Asian Pacific Journal of Tropical Disease
Asian Pacific Journal of Tropical Disease

The Asian Pacific Journal of Tropical Disease is sponsored by the Hainan Medical College and is aimed to set up an academic communication platform for Chinese and the rest of the world on tropical medicine and other related fields. We hope that the publication of our new journal will bring us a great opportunity for international academic communication and research. Furthermore, we wish to enhance the competency of preventing and curing tropical and related diseases in our region and in China.

The Journal invites concise reports of original research in all areas of tropical medicine and related fields, both experimental and clinical, including: modern, traditional and epidemiological studies from any part of the world. Review articles and mini-reviews (no more than 4 printed pages), based primarily on the author(s) own research on internationally important topics are welcome. Short communications and letters to the editor are also welcome.

Editors-in-Chief: Dr. Jeffrey M. Bethony, Dr. Santiago Mas-Costa, Dr. Malcolm K. Jones, Dr. Jong-Yil Chai, Dr. Leonard E.G. Mboera

Editors-in-Chief:

Stay up-to-date

Register your interests and receive email alerts tailored to your needs

Click here to sign up

Journal Insights

Discover this journal’s metrics

Impact

Authors

Speed

FIND OUT MORE

Recent Articles

Echinophora platyloba DC. as a new natural antifungal agent
Majid Avijgan | Mohaddese Mahboubi

Helminthiasis and medicinal plants: a review
Mahesh Bandappa Manke | Shashikant Chaburao Dhawale | ...

Chemical composition and antimicrobial effect of the essential oil of Zataria multiflora Boiss endemic in Khorasan-Iran
Avaei Aida | Mohamadi Sani Ali | ...

VIEW ALL

Most Cited Articles

Protective effect of pineapple (Ananas cosmosus) peel extract on alcohol-induced oxidative stress in brain tissues of male albino rats
Ochuko L. Erukainure | John A. Ajiboye | ...

Study comparing the clinical profile of complicated cases of Plasmodium falciparum malaria among adults and children
Georges Peter | Alexander Lobo Manuel | ...

Malaria self medications and choices of drugs for its treatment among residents of a malaria endemic community in West Africa
Godwin T A Jombo | Ma A. Araoye | ...

VIEW ALL
Asian Pacific Journal of Tropical Disease Editorial Board

Editors-in-Chief

Dr. Jeffrey M. Bethony
Department of Microbiology, Immunology and Tropical Medicine and Center for the Neglected Diseases of Poverty, George Washington University, Washington, D.C., USA

Dr. Santiago Mas-Coma
Director and Chairman, Vice President & President Elect of the International Federation of Tropical Medicine (IFTM), Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andreu Estelles s/n, 46100 Burjassot - Valencia, Valencia, Spain

Dr. Malcolm K. Jones
President of the Australian Society for Parasitology, Queensland Institute of Medical Research, Herston, Qld 4029, Queensland, Australia

Dr. Jong-Yil Chai
Secretary General of International Federation for Tropical Medicine, Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, 28, Yongon-Dong, Jongno-Gu, Seoul 110-799, Seoul, Korea

Dr. Leonard E.G. Mboera
Chief Research Scientist, National Institute for Medical Research c/o National Institute for Medical Research, PO Box 9653, Dar es Salaam, Tanzania

Executive Editor-in-Chief

Dr. Shunhai Qu
President of Asian Pacific Tropical Medicine Press, Hainan Medical University, Xueyuan Road 3, Haikou, Hainan, China

Deputy Editors-in-Chief

Dr. Giuseppe La Torre
Department of Public Health and Infectious Diseases, Sapienza University of Rome Piazzale Aldo Moro 5 - 00185 Rome, Rome, Italy

Dr. Iván Darío Vélez B
Past President of Sociedad Colombiana de Parasitología Medicina Tropical, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia

Dr. Bjørg Marit Andersen
Professor, Hygiene and Infection Control, Department of Hospital Infections, Oslo University Hospital - Ullevål, Diakonova University College, Oslo, Norway

Dr. Alcides Troncoso
Department of Infectious Diseases, Bartolome Mitre 1906, CP: 1039-Buenos Aires, Buenos Aires, Argentina

Dr. David Peter Wilson
Head, Surveillance and Evaluation Program for Public Health; National Centre in HIV Epidemiology and Clinical Research, Faculty of Medicine, University of New South Wales, Sydney, Australia

Dr. Tze-San Lee
Centers for Disease Control and Prevention, 914 Rebecca Street, Lilburn, GA 30047, Lilburn, USA

Associate Editors-in-Chief

Dr. Vittorio Sambri
Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Bologna, Italy

Dr. Yuki Eshita
Department of Infectious Disease Control, Faculty of Medicine, Oita University Idaigaoka, Hasama-machi, Oita
Wu-Xing Street, Taipei, Taiwan

Dr. John Mario González
Facultad de Medicina, Universidad de los Andes, Carrera 1 No. 18A-10, edificio Q, piso 8, Código de área: 111711 Bogotá D.C., Colombia

Executive Editorial Members

Dr. Armen Yuri Gasparyan
Associate Professor of Medicine, Department of Research and Development, Clinical Research Unit, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Teaching Trust of The University of Birmingham, Birmingham, UK

Dr. Agnaldo Lopes da Silva Filho
Department of Obstetrics and Gynecology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Dr. Ahmad Daryani
Department of Parasitology and Mycology, Medical School, Mazandaran University of Medical Sciences, Sari, Iran

Dr. Ahmad Oryan
Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

Dr. Américo David Rodrguez Ramírez
School of Biosciences, University of Wales, Centro Regional De Investigacion En Salud Publica, Tapachula, México

Dr. Antonio Lucio Teixeira
Universidade Federal de Minas Gerais (UFMG), Laboratório de Imunofarmacologia, Departamento de Bioquimica e Imunologia, Belo Horizonte, Brazil

Dr. Abdelaaty A Shahat
Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia

Dr. Arun Kumar
Department of Biochemistry, International Medical School Management and Science University, MSU Holdings Sdn. Bhd. University Drive, Off Persiaran Olahraga, Section 13, 40100 Shah Alam, Kuala Lumpur, Malaysia

Dr. Azebaze Anatole Guy Blaise
Laboratoire de Chimie des Substances Naturelles, Faculté des Sciences, Université de Douala, Douala, Cameroun

Dr. Baha Latif
Faculty of Medicine, Universiti Teknologi MARA, Institute of Medical and Molecular Biotechnology, Sungai Buloh Campus, Jalan University, 47000 Sungai Buloh, Selangor, Malaysia

Dr. Brahmaputra Marjadi
Department of Public Health, Faculty of Medicine, Universitas Wijaya Kusuma Surabaya, Surabaya, Indonesia

Dr. Brian Stephen Eley
Associate Professor, School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa

Dr. Carlos Kusano Bucalen Ferrari
Biomedical Research Group, Institute of Biological Sciences & Health (ICBS), Federal University of Mato Grosso (UFMT), Av. Gov. Jaime Campus, Mato Grosso, Brazil

Dr. Carrel Thierry
Department of Cardiovascular Surgery, Inselspital, Berne University Hospital and University of Berne, Berne, Switzerland

Chai Feng Yih
Department of Surgery, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Chamindie Punyadeera</td>
<td>Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia</td>
</tr>
<tr>
<td>Dr. Chong-Woo Bae</td>
<td>Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea</td>
</tr>
<tr>
<td>Dr. Daouda Sissoko</td>
<td>Institut de Veille Sanitaire, Cellule Interrégionale d'Épidémiologie Réunion Mayotte, Direction Régionale des Affaires Sanitaires et Sociales, Saint Denis, La Réunion, France</td>
</tr>
<tr>
<td>Dr. Dinesh Mondal</td>
<td>Parasitology Laboratory, Laboratory Sciences Division, Mohakhali, Dhaka, Bangladesh</td>
</tr>
<tr>
<td>Fabian Garry</td>
<td>Australasian Medical Writers Association, Caulfield, Australia</td>
</tr>
<tr>
<td>Dr. Farhad F. Shadan</td>
<td>Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, USA</td>
</tr>
<tr>
<td>Dr. Francisco Soriano</td>
<td>Public Health School of Physiotherapy, Autonomous University of Madrid, Madrid, Spain</td>
</tr>
<tr>
<td>Dr. González Granado Luis Ignacio</td>
<td>Granado Immunodeficiencies Unit, Hospital 12 Octubre, Carretera Andalucia km 5, 400, Madrid, Spain</td>
</tr>
<tr>
<td>Dr. Gordana J. Dragovic Lukic</td>
<td>Department of Pharmacology, Clinical Pharmacology and Toxicology; School of Medicine; University of Belgrade, Belgrade, Serbia</td>
</tr>
<tr>
<td>Dr. Hala Abd El Hamid Mohamed Kassem</td>
<td>Medical Entomology, Environmental Basic Sciences Department, Institute of Environmental Studies and Research; Ain Shams University, Cairo, Egypt</td>
</tr>
<tr>
<td>Dr. Han-Zhu Qian</td>
<td>Institute of Global Health and Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, USA</td>
</tr>
<tr>
<td>Dr. Imtiaz Ahmed Wani</td>
<td>District Hospital, Bandipore, India</td>
</tr>
<tr>
<td>Dr. Indra Vythilingam</td>
<td>Principal Research Scientist, Environmental Health Institute, Singapore, Singapore</td>
</tr>
<tr>
<td>Dr. Irina O. Chikileva</td>
<td>Laboratory of Cellular Immunology, Russian Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia</td>
</tr>
<tr>
<td>Dr. Irma Khachidze</td>
<td>Department of Behavior, Cognition Functions and Human Psychophysiology, Beritashvili Institute of Physiology, Tbilisi, Georgia</td>
</tr>
<tr>
<td>Dr. Ishag Adam Ahmed Mohammad</td>
<td>Department of Obstetrics & Gynecology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan</td>
</tr>
<tr>
<td>Dr. Jagat R Kanwar</td>
<td>Laboratory of Immunology and Molecular Biomedical Research, BioDeakin, Institute for Technology Research & Innovation (ITRI), Deakin University, Victoria, Australia</td>
</tr>
<tr>
<td>Dr. Jerapan Krungkrai</td>
<td>Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Pathumwan, Bangkok, Thailand</td>
</tr>
<tr>
<td>Dr. Jie-Young Song</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. John Vontas</td>
<td>Laboratory of Radiation Immunology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea</td>
</tr>
<tr>
<td>Dr. Juraj Majtán</td>
<td>Principal investigator, Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 06, Bratislava, Slovakia</td>
</tr>
<tr>
<td>Dr. Kahoko Nishikawa</td>
<td>Professor, Department of Traumatology and Critical Care Medicine, National Defense Medical College, Saitama, Japan</td>
</tr>
<tr>
<td>Dr. Kesara Na-Bangchang</td>
<td>Professor, Director of Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand</td>
</tr>
<tr>
<td>Dr. Khaled Khatab</td>
<td>Assistant Professor, Occupational and social medicine department, RWTH Aachen University, Aachen, Germany</td>
</tr>
<tr>
<td>Dr. Kordi Biom Saeed</td>
<td>Consultant Microbiologist, Royal Hampshire County Hospital, Winchester, UK</td>
</tr>
<tr>
<td>Dr. Leera Kittigul</td>
<td>Associate Professor, Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand</td>
</tr>
<tr>
<td>Dr. Ling Shi</td>
<td>Assistant Professor, College of Nursing and Health Sciences, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA</td>
</tr>
<tr>
<td>Dr. Madhav Bhatia</td>
<td>Professor, Department of Pathology, University of Otago, 8 Benjamin Mountfort Close, Midleton 8024, Christchurch, New Zealand</td>
</tr>
<tr>
<td>Dr. Majid Ghayour-Mobarhan</td>
<td>Associated Professor, Cardiovascular Research Centre, Avicenna (Bu-Al) Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran</td>
</tr>
<tr>
<td>Dr. Margaret IP</td>
<td>Professor, Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China</td>
</tr>
<tr>
<td>Dr. Mariana Ahmad</td>
<td>Infectious Disease Research Centre (Acarology), Institute for Medical Research, Jalan Pahang, 50588, University of Malaya, Kuala Lumpur, Malaysia</td>
</tr>
<tr>
<td>Dr. Masaaki Inaba</td>
<td>Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University, Osaka, Japan</td>
</tr>
<tr>
<td>Dr. Masanori Kameoka</td>
<td>Research Institute for Microbial Diseases, Osaka University, Osaka, Japan</td>
</tr>
<tr>
<td>Dr. Matteo Bassetti</td>
<td>PhD, University of Genoa School Medicine, Infectious Diseases in Solid Organ Transplantation and Infectious Diseases, Genoa, Italy</td>
</tr>
<tr>
<td>Dr. Michael Obaro S.</td>
<td>Department of Pharmacology & Therapeutics, University of Ibadan, Ibadan, Nigeria</td>
</tr>
<tr>
<td>Dr. M. Omar Gaci</td>
<td>LITIS Laboratory, Assistant Professor, University of Le Havre, Le Havre, France</td>
</tr>
<tr>
<td>Dr. M. Tariq Javed</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Mohammed Rasheed Uddin</td>
<td>Department of Veterinary Science, Faculty of Agriculture, Faisalabad, Pakistan</td>
</tr>
<tr>
<td>Dr. Moilebogeng Ruth Lekalakala</td>
<td>Microbiological Pathology, National Health Laboratory Services, University of Pretoria, South Africa</td>
</tr>
<tr>
<td>Dr. Mohammed Zuber</td>
<td>School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia</td>
</tr>
<tr>
<td>Dr. Mortada Hassan Fakhri El-Shabrawi</td>
<td>Faculty of Medicine, Cairo University, Cairo, Egypt</td>
</tr>
<tr>
<td>Dr. Nazni Bte Hj. Wasi Ahmad</td>
<td>Past President of Malaysian, Society of Parasitology and Tropical Medicine, Kuala Lumpur, Malaysia</td>
</tr>
<tr>
<td>Dr. Norman C. Waters</td>
<td>Department of Chemistry and Life Science, United States Military Academy, West Point, NY</td>
</tr>
<tr>
<td>Dr. Ronaldo Vagner Thomatieli dos Santos</td>
<td>Departamento de Biociências, Universidade Federal de São Paulo, São Paulo, Brazil</td>
</tr>
<tr>
<td>Dr. Saied Mohammad Reza Safavi</td>
<td>Associate Professor of Anesthesiology, Isfahan University of Medical Sciences, Isfahan, Iran</td>
</tr>
<tr>
<td>Dr. Sarath Chandra Janga</td>
<td>Structural Studies Division, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge</td>
</tr>
<tr>
<td>Dr. Tanya Louise Russell</td>
<td>Doctor of Philosophy (PhD), Public Health, University of Queensland, Australia</td>
</tr>
<tr>
<td>Dr. Tewin Tencomnnao</td>
<td>Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University</td>
</tr>
<tr>
<td>Dr. Todd K. Rosengart</td>
<td>Baylor College of Medicine, 1 Baylor Plaza, Houston, TX</td>
</tr>
<tr>
<td>Dr. Vanaja Kumar</td>
<td>Bacteriology Department, Tuberculosis Research Centre, Chennai, India</td>
</tr>
<tr>
<td>Dr. Vivienne Miller</td>
<td>St Ives community in New South Wales, St Ives, Sydney, Australia</td>
</tr>
<tr>
<td>Dr. Wenbin Tuo</td>
<td>Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Beltsville</td>
</tr>
<tr>
<td>Dr. Wong Sai Yin Samson</td>
<td>Department of Microbiology, University of Hong Kong, Hong Kong, China</td>
</tr>
<tr>
<td>Dr. Yien-Kyoung Choi</td>
<td>Biomedical Science Center, Division of Life/Health, Korea Institute of Science and Technology</td>
</tr>
<tr>
<td>Dr. Zeehaida Mohamed</td>
<td>Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia Health Campus</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dr. Niroshan Sivathasan</td>
<td>University of Leicester, Apt 221 St George's Mill, 9 Wimbledon Street, Leicester, LE1 1SZ, Leicester, UK</td>
</tr>
<tr>
<td>Dr. Brett Rocos</td>
<td>National Patient Safety Agency, 4-8 Maple Street, London W1T 5HD, London, UK</td>
</tr>
<tr>
<td>Editorial members</td>
<td></td>
</tr>
<tr>
<td>Rishikesh Gupta</td>
<td>Department of Pharmaceutics, Institute of Pharmacy, Bundelkhand University, Jhansi (UP) India-284128, Jhansi, India</td>
</tr>
<tr>
<td>Orwa Aboud</td>
<td>Donald W. Reynolds Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, Little Rock, USA</td>
</tr>
<tr>
<td>Al-Karim F. Rehemtula</td>
<td>special language board member, CEO Advancium Inc, Toronto, Ontario, L5W 1P2, Ontario, Canada</td>
</tr>
<tr>
<td>Dr. Khaled Nabih Zaki Rashed</td>
<td>National Research Centre, Pharmacognosy Department, Giza, Egypt</td>
</tr>
<tr>
<td>Dr. Abdul Viqar Khan</td>
<td>Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Aligarh, India</td>
</tr>
<tr>
<td>Dr. Saurabh Shrivastava</td>
<td>Assistant Professor, MD Community Medicine, PGDHMM, DHRM, FCS, Shri Sathya Sai Medical College & Research Institute, Chennai, India</td>
</tr>
<tr>
<td>Dr. Sasidharan Sreenivasan</td>
<td>Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia</td>
</tr>
<tr>
<td>Dr. Angkana Chaiprasert</td>
<td>Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Bangkok, Thailand</td>
</tr>
<tr>
<td>Dong Zhou</td>
<td>Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, USA</td>
</tr>
<tr>
<td>Dr. Hongliang Yang</td>
<td>1682 Campus Delivery, Dept of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, Fort Collins, USA</td>
</tr>
<tr>
<td>Dr. Jitendra Kumar Saxena</td>
<td>Secretary of Indian Society for Parasitology, Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226001, Lucknow, India</td>
</tr>
<tr>
<td>Herbert Auer</td>
<td>Vice-President of the Austrian Society of Tropical Medicine and Parasitology, Department of Medical Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University Vienna, Kinderspitalgasse 15, A-1095, Vienna, Austria</td>
</tr>
<tr>
<td>Koosha Paydary</td>
<td>Iranian Research Center for HIV/AIDS (IRCHA), Iranian Institute for Reduction of High-Risk Behaviors, Tehran, Iran</td>
</tr>
<tr>
<td>Dr. Lim Boon Huat</td>
<td>Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia Pulau Pinang, Mayaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia</td>
</tr>
<tr>
<td>Prof. Noureddine Djebli</td>
<td>Faculty of SNV, Department of Biology, Abdelhamid Ibn badis University of Mostaganem, Mostaganem, Algeria</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Sarath Chandra</td>
<td>Institute for Genomic Biology, University of Illinois at Urbana-Champaign</td>
</tr>
<tr>
<td></td>
<td>1206 W. Gregory Drive, MC-195</td>
</tr>
<tr>
<td></td>
<td>Urbana, IL, 61801, Urbana, USA</td>
</tr>
<tr>
<td>Dr. Harunor Rashid</td>
<td>National Centre for Immunisation Research and Surveillance, The Children's</td>
</tr>
<tr>
<td></td>
<td>Hospital at Westmead and The University of Sydney, New South Wales, Australia</td>
</tr>
<tr>
<td>Prof. Barbara R Conway</td>
<td>Professor of Pharmaceutics, University of Huddersfield, Huddersfield, England</td>
</tr>
</tbody>
</table>

http://www.journals.elsevier.com/asian-pacific-journal-of-tropical-dise...
Asian Pacific Journal of Tropical Disease
Volume 3, Issue 5, Pages 337-420 (October 2013)

1. Seroprevalence of bovine brucellosis in northern Plateau State, North Central Nigeria
 Original Research Article
 Pages 337-340
 Nanven Abraham Maurice, Samuel Yilawo Wungak, Balami Atyhel Gana, Magdalene Baneche
 Nanven, Emmanuel Ochefe Njibe, Amina Ibrahim, Mabel Kamweli Awoth, Leviticos Konzing, Sunday
 Emmanuel Hambolu, Victor Tita Gugong
 Abstract | PDF (289 K)

2. HPTLC fingerprint and anti-inflammatory activity of ethanolic extract of different Maytenus species
grown in Kingdom of Saudi Arabia
 Original Research Article
 Pages 341-347
 Mohamed F. Alajmi, Perwez Alam
 Abstract | PDF (1448 K)

3. Genotypic characterization of Echinococcus granulosus in Iranian goats
 Original Research Article
 Pages 348-351
 Nazri Che Dom, A Abu Hassan, Z Abd Latif, Rodziah Ismail
 Abstract | PDF (731 K)

4. Isolation and screening of antibiotic producing actinomycetes from soils in Gondar town, North West
 Ethiopia
 Original Research Article
 Pages 352-357
 Abebe Bizuye, Feleke Moges, Berhanu Andualem
 Abstract | PDF (333 K)

5. Anti-acetylcholinesterase and antioxidant activities of ethanol extract of different N. canescens
 Original Research Article
 Pages 358-364
 Perwez Alam, Mohammad F. Alajmi, Mohammad F. Afzal, Rabby Abdullah
 Abstract | PDF (415 K)

6. Isolation and identification of an antiparasitic triterpenoid estersaponin from the stem bark of
 Pittosporum manni
 (Pittosporaceae) Original Research Article
 Pages 365-369
 Nabibé Ouattara, Roland Nâg-Tiero Meda, Adama Hilou, Samson Guenné, Kiessoum Konaté,
 Ahmed Y Coulibaly, Martin Kiemendebeogo, Jeanne F Millogo, Odile G Nacoulma
 Abstract | PDF (2020 K)

7. Antioxidant and anti-acetylcholinesterase activities of extracts from Rapistrum rugosum in
 Tunisia
 Original Research Article
 Pages 367-374
 Omri Chichi Amel, Besbes Hila Malek, Ben Jannet Hichem, Lamasri Ali, Aouni Mahjoub, Selmi
 Boulbaba
 Abstract | PDF (424 K)

8. Isolation and screening of antioxidant producing actinomycetes from soils in Gondar town, North West
 Ethiopia
 Original Research Article
 Pages 375-381
 Abebe Bizuye, Feleke Moges, Berhanu Andualem
 Abstract | PDF (333 K)

9. Anti-acetylcholinesterase and antioxidant activities and HPLC-MS analysis of polyphenol from
 extracts of Nelsonia canescens (Lam.) Spreng.
 Original Research Article
 Pages 382-388
 Perwez Alam, Mohammad F. Afzal, Rabby Abdullah
 Abstract | PDF (415 K)

10. Isolation and identification of an antiparasitic triterpenoid estersaponin from the stem bark of
 Pittosporum manni (Pittosporaceae) Original Research Article
 Pages 389-392
 Perwez Alam, Mohammad F. Afzal, Rabby Abdullah
 Abstract | PDF (303 K)

11. Screening and evaluation of antioxidant, antimicrobial, cytotoxic, thrombolytic and membrane
 effects of Pittosporum manni
 Original Research Article
 Pages 393-398
 Kennedy D Nyongbela, Alain M Lannang, Godfred A Ayimele, Moses N Ngemenya, Quentin
 Bickle, Simon Elfanje
 Abstract | PDF (415 K)
<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
<th>Pages</th>
<th>Authors</th>
<th>Abstract</th>
<th>PDF Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizing properties of the methanolic extract and solvent-solvent partitioning effect of Vitex negundo bark</td>
<td>Original Research Article</td>
<td>393-400</td>
<td>Md Shamsuddin Sultan Khan, Sharif Hussain Syeed, Md Hanif Uddin, Lucky Akter, Md Asmat Ullah, Suria Jahan, Md Harunor Rashid</td>
<td></td>
<td>1092 K</td>
</tr>
<tr>
<td>Antioxidant and cytotoxic agent from the rhizomes of Kaempferia pandurata</td>
<td>Original Research Article</td>
<td>401-404</td>
<td>Mulyadi Tanjung, Tjijik Srie Tjahjandarie, Mulya Hadi Sentosa</td>
<td></td>
<td>399 K</td>
</tr>
<tr>
<td>Infrared spectroscopic analysis of skin tumor of mice treated with several medicinal plants</td>
<td>Original Research Article</td>
<td>405-408</td>
<td>Huma Ali, Savita Dixit</td>
<td></td>
<td>1062 K</td>
</tr>
<tr>
<td>Balantidiasis in a dromedarian camel</td>
<td>Original Research Article</td>
<td>409-412</td>
<td>Javad Tajik, Saeid R Nouroollahi Farda, Amin Pinder, Samaneh Anousheh, Elahe Dehghani</td>
<td></td>
<td>289 K</td>
</tr>
<tr>
<td>Basic and modern concepts on cholinergic receptor: A review</td>
<td>Original Research Article</td>
<td>413-420</td>
<td>Prashant Tiwari, Shubhangi Dwivedi, Mukesh Pratap Singh, Rahul Mishra, Anish Chandy</td>
<td></td>
<td>379 K</td>
</tr>
</tbody>
</table>
Antioxidant and cytotoxic agent from the rhizomes of *Kaempferia pandurata*

Mulyadi Tanjung*1, Tjitjik Srie Tjahjandarie1, Mulya Hadi Sentosa2

1Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
2Department of Natural Product, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia

ABSTRACT

Objective: To determine antioxidant and cytotoxic activity of two flavanones, pinocembrin (1) and pinostrobin (2) from the rhizomes of *Kaempferia pandurata*. The chemical structures of both compounds were determined based on spectroscopic data, including UV, IR, MS and NMR spectra.

Methods: The antioxidant activities of pinocembrin (1) and pinostrobin (2) were assayed by using 2,2-diphenyl-1-picrylhydrazyl. Cytotoxic assay was done by using brine shrimp lethality test, and cytotoxic properties was tested against murine leukemia P–388 cells.

Results: Compounds 1–2 were evaluated for their antioxidant properties against DPPH, showing their IC₅₀ were 5816 and 6268 µmol/L; brine shrimp lethality test: LC₅₀ 23.3 and 60.5 µg/mL; murine leukemia P–388: IC₅₀ 176.3 and 218.5 µmol/L.

Conclusions: The results indicated that pinocembrin (1) was slightly more active than pinostrobin (2).

KEYWORDS

Flavanone, Pinocembrin, Pinostrobin, *Kaempferia pandurata*, Antioxidant, Cytotoxic

1. Introduction

Kaempferia pandurata Robx. (*K. pandurata*) syn. *Boesenbergia pandurata* Robx. (local name: Temu Kunci) belongs to the family Zingiberaceae. In Indonesia, the rhizomes of this plant are extensively used as a flavouring in traditional food, and it is also used in traditional medicine as an aphrodisiac, and for the treatment of asthma, diarrhea, fever, and colic disorder. This plant has been shown to produce a number of flavonoid and essential oil compounds[1–3]. In continuation of these chemical investigations, we have examined *K. pandurata* Robx. and succeeded in isolating two flavanones, namely pinocembrin (1) and pinostrobin (2). This paper discussed the structure elucidation of the two flavanones. Also, free radical scavenging and cytotoxic properties of compounds 1–2 against DPPH radical, brine shrimp, and murine leukemia P–388 cells are briefly described.

2. Materials and methods

2.1. General experimental procedures

UV and IR spectra were measured with a Beckman DU 7500 and an FT–IR Spectrum One Perkin–Elmer instrument.
respectively. ^1^H and ^1^3C NMR spectra were recorded with a JEOL ECA400 spectrometer operating at 400 (^1^H) and 100 (^1^3C) MHz, using residual and deuterated solvent peaks (^1^H) 2.04 and ^1^3C 29.8, respectively as reference standards. Mass spectra were obtained with a VG Autospec mass spectrometer (EI mode). Vacuum liquid chromatography and column chromatography were carried out using Si gel 60 G and for TLC analysis, precoated Si gel 60 F254 plates were used. Solvents used for extraction and separation were of technical grades that were distilled before use.

2.2. Plants material

Samples of rhizomes of K. pandurata were collected from research garden, Faculty of Science and Technology District, Airlangga University, Surabaya, Indonesia. The plant was identified by the staff at the Herbarium Bogoriense, Bogor Botanical Garden, Bogor, Indonesia. and a voucher specimen had been deposited at the herbarium. The rhizomes were cleaned, air dried under the shade, cut into small pieces and milled.

2.3. Extraction and isolation of pinocembrin(1) and pinostrobin (2)

The dried and powder of rhizomes K. pandurata were macerated with n–hexane and then with methanol two times at room temperature, after n–hexane solvent evaporation gave a solid fraction, and recrystallization with methanol gave a needle like crystal of pinostrobin (2). Futhermore, methanol extract was redissolved in methanol–water (9:1) and partitioned into ethylacetate. The ethylacetate extract fraction was then fractionated using vacuum liquid chromatography eluting with mixtures of n–hexane–ethylacetate (9:1, 4:1 and 7:3) to give three major fractions A–C. Fraction B was separated with column chromatography and eluting with mixtures of n–hexane–ethylacetate (9:1, and 4:1) gave a yellow solid. Recrystallization with methanol to yield a yellow solid of pinocembrin (1).

Pinocembrin (1), yellow solid, m.p. 202–204 °C, UV (MeOH) λ_{max} nm (log ε) : 228 (3.91), 292 (4.06), and 323 sh (3.67) nm, (MeOH-AlCl₃) λ_{max} nm (log ε) : 225 (3.99), 297 (4.11), and 382 sh (3.16) nm. IR (KBr) ν_{max}: 3435 (OH), 3000, 2910 (CH aromatic), 1641 (conjug. C=O), and 1595, 1570 (C=C aromatic) cm^{–1}. EIMS: m/z 256, M⁺ (base peak), 213 (8.9), 197 (4.5), 179 (76.2), 152 (80.1), 124 (38.7), 104 (18.8), and 77 (16.5). IH NMR (400 MHz in acetone d₆) δ^{HM} ppm: 12.20 (1H, br, s, 5–OH), 9.75 (1H, br, s, 7–OH), 7.57 (3H, m, H–3′,4′,5′), 7.44 (2H, m, H–2′,6′), 5.92 (1H, d, J=2.0 Hz, H–8), 5.86 (1H, d, J=2.0 Hz, H–6), 5.49 (1H, dd, J=4.0; 12.0 Hz, H–2), 3.06 (1H, dd, J=12.0; 14.0 Hz, H–3'), and 2.78 (1H, dd, J=4.0; 14.0 Hz, H–3′,6′).

Pinostrobin (2), white crystal, m.p. 96–98 °C, UV (MeOH) λ_{max} nm (log ε) : 232 (3.93), 290 (4.09), and 325 sh (3.68) nm. EIMS: m/z 270, M⁺ (base peak), 193 (76.2), 166 (80.4), 138 (40.2), 101 (21.1), and 77 (16.9). IH NMR (400 MHz in acetone d₆) δ^{HM} ppm: 12.18 (1H, br, s, 5–OH), 7.57 (3H, m, H–3′,4′,5′), 7.45 (2H, m, H–2′,6′), 6.08 (1H, d, J=2.2 Hz, H–8), 6.04 (1H, dd, J=4.2 Hz, H–6), 5.60 (1H, dd, J=3.8; 12.8 Hz, H–2), 3.76 (3H, s, H–7–OCH₃), 3.12 (1H, dd, J=12.8; 16.4 Hz, H–3′), and 2.80 (1H, dd, J=3.8; 16.4 Hz, H–3′,6′). 13C NMR (100 MHz in acetone d₆) δ^{CM} ppm: 196.8 (C–4′), 168.1 (C–7), 164.4 (C–5), 163.8 (C–8a), 140.4 (C–1′), 129.7 (C–3′,5′), 129.6 (C–4′), 127.5 (C–2′,6′).

2.4. DPPH scavenging activity test

The antioxidant activity of two flavanones and ascorbic acid (positive control) were measured in triplicate, based on the method used by Muller. The pinocembrin, pinostrobin, and ascorbic acid were diluted with methanol to prepare sample solution equivalent to 10000, 5000, 2500, 1000, and 500 μmol/L. A methanolic solution (100 μL) was placed in a cuvette, and 100 μL acetate buffer (100 mmol/L, pH 5.5) then 50 μL 5.10^{–4} mol/L in methanol was added. The mixture was incubated at 20 °C for 30 min⁴. Absorbance of the pinocembrin, pinostrobin, and ascorbic acid were measured at 517 nm. The inhibition percentage (% of) radical scavenging activity was calculated using the following equation: Inhibition (%) = (A_c – A_t)/A_c×100

Where A_c is the absorbance of the control reaction (containing all reagents except the test compound), and A_t is the absorbance of the test compound.

2.5. BSLT bioassay

The cytotoxic effect of pinocembrin, and pinostrobin were evaluated by LC₅₀ of brine shrimp lethality test. Artemia salina Leach (brine shrimp eggs) were placed in 1 L of sea water, aerated for 2 d at 37 °C for the shrimp to hatch become nauplii. After 48 h, ten brine shrimp nauplii were placed in a small container filled with sea water. The compound (1), and (2) were dissolved in dimethylsulphoxide (DMSO) separately and 3 graded doses 1, 5, 10, 25, 50, and 100 μg/mL respectively were used for 5 mL sea water containing...
10 brine shrimp nauplii in each group. The lethality of brine shrimp was observed after 24 h of treatment was given[5]. Probit analysis was used to determine lethal concentration (LC₅₀) of pinocembrin, and pinostrobin on nauplii.

2.6. MTT assay

Living cells 3×10⁴/mL were plated in 96-well culture dishes. Plates were incubated at 37 °C in humidified CO₂ incubator for 24 h. After the cells adhered to the plates, 10 µL medium containing one of five different concentrations of compound 1–2 were added. Plates were incubated incubated at 37 °C in humidified CO₂ incubator for 48 h. After incubation, medium was removed from the wells and 150 µL of fresh medium+50 µL MTT was added. Plates were incubated at 37 °C in humidified CO₂ incubator for 4 h. Four hours later, MTT was removed and insoluble formazan was dissolved in 50 µL DMSO. Optical density was measured on micro plate reader at 550 nm[6]. IC₅₀ was calculated according to One–way analysis of variance (ANOVA).

2.7. Statistical analysis

Statistical analysis was performed using One–way analysis of variance (ANOVA) and followed by least square difference. Results were expressed as mean±SD from three replications. P<0.01 was considered significant.

3. Results

3.1. Phytochemical

Extraction of the dried milled rhizomes of K. pandurata with n–hexane and methanol gave a fraction which was separated by column chromatography to give pinocembrin (1), and pinostrobin (2). The molecular ion at m/z 256 one of flavanone had a formula C₁₅H₁₂O₄ and was identified as pinocembrin (5,7-dihydroxy flavanone) by comparing data with reported values[7]. The UV spectrum of 1 showed absorption maxima at 228, 292, and 323 nm, and the 1H NMR spectrum of 1 was identified methoxy group at C-7. The presence of one methoxyl at δH 3.76 and δC 56.0 ppm in the 1H and 13C NMR data. Its UV, IR, EIMS, 1H and 13C NMR data were very similar to those of compound 1. The presence of one methoxyl at δH 3.76 and δC 56.0 ppm in the 1H and 13C NMR spectrum of 2 was identified methoxy group at C–7. The compound 2 was suggested as pinostrobin (7-methoxy–5–hydroxy flavanone)[8].

The radical scavenging against DPPH, brine shrimp lethality test toward Artemia salina Leach and cytotoxic properties against murine leukemia P–388 cells were evaluated according to the method of MTT assay of pinocembrin (1), and pinostrobin (2) are presented in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>DPPH (µmol/L)</th>
<th>BSLT (µg/mL)</th>
<th>Cytotoxic (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinocembrin</td>
<td>5816±20.563</td>
<td>23.3</td>
<td>176.3±5.6</td>
</tr>
<tr>
<td>Pinostrobin</td>
<td>6268±28.132</td>
<td>60.5</td>
<td>218.5±9.8</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>0.329±0.001</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

4. Discussion

The ginger family contains about 50 genus and 1300 species, which are distributed in tropical regions. K. pandurata Robx. used as flavouring agents, spices and herbal medicine.

Two flavonoid compounds of flavanone type have been isolated from the rhizomes of K. pandurata and were identified pinocembrin (1), and pinostrobin (2). The structure of both compounds has been elucidated based on spectroscopic methods and comparison of their physical data. The results indicate that compounds 1–2 to give very weak activities as radical scavenging than positive control (ascorbic acid). Preliminary cytotoxic evaluation of compounds 1–2 was carried out against brine shrimp lethality test showed potent activities[7]. However, on cytotoxic evaluation against murine leukemia P–388 cells using MTT assay of compounds 1–2 was inactive[9]. The structure–activity relationship of compounds 1–2 against radical scavenging, brine shrimp, and cytotoxic data against murine leukemia P–388 cells suggested that the presence of hydroxyl group at C–7 on pinocembrin structure tend to be more active than the methoxyl group at C–7 on pinostrobin structure.

Two flavonones, pinocembrin (1), and pinostrobin (2) have been isolated from the rhizomes of K. pandurata Robx., a species belongs to the family Zingiberaceae. The radical...
scavenging and cytotoxic activities of compounds 1–2 were evaluated against DPPH, brine shrimp, murine leukemia P-388 cells which showed that compound 1 is slightly more active than compound 2.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

This research was supported by Directorate of Higher Education, Ministry of National Education, Republic of Indonesia (Diks Suplemen Airlangga University No. 54/SK/2012). We would like to thank to Mr. Ismail Rahman staff Herbarium Bogorienses, Bogor for identification of the species. We also thank Prof. Dr. Emilio Ghisalberti from Department of Chemistry, University of Western Australia for NMR spectra measurements.

Comments

Background

The research is an investigation of phytochemical work of Indonesian medicinal plants aiming to find flavonoid compounds from the rhizomes of *K. pandurata* Robx. with antioxidant and cytotoxic activities.

Research frontiers

This research include phytochemical, elucidation structure of both flavonoids, antioxidant and cytotoxic activities, and structure–activity relationship of flavonoid from rhizomes of *K. pandurata* Robx. The cytotoxic effect of the isolated compounds was evaluated against P-388 and by using brine shrimp lethality test while the antioxidant activities was carried out using 2,2-diphenyl-1-picrylhydrazyl.

Related reports

Flavonoid compounds from of *K. pandurata* Robx. and their biological activity have been reported. However, the reported about antioxidant and cytotoxic activities from pinocembrin and pinostrobin which has not been investigated by other workers.

Innovations & breakthroughs

K. pandurata Robx belongs to medicinal plants used in traditional medicine as an aphrodisiac, asthma, diarrhea, and fever. In the present study, authors have explained the phytochemical, elucidation structure, antioxidant and cytotoxic activities of *K. pandurata* Robx.

Applications

K. pandurata Robx belongs to medicinal plants in Indonesia. This herb contains a lot of active compound that have activity as antioxidant, anticancer, and inflammatory. The isolation of two flavonoids is interesting to study of structure–activity relationship.

Peer review

This is a good study in which the authors explained the isolation of flavonoid compounds from the rhizomes of *K. pandurata*. This paper discusses the structure elucidation of the two flavanones. Also, structure–activity relationship against DPPH radical and cytotoxic activity.

References

