependent RNA polymerase (RdRp) inhibitors such as sorosbuvir [9,10]. The current treatment regimen using DAAs has dramatically improved sustained virological response (SVR) in most patients of different HCV genotypes. However, the emergence of drug resistance virus, safety for long usage, expensive cost of DAAs therapy, and limited access to the treatment, especially for patients in countries with relatively low income remain major barriers to HCV treatment. Thus, development of effective and inexpensive anti-HCV agents is still required.

Tropical rainforests exhibit a vast diversity in plants and those plants are sources for potential drug development. It has been previously reported that anti-HCV activities of Indonesian medicinal plants, in which 4 out of 21 plants extracts revealed anti-HCV activity against the HCV J6/JFH1-P47. One of the four plants was Ficus fistulosa known as Moraceae family [11]. Moraceae family consists of 60 genera and includes 1400 species. The important genus of the Moraceae family is Artocarpus which is composed of 50 species [12]. Artocarpus is known to have wide bioactivities against virus [13,14], bacterial [15,16], malarial [17,18], and fungi [19,20].

In this study, three species of Artocarpus from Purwodadi Botanical Gardens, East Java, Indonesia, namely Artocarpus altillus (A. altillus) (breadfruit), Artocarpus camansi (A. camansi) (breadnut), and Artocarpus heterophyllus (A. heterophyllus) (jackfruit) were screened for anti-HCV activities.

2. Materials and methods

2.1. Cells and viruses

A clone of human hepatocellular carcinoma-derived Huh7 cells, Huh7i1-1 [21], was cultivated in Dulbecco’s Modified Eagle Medium (Gibco Invitrogen, Carlsbad, CA, USA) supplemented with 10% Fetal Bovine Serum (Biowest, Nuaile, France), 0.15 mg/mL Kanamycin (Sigma–Aldrich, St. Louis, MO, USA) and non-essential amino acids (Gibco-Invitrogen) in 5% CO2 at 37 °C. A cell culture-adapted HCV variant was propagated as described previously [9]. In brief, Huh7i1-1 cells (1.8 x 10⁵ cells) were infected with JFH1 1.8 x 10⁵ focus-forming unit (ffu) for 4 h with agitation every 30 min. The HCV-infected cells were incubated for 5 d. The supernatants at day 3 post-infection were collected and used for antiviral experiments.

2.2. Preparation of crude extracts

The leaves of A. altillus, A. camansi, and A. heterophyllus were obtained from Purwodadi Botanical Garden, Indonesia and verified by a licensed botanist. These Artocarpus leaves were extracted with several solvents (ethanol 80%, hexane, dichloromethane and methanol). The leaves were extracted using n-hexane and ethanol 80%. Meanwhile, the residue from n-hexane extract was further extracted using dichloromethane (DCM). Thereafter, the residue from dichloromethane was extracted using methanol. All extracts were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 100 mg/mL and then stored at −30 °C.

2.3. Virus titration and immunostaining

Virus titration and immunostaining was performed as described previously [9,21,22]. In brief, virus supernatants diluted in the medium and inoculated onto the Huh7i1-1 cells. After virus absorption for 4 h, the cells were cultured with medium containing 0.4% methyl cellulose (Sigma–Aldrich) for 41 h. The cells were fixed with 10% formaldehyde solution and permeabilized with 0.5% triton X-100 in PBS. The cells were stained with anti-HCV patient anti-serum and HRP-goat anti-human Ig antibody (MBL). The HCV antigen positive cells were visualized with Metal Enhanced DAB substrate kits (Thermo Fisher Scientific, Rockford, USA) and infections foci were counted under microscope.

2.4. Antiviral activity assay

Antiviral activity assay was performed as described previously [9,21,22]. Huh7i1-1 cells (5.2 x 10⁵) were inoculated with HCV at multiplication of infection (MOI) of 0.1 in the presence of different concentrations of plant extracts (100, 50, 25, 12.5, 6.3 and 3.1 μg/mL). After virus absorption for 2 h, the cells were rinsed with the medium and further incubated in the medium containing the same extracts for 46 h. For time-of-addition experiments, the cells were treated with the medium containing extracts only during viral inoculation (entry event) or only after viral inoculation (post entry event). Culture supernatants at 48 h post-infection were collected for virus titration. The 50% inhibitory effect (IC₅₀) was calculated by SPSS probit analysis.

2.5. Virucidal activity assay

Virucidal activity test was performed as described previously [9]. In brief, the HCV suspension (10⁶ ffu/mL, 75 μL) was mixed with an equal volume of DCM extract and incubated for 2 h at 37 °C. Following by inoculating the virus suspension to the cells and incubated for 4 h at 37 °C. After removing viral inoculum, the cells were overlaid with 0.5% methyl cellulose-containing medium and incubated for 41 h.

2.6. Effect of host expression assay

The extract of DCM from A. heterophyllus was preincubated with cell (5.2 x 10⁵) for 2 h at 37 °C. Then, cells were inoculated with HCV (MOI of 0.1) for 4 h. After viral absorption, cells were replaced with medium and incubated for 41 h. The culture supernatant was collected for virus titration and immunostaining.
2.7. Immunoblotting

The cells were lysed in a sodium dodecyl sulfate (SDS) sample buffer and the protein concentrations were determined using a bichinchoninic protein assay kit (Thermo Fisher Scientific). Equal amounts of proteins were separated in SDS-polyacrylamide gel electrophoresis and transferred onto a polyvinylidene difluoride membrane (Millipore, Bed-fold, MA, USA). The membranes were probed with an HCV NS3 mouse monoclonal antibody (clone H23; Abcam, Cambridge, MA, USA), an HCV NS3A mouse monoclonal antibody (clone 7B5; Biofront, Tallahassee, FL) or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (MBL, Nagoya, Japan) as primary antibodies followed by HRP-conjugated goat anti-mouse immunoglobulin (MBL) as the secondary antibody. Target proteins were visualized using enhanced chemiluminescence detection system (Biorad; GE healthcare, UK).

2.8. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

RNA extraction, cDNA synthesis, and qRT-PCR were performed as described previously [9]. In brief, RNA was extracted from cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). One µg of total RNA was transcribed using a ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan) with random primers, and cDNA was amplified for real-time quantitative PCR using SYBR Premix Ex Taq (Takara Bio, Shiga, Japan) in a MicroAmp 96-well plate. PCR was performed using ABI 7300 Real-Time PCR system with specific primers to amplify an NS3 region of the HCV genome 5'-CTTTGACTCCGTGATCGACT-3' (sense) and 5'-CCCTGTCTTCTCCCTACTCG-3' (antisense).

2.9. MTT assay

The cytotoxicity of the samples was assessed by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay as described previously [9]. In brief, cells in 96 well plates were treated with various concentrations of crude extracts for 48 h. The medium was replaced with MTT containing medium and incubated for 4 h. Insoluble precipitates were dissolved with DMSO and the absorbance at 560 nm was measured using a microplate reader. The percentages of cell viability were compared to the control and calculated for 50% cytotoxic concentration (CC50) values.

2.10. Data analysis

Results were expressed as mean ± SD. Differences between two data sets were evaluated by Student’s two-tailed t-test. A P-value of < 0.05 was considered as statistically significant.

3. Results

3.1. Anti-HCV activities of A. altillis, A. heterophyllus, and A. camansi

We prepared crude extract samples from three Artocarpus species (A. altillis, A. heterophyllus, and A. camansi) using four various solvents (80% ethanol, n-hexane, DCM, and methanol) and obtained a total of 12 samples. Those samples were used for antiviral screening against HCV (JFH1 strain). HCV was inoculated onto Huh7.1 cells in the presence of the samples and after viral adsorption for 2 h, the cells were extensively rinsed and further incubated in the same extracts containing medium for 46 h. The 50% HCV inhibition concentration (IC50) and the 50% cytotoxic concentration (CC50) and selectivity indexes (SI; CC50/IC50) of tested samples are shown in Table 1. The results showed that 6 of the 12 samples possessed strong anti-HCV activities with IC50 values of < 10 µg/mL and 3 extracts moderate activities with IC50 value of (10–20) µg/mL. Among samples possessing anti-HCV activity, the DCM extract of A. heterophyllus exhibited the strongest activity with an IC50 value of 1.5 µg/mL and CC50 > 200 µg/mL (SI; > 134.8). Methanol extract of A. heterophyllus and 80% ethanol extract of A. altillis showed anti-HCV activities with IC50 values of 6.8 µg/mL and 12.9 µg/mL, respectively without any cytotoxicity effect with CC50 values > 600 µg/mL and > 800 µg/mL and SI values of 88.6 and 62.1, respectively. The DCM extracts of A. altillis and A. camansi revealed stronger anti-HCV activity with IC50 values of 6.5 µg/mL and 9.7 µg/mL, respectively, with CC50 value of > 50 µg/mL. On the other hand, the hexane extracts of the three Artocarpus species did not exhibit significant anti-HCV activities at the concentration of 100 µg/mL. Dose-dependent inhibition of HCV infection and cell viability of each sample was shown in Figure 1.

3.2. Mode of action of extracts of A. altillis, A. heterophyllus and A. camansi

To determine the inhibitory stage(s) of extracts possessing anti-HCV activities in HCV life cycle, we conducted time-of-addition experiments, in which three sets of experiments were done in parallel: First, the extract(s) and virus were co-added onto the cells for 2 h and after virus adsorption, the cells were further incubated in the presence of the same extracts for 46 h (treatment during entry and post-entry steps). Second, the extract(s) and virus were co-added onto the cells for 2 h and after virus adsorption, the cells were further incubated in the absence of the extracts for 46 h (treatment during entry step). Third, the HCV virus without sample was inoculated onto the culture cells. After virus adsorption for 2 h, the infected cells were incubated

<table>
<thead>
<tr>
<th>Sample</th>
<th>IC50 (µg/mL)</th>
<th>CC50 (µg/mL)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. altillis</td>
<td>80% Ethanol</td>
<td>8.9 ± 0.3</td>
<td>> 50</td>
</tr>
<tr>
<td></td>
<td>Hexane</td>
<td>> 100</td>
<td>> 500</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>6.5 ± 0.3</td>
<td>> 50</td>
</tr>
<tr>
<td>A. heterophyllus</td>
<td>80% Ethanol</td>
<td>12.9 ± 2.6</td>
<td>> 800</td>
</tr>
<tr>
<td></td>
<td>Hexane</td>
<td>> 100</td>
<td>> 400</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>1.5 ± 0.6</td>
<td>> 200</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>6.8 ± 0.8</td>
<td>> 600</td>
</tr>
<tr>
<td>A. camansi</td>
<td>80% Ethanol</td>
<td>6.7 ± 0.9</td>
<td>> 50</td>
</tr>
<tr>
<td></td>
<td>Hexane</td>
<td>> 100</td>
<td>> 500</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>9.7 ± 1.1</td>
<td>> 50</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>13.0 ± 0.7</td>
<td>> 100</td>
</tr>
</tbody>
</table>

Data represent mean ± SD of data from triplicate experiments. NA, not applicable, SI, selectivity index.
with media containing same extracts for 46 h (treatment after virus entry). The results showed that all the three extracts (80% ethanol, DCM, methanol) of A. altitlis and A. camansi exerted anti-HCV activity mainly at the post-entry event (Table 2). In contrast, the extracts of 80% ethanol, DCM and methanol of A. heterophyllus exhibited HCV inhibition principally at viral entry, while the post entry steps showed the lesser extent (Table 2).

3.3. Thin layer chromatography (TLC) analysis of extracts of A. altitlis, A. heterophyllus, and A. camansi

Bioactivities of medicinal plants were influenced by the chemical contents of the plants.

Screenings of the bioactive components in the extracts were performed by TLC analysis and the result was demonstrated in Figure 2. The DCM, methanol and 80% ethanol extracts of A. altitlis and A. camansi showed to contain with flavonoid component which is indicated by one major orange spot. On the other hand, TLC of methanol and DCM extracts of A. heterophyllus showed the presence of terpenoid and steroid which are indicated by purple and blue spots, respectively. DCM extract of A. heterophyllus also contained chlorophyll-related compounds with detection of red spots under detection of UV irradiation 365 nm. While the hexane extracts of A. altitlis, A. heterophyllus, and A. camansi showed the presence of terpenoids as one major spots.

3.4. DCM extract of A. heterophyllus inhibits HCV infection through a direct virucidal effect and affecting host cells

Since the strong inhibition of DCM extract, further analysis to conduct the mechanism of action was performed for DCM

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Conc. (µg/mL)</th>
<th>% Inhibition</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. altitlis</td>
<td>80% Ethanol</td>
<td>30</td>
<td>97.5</td>
<td>98.1</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>30</td>
<td>99.0</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>30</td>
<td>92.4</td>
<td>90.1</td>
</tr>
<tr>
<td>A. heterophyllus</td>
<td>80% Ethanol</td>
<td>25</td>
<td>89.4</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>6</td>
<td>91.0</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>25</td>
<td>95.3</td>
<td>19.9</td>
</tr>
<tr>
<td>A. camansi</td>
<td>80% Ethanol</td>
<td>30</td>
<td>97.3</td>
<td>93.9</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>30</td>
<td>97.0</td>
<td>96.4</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>30</td>
<td>94.0</td>
<td>95.3</td>
</tr>
</tbody>
</table>
extract of *A. heterophyllus*. Time-of-addition experiment to determine the effect of extracts in the entry or post entry steps of HCV life cycle showed that the DCM extract of *A. heterophyllus* exerts anti-HCV activity mainly in the entry step. To evaluate whether the DCM extract acted on the target of HCV or host cells, the infectivity of the extract-treated HCV virions were determined. HCV virions were treated with the DCM extract or medium as the control for 2 h at 37 °C and then pretreated-HCV was inoculated onto HuH7-1 cells for virus titration. As shown in Figure 3A, pretreatment of HCV inoculum with the DCM extract (6.3 μg/mL) was significantly decreased the HCV infectivity upon 18.2% (*P < 0.0001*) compared with the untreated control (81.8% reduction). We next assessed the effect of DCM-pretreated host cells on HCV infection. HuH7-1 cells were pretreated with the DCM extract for 2 h and then rinsed extensively to remove the extract. The pre-treated cells were challenged with HCV infection in the absence of the DCM extract. The result showed that the pretreatment of the cells with DCM extract (6.3 μg/mL) was significantly decreased HCV infectivity upon 9.9% (*P < 0.0001*) compared with the untreated control (90.1% reduction) (Figure 3B). These results suggested that the DCM extract of *A. heterophyllus* targeted both HCV virion and host cells. Since treatment of cells with the DCM extract (6.3 μg/mL) revealed the effect at the post-viral adsorption step and also somehow inhibited HCV infection (Table 2), further confirmation of the effect on HCV RNA replication and HCV protein accumulation in the cells was evaluated. Real-time RT-PCR and immunoblotting analysis demonstrated that low concentration of DCM extract did not clearly suppress HCV replication and HCV protein accumulation, however high concentrations of the DCM (> 12.5 μg/mL) acted to inhibit HCV replication (Figure 3C and D).

![Figure 2](image-url) **Figure 2.** TLC analysis of extracts of *A. altius, A. heterophyllus* and *A. camansi*. Silica gel F254 TLC was used as stationary phase and chloroform:methanol (9:1, v/v) as mobile phase. Detection under (A) UV 254 nm, (B) UV 365 nm, (C) heating TLC plate at 105 °C for 5 min after spraying 10% sulfuric acid and (D) observed under UV 365 nm after using spray reagent and heated. Sample: (1) hexane extract of *A. heterophyllus*, (2) DCM extract of *A. heterophyllus*, (3) methanol extract of *A. heterophyllus*, (4) 80% ethanol extract of *A. heterophyllus*, (5) hexane extract of *A. altius*, (6) DCM extract of *A. altius*, (7) methanol extract of *A. altius*, (8) 80% ethanol extract of *A. altius*, (9) hexane extract of *A. camansi*, (10) DCM extract of *A. camansi*, (11) methanol extract of *A. camansi*, (12) 80% ethanol extract of *A. camansi*.

![Figure 3](image-url) **Figure 3.** (A) Analysis of virucidal activity. HCV suspension was mixed with the DCM extract of *A. heterophyllus* for 2 h at 37 °C before inoculation onto the cells. (B) Effect of pretreatment of cells with DCM extracts of *A. heterophyllus* on HCV infection. Cells were preincubated with the DCM extracts for 2 h and then challenged with HCV infection. (C) The HCV-infected cells were treated with the DCM extracts of *A. heterophyllus*. HCV protein accumulation in the cells was analyzed by western blotting against NS3, NS5A or GAPDH as a loading control. (D) The level of HCV RNA in the cells was measured by qRT-PCR. Data represent means from triplicate experiments ± SD. *P < 0.001 compared to the untreated control; **P < 0.0001 compared to the untreated control.
4. Discussion

Medicinal plants are potential resources for various bioactivities. Several components from medicinal plants have been reported to possess potential bioactivity including anti-HCV. Plants of Arctocarpus genus have been used as traditional medicine in Indonesia for the treatment of fever, dysentery, and malaria. The genus of Arctocarpus is rich in phenoic compounds, including flavonoid, stilbenoids, arylenzofuranus, and Jacalin (a lectin) [23-25] that were reported to possess a wide range of biological activities including anticancer, anti-inflammatory, antihypertensive, antibacterial, and antiviral [26].

In the present study, we screened crude extracts of three Arctocarpus species: A. altillis, A. camansi, and A. heterophyllus for anti-HCV activities. A plant of A. altillis is known as breadfruit, which was used traditionally to treat liver disorders, hypertension, and diabetis. A total of 130 compounds were identified from A. altillis, of which more than 70 are derived from the polyphenol pathway [23]. Meanwhile A. camansi is known with local name breadnut. The morphology of A. altillis and A. camansi is similar for leaves, fruits, and stems [23]. A. camansi is also believed to have similar medicinal properties to A. altillis [24].

Plant of A. heterophyllus has a local name Jackfruit and the leaves are usually entire (without lobes), much smaller than breadfruit and breakfast leaves. A. heterophyllus was known active as antibacterial activity against 24 species of bacteria [27], Jacalin, a Jackfruit lectin from A. heterophyllus was reported to inhibit DNA viruses such as herpes simplex virus type II (HSV-2), varicella-zoster virus (VZV), and cytomegalovirus (CMV) [28], however, there is no reported yet about its anti-HCV activities.

Anti-HCV activities were demonstrated that 80% ethanol, DCM, and methanol extract of Arctocarpus species mediated strong inhibition against HCV with IC50 value less than 15 g/mL, while the hexane extracts did not access any anti-HCV activities in the concentration of 100 g/mL (Table 1 and Figure 1). Further analysis was demonstrated that extracts of A. altillis and A. camansi exhibited HCV inhibition mainly at the post-entry step with percentage inhibition higher than 90%, while extracts of A. heterophyllus inhibit HCV in the entry step with percentage inhibition higher than 80% (Table 2). Common constitum(s) present in the extracts of A. camansi and A. altillis may exert similar anti-HCV activities.

To confirm the mechanism of A. heterophyllus how to inactivate the virus, virucidal activity and effect of host expression test were conducted. The result showed that pretreatment of the HCV virion or the Huh7/1T-1 cells with DCM extract of A. heterophyllus strongly reduced HCV infection. It suggested that DCM extract of A. heterophyllus exerts antiviral activities through direct virucidal activity and effecting host cells (Figure 2A and B) which may interfere the interaction with some receptors in the host cells. Some host cell molecules have be shown to be important entry factors or (co)receptors for HCV, such as glycosaminoglycan (GAG), low density lipoprotein receptor (LDLR), the scavenger receptor class B member I (SR-B1), the tetranspin CD81, claudin-1 (CLDN1), and occludin (OCLN) which play as necessary keys in the attachments process of HCV to the host cells [26]. Since antiviral drug(s) targeting host factor(s) is generally known to lower emergence rate of drug resistance compared to the direct-acting antiviral drugs, the DCM extract of A. heterophyllus may be useful as a new drug development for the treatment of HCV especially to prevent HCV grant reinfection following liver transplantation.

Further analysis to confirm the effect of DCM extract of A. heterophyllus in the post entry step of HCV life cycle, western blot analysis was performed to examine the expressions of NS3 and NS5A HCV protein levels which played the important role in the replication of HCV. The result demonstrated mild inhibition of NS3 and NS5A protein expression level in DCM extract of A. heterophyllus-treated cells. Consistently, the HCV RNA levels were slightly inhibited by DCM extract of A. heterophyllus, however significant inhibition of RNA level was observed when the concentration was increased up to 12.5 and 25 µg/mL. These results were suggested the possible inhibition process attachment, assembly, release of virions and replication steps.

The bioactivities of components were influenced by the biochemical constituents among the plants. Our studies have not yet identified the compound(s) responsible for anti-HCV activity from A. altillis, A. heterophyllus, and A. camansi in this study. Other study was reported that A. heterophyllus contains lectin, arctocarpine, arctocarpin, cycloheptanolin, artonin A, morin, oxidiherd rosartocarpesin, cyonmagic, isoartocarpin, cyoloartocarpin, arctocarpesin, norartocarpesin, cyclouronine and arto-carpanone. The leaves and stem are also reported to contain sapogenins, quercetin, cycloartenol, sitosterol and tannins [24].

Our TLC profiles were identified terpenoid and steroid components which served as major components of the DCM extracts of A. heterophyllus (Figure 2). The DCM, methanol and 80% ethanol extracts of A. altillis and A. camansi contained flavonoid as a major component. Some terpenoids have been reported to inhibit HCV infection such as Saikosaponin b2 from Bupleurum kaoi [30]; oleic acid and uricosic acid [31]; Platycodonin D, D2, D3, deoxiplatycodin D, D2, platycoric acid A [32]; and andrographolide, a diterpenoid lactone from Andrographis paniculata [33]. Many flavonoids have also been reported to exert anti-HCV activity: Epigallocatechin-3-gallate (EGCG) [34], quercitin, luteolin, apigenin and ladein [35], naringenin and silymarin/silibinin. The grapefruit flavonoid naringenin was reported to inhibit HCV assembly and release. Silibinin, the major component of silymarin, was reported to exert anti-HCV activity by blocking HCV entry, HCV fusion, replication and production of new progeny virus. These compounds are currently in phase 1 and phase 2/3 clinical trial studies, respectively [36,37]. As for the A. altillis, A. heterophyllus, and A. camansi, further analyses is required to determine the responsible compound(s) for anti-HCV activities in their extracts.

Extracts of A. altillis, A. camansi, and A. heterophyllus possess anti-HCV activity. The DCM extract of A. heterophyllus exhibits strong anti HCV activity through a direct virucidal activity and effecting host cells. The DCM extract of A. heterophyllus was a good candidate to develop a new antiviral agent to treat HCV infection and to prevent HCV reinfection following liver transplantation.

Conflict of interest statement

The authors declare no conflict of interests.

Acknowledgements

We thank to Dr. Takaji Wakita (National Institute of Infectious Diseases, Tokyo, Japan) for providing pJFH-1 and
Dr. Yohko Shimizu for providing Huh?7-1 cells. This work was supported in part by Mandat Project Airlangga University Science and Technology Research Partnerships for Sustainable Development (SATREPS) program from Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA).

References