AIMS & SCOPE
Journal of International Dental and Medical Research, a journal of the Ectodermal Dysplasia Group-Turkey, is published 3 times per year to promote practice, education, and research specifically related to the specialty of dental and medical researches. Manuscripts are accepted for consideration if neither the article, nor any part of its essential substance, tables, or figures has been or will be published in another journal or is simultaneously submitted to another journal. Published papers do not necessarily represent the views of the editor, the Ectodermal Dysplasia Group-Turkey.

The Biomedical Research (BMR) title of JIDMR is a new section for research papers from all major fields of neuroscience, biophysics, environmental sciences algology, biotechnology and pharmacology. The journal will be high quality, comprehensive, exceptionally fast and consistently peer reviewed. It will be a multi-disciplinary publication for rapid communication in Biomedical research, for the promotion of the international scientific collaboration, for presenting the achievements that emphasize clinical, fundamental and molecular aspects of biomedical studies in the all of world.

Fast publication will be achieved by the use of modern communication techniques. The journal features full-length papers, rapid communications and mini-reviews on selected areas.

Manuscript and Peer Review Submission process is by the e-mail to the izzetyavuz@hotmail.com izzetyavuz@jidmr.com

Izzet YAVUZ
MSc, PhD, D Ped Dent.

Associate Professor, Pediatric Dentistry
Faculty of Dentistry, University of Dicle
21280 Diyarbakir, TURKEY
Tel: +90 412 248 81 01 / 3426
Fax: +90 412 248 81 00
E-mail: izzetyavuz@hotmail.com izzetyavuz@jidmr.com

ECTODERMAL DYSPLASIA GROUP – TURKEY
http://www.jidmr.com
http://www.journalofinternationaldentalandmedicalresearch.com/
Journal of International Dental and Medical Research Guidelines for Authors

Manuscript and Peer Review Submission process is by the e-mail to the iizzetavuz@hotmail.com iizzetavuz@jidmr.com

Introduction
Journal of International Dental and Medical Research, a journal of the Ectodermal Dysplasia Group-Turkey, is published three times annually [or 3 times per year] to promote practice, education, and research specifically related to the specialty of dental and medical research. Manuscripts are accepted for consideration if neither the article, nor any part of its essential substance, tables, or figures has been or will be published in another journal or is simultaneously submitted to another journal. Published papers do not necessarily represent the views of the editor, the Ectodermal Dysplasia Group-Turkey.

Types of articles
The journal publishes full-length scientific articles not exceeding 8 printed pages (20 double-spaced 8 1/2 x 11-in document pages; font no smaller than 12-point Times New Roman or Arial); and clinical articles and case reports not exceeding 4 printed pages (10 double-spaced 8 1/2 x 11-in document pages).

Authors are encouraged to review these Instructions carefully prior to submitting their manuscripts.

Submission of manuscripts
Submission of manuscripts to the Journal of International Dental and Medical Research is via e-mail, also hard copy with electronic record submissions will be accepted. Submitting authors must provide all information requested during the submission process, including: corresponding author’s contact information; names, titles (such as “associate professor,” “chairman,”), academic degrees (such as“DMD,” “MS,” “PhD,”), and affiliations of all authors; short (running) title; and 2 to 5 keywords. Honorary designations should not be included (eg, “FRCS,” “FICD,” “Diplomate, ABPD,” etc). Authors should ensure that the keywords appear in the U.S. National Library of Medicine Medical Subject Headings, or “MeSH” (found at http://www.nlm.nih.gov/mesh/).

Both an UNBLINDED and BLINDED version of the manuscript must be sent to the journal. Tables and graphs should appear at the end of the main document, while photos and photomicrographs should be submitted as separate files (.jpg or .tiff format). Prior to submission, the corresponding author must guarantee that the article has not been published, and is not being considered for publication elsewhere. Submission of multi-authored manuscripts implies participation of each of the authors in the preparation of the paper. Only individuals who have made a significant contribution to the study or manuscript should be listed as authors. The efforts of others should be noted in the Acknowledgments section at the end of the manuscript. The corresponding author should submit the following statement: “All authors have made substantive contribution to this study and/or manuscript, and all have reviewed the final paper prior to its submission.” Authors (including authors of letters to the editor) are responsible for disclosing all financial and personal relationships that might bias their work. If such conflicts exist, the authors must provide additional detail in the letter to the editor. Funding sources for the work being submitted must be disclosed in the Acknowledgments section of the manuscript.

Manuscript organization
Scientific articles should be organized under the following headings: Abstract, Introduction, Methods, Results, Discussion, Conclusions, Acknowledgments, and References.

Titles of all papers should not exceed 15 words.

The Introduction section should include only pertinent references. When included for a study, the Methods section should be sufficiently detailed to replicate the study. The Results section should include only results and not discussion of the data. The Discussion section should discuss the results, but not repeat them. The Conclusions section should consist of succinct, numbered statements that are supported by the results of the study. They should not repeat the Results section.

Abstracts: All submissions must include an abstract. Abstracts should be brief providing the reader with a concise but complete summary of the paper. Generalizations such as “methods were described” should not be used. Scientific articles should have approximately 200 words

Key Words: Submitting authors must provide 2 to 5 keywords from http://www.bilimterimleri.com

Editorial style: Papers will be published in English, using American spelling. Manuscripts must be submitted with proper English grammar, syntax, and spelling. Authors should express their own findings in the past tense and use the present tense where reference is made to existing knowledge, or where the author is stating what is known or concluded. Footnotes should be avoided and their content incorporated into the text. Numbers should be represented as digits; only numbers beginning a sentence should be spelled out. The editors reserve the right to revise the wording of papers in the interest of the journal’s standards of clarity and conciseness.

Units of measure: Authors should express all quantitative values in the International System of Units (SI units) unless reporting English units from a cited reference. Figures and tables should use SI units, with any necessary conversion factors given in legends or footnotes. All numbers should be expressed as digits, and percent values should be expressed as whole numbers. Laboratory data values should be rounded to the number of digits that reflects the precision of the results and the sensitivity of the Measurement procedure.

Statistical tests: The results of all statistical comparisons should be reported to include the statistical test value and the associated P value and confidence interval, if appropriate. If $P > 0.01$, the actual value for P should be expressed to 2 digits, whether or not P is significant, unless rounding a significant P value expressed to 3 digits would make it nonsignificant (e.g., $P = 0.049$, not $P = 0.05$). If $P < 0.01$, it should be expressed to 3 digits (e.g., $P = 0.003$, not $P = 0.005$). Actual P values should be expressed unless $P < 0.001$, in which case they should be so designated. Nonsignificant values should not be expressed as “NS.” For confidence intervals, the number of digits should equal the number of digits in the point estimate. For example, for an odds ratio of 3.56, the 95% confidence interval should be reported as “1.23, 5.67,” not as “1.234, 5.678.”

Tooth names: The complete names of individual teeth should be given in full in the text of articles using the following convention: [primary/permanent] [maxillary/mandibular] [right/left] [central/lateral or first/second/third] [tooth type]. Examples: “primary maxillary right first molar,” “permanent mandibular first molars,” but “mandibular right second premolar.” In tables these names may be abbreviated by the Universal system (A-T for primary teeth, 1-32 for permanent teeth).
Commercially-produced Materials: Any mention of commercially produced materials, instruments, devices, software, etc, must be followed by the name of the manufacturer and the manufacturer's location in parentheses. Example: "... in an Excel spreadsheet (Microsoft, Inc.Redmond, Wash.)."

Abbreviations: Abbreviations should be used to make manuscripts more concise. The first time an abbreviation appears, it should be placed in parentheses following the full spelling of the term (eg, "... permanent first molars (PFMs)..."). In manuscripts using more than three abbreviations, authors should use bold typeface for the first appearance of each abbreviation.

Permissions: For materials taken from other sources, a written statement from the authors and publisher giving permission to *Journal of International Dental and Medical Research* for reproduction must be provided. Waivers areic and statements of informed consent must accompany the manuscript when it is submitted for review. Waivers should accompany any photograph showing a human subject unless the subject's features are blocked enough to prevent identification.

Human and Animal Subjects: Manuscripts of research involving human or animal subjects must state in the Methods section that the study was approved by an Institutional Review Board (IRB) or other institutional research ethics committee using language similar to "... this institutionally approved study..." IRB approval for human subjects must also be obtained if the study involved the use of tissues from humans (eg. extracted teeth), or work produced by humans (eg. systematic analyses and meta-analyses). When human subjects have been used, the text should indicate that informed consent was obtained from all participating adult subjects, and parents or legal guardians of minors or incapacitated adults. If required by the authors' institution, informed assent must be obtained from participating children at or above the age specified by the institution. The cover letter for the manuscript must contain a statement similar to the following: "The procedures, possible discomforts or risks, as well as possible benefits were explained fully to the human subjects involved, and their informed consent was obtained prior to the investigation."

Figures: Graphics/photos should be provided at a minimum resolution of 600 dpi as a .tif or .jpg file. Photomicrographs must include a scale labeled with a convenient unit of length (eg. 50 μm). Figures should be inserted at the end of the main Word document. Figures should be numbered in Arabic numerals in the order of the first citation in the text. Legends for each figure must be printed on a separate page. Include a key for symbols or letters used in the figures.

Figure legends should be understandable without reference to the text. A key for any symbols or letters used in the figure should be included. Abbreviations should be explained in a footnote to the figure. If illustrations, tables, or other excerpts are included from copyrighted works the author is responsible for obtaining written permission from the copyright holder prior to submitting the final version of the paper. Full credit must be given to such sources with a superscript reference citation in the figure legend. Reference citations in figure legends or captions should follow numerically the reference number in the text immediately preceding mention of the figure. Figures take up additional page space and should be limited to those that add value to the text.

Tables: Tables should be double-spaced, appear on separate pages, and should be titled and numbered in Arabic numerals in the order of the first citation in the text. Short headings should appear at the top of each column. Explanatory matter should be placed in captions, not in the title. For footnotes, use the following symbols in this sequence: *, †, ‡, §. Tables should be understandable without alluding to the text. Due to space limitations, only tables adding value to the text should be included.
Acknowledgments: Funding and other sources of support must be disclosed in the Acknowledgements section. Personal acknowledgments should be limited to appropriate professionals who have contributed intellectually to the paper but whose contribution does not justify authorship.

References: References should be relevant to the material presented and identified by superscript Arabic numerals in the text. A list of all references should appear at the end of the paper in numeric order as they are cited in the text. Journal abbreviations are those used by Index Medicus. Reference style is that used by the Journal of the American Dental Association (http://www.ada.org/prof/resources/pubs/jada/authors/auth_general.asp as #style).

The following are sample style references:

For journals, list all authors when there are 6 or fewer; when there are 7 or more, list the first 3, then “et al.” Page numbers should be elided where possible. For example: 12-8, 347-51, 191-5.

Authors citing material from the World Wide Web should use WebCite (www.webcitation.org), a free service for org authors who wish to archive their Web references to ensure that cited Web material will remain available to readers in the future. Web citations archived on WebCite will not disappear in the future.

Authors should provide direct references to original sources whenever possible. Avoid using abstracts as references.

Avoid references to papers accepted but not yet published, if possible. If such a citation is necessary, these papers should be cited as being “in press,” and verification that they have been accepted for publication must be provided.

Where possible, references of easily accessible material are preferable to dissertations, theses, and other unpublished documents. Authors should avoid citing “personal communication” unless it provides essential information not available from a public source. In those cases, the name of the individual providing the information and the date of communication should be provided in parentheses in the text and not as a numbered reference.

Authors should obtain written permission and confirmation of accuracy from the source of a personal communication; this permission should be submitted as a supplementary document at the time of manuscript submission.
Authors should verify the accuracy of all references and are responsible for ensuring that no cited reference contains material that was retracted or found to be in error subsequent to its publication.

Copyright: All authors must agree to the terms of copyright transfer as indicated along with the manuscript submission process.

The Ektodermal Displazi Gurubu Türkiye owns copyright of any contribution, and its licensees have the right to use, reproduce, transmit, derivate, publish, and distribute the contribution, in the journal or otherwise, in any form or medium. Authors will not use or authorize the use of the contribution without the Ektodermal Displazi Gurubu Türkiye’s written consent, except as may be allowed by world fair use law.
TABLE OF CONTENTS / 2017: 10 (3)

DENTISTRY

1. Modification of Dental Age Estimation Technique among Children from Transcarpathian Region
 Myroslav Goncharuk-Khomyn
 Pages 851-855

2. Oral Health Status, Malocclusions and S. Mutans Counts in Children with Down’s Syndrome
 Agim Begzati, Kastriot Meqa, Blerta Xhemali-Latifi, Teuta Kufillovci, Merita Berisha
 Pages 856-861

3. Prevalence and Evaluation of Bone Loss Pattern among Patient with Aggressive Periodontitis
 Mohd Faizal Hafez bin Hidayat, Fouad Hussain AL-Bayaty, Ihsan Bin Maidin,
 Mohammad Azrin Bin Abd Samad
 Pages 862-867

4. Prevalence of Oral Mucosal Lesions in Geriatric Patients Living in Lower Northern Thailand: A 10 Years Retrospective Study
 Chaidan Intapa, Chalatip Chompunud Na Ayudhya, Anawat Puangsombat, Bundit Boonmoon,
 Thida Janyasurin, Ubonwan Tonum
 Pages 868-871

5. Awareness and Demand of Prosthodontic Treatment for Tooth Loss Replacement
 Saraventi Mursid, Candrika Kusuma Pujnacati, Lindawati S. Kusdhany
 Pages 872-876

6. Association between Tooth Loss and Oral Awareness Amongst Dentate and Partially Dentate Subjects of Pakistani population
 Huma Sajid, Yousaf Athar, Aamina Sagheer, Nazia Yazdanie, Anam Arshad, Fazal Shahid
 Pages 877-882

7. Assessment of location of fovea palatine in relation to vibrating line in South Indian population
 Aslin Sanofer A, Revathy Gounder
 Pages 883-886

8. sCD14 Protein Analysis in Children with Very High and Low pufa Index
 Dudi Arpin, Innhe Suhema Sasmila, Anne Agustina Siewargiani
 Pages 887-890

9. Microbiological and cytological response to dental implant healing abutment
 Wifaq M. Ali Al-Wattar, Warkaa M. Al-Wattar, Afya Sahb Diab Al-Radha
 Pages 891-898

10. Tooth Mortality in Concurrent Cigarettes Smoking and Khat Chewing in Yemeni Population
 Fouad Hussain AL-Bayaty, Nidhal Wahid Ali, Aqil Daher, Saba F. Hussain, Mohd Masood
 Pages 899-904
11. The Correlation between Mother's Knowledge and Parenting Toward Childhood Caries in the Remote Area
 Lesty Marina A. Pinat, Darmawan Setijanto, Taufan Bramantoro
 Pages 905-908

12. Gingival Recession and Dentine Hypersensitivity in Periodontal Patients: is It Affecting Their Oral Health Related Quality of Life?
 Masud M, Al-Bayaty FH, Muhamed NAH, Alwi AS, Takiyudin Z, Hidayat MFH
 Pages 909-914

13. Prevalence of Medically Compromised Children Regarding Dental Caries and Treatment Needs in Wahidin Sudirohusodo Hospital
 Harun Achmad, M. Hendra Chandha, Sri Harun, Imam Sudjarwo, Muliaty Yunus, Rahmah K. Rusdi, Putri Khairunnisa
 Pages 915-920

14. Relationship between Oral Health Status with Knowledge, Attitude, And Behavior of Elementary School Children
 Fuad Husain Akbar, Rini Pratiwi, Reagan Cendikiawam
 Pages 921-926

15. The Oral Health of Elderly Residents in a State Institution in Jakarta: A Preliminary Study
 Dwi Ariani, Febrina Rahmayanti, Harum Sasanti, Masita Mandasari
 Pages 927-932

16. Pandan Leaves (Pandanus amaryllifolius) Aromatherapy and Relaxation Music to Reduce Dental Anxiety of Pediatric Patients
 Seno Pradopo, Betadian Rizki Sinaredi, Bernadeth Vindi Januriasca
 Pages 933-937

17. The Relation of Follicle Stimulating Hormone and Estrogen to Mandibular Alveolar Bone Resorption in Postmenopausal Women
 Susi R Puspitadewi, Pitu wulandari, Sri Letyati C Masulili, Elza I Auerkari , Hanna Bachtiar Iskandar, Izzet Yavuz, Lindawati S Kuschany
 Pages 938-944

18. Cross-Cultural Adaptation and Psychometric Properties of The Indonesian Version of Servqual For Assessing Oral Health Service Quality
 Yohares Tebai, Diaa Aiu Maharani, Anton Rahardjo
 Pages 945-951

19. Effect of Endodontic Instrumentation Technique on Root Canal Geometry
 Miranda Stavili, Veton Hoxha, Mehmet Omer Gürduysus, Kjell Laperre, Ilkan Tatar, Rina Hoxha
 Pages 952-957
20. No Recombinant EGF and bFGF is Required on HUVECs Culture Supplemented with Human Platelet Lysate
Lisa Rinanda Amir, Ria Puspitawati, Hazriani R, Shafira Imanina, Harvi Damayanti, Nadira Dwiyan, Afrindayani Nurwulan, Mindya Yunianti, Erik Idrus
Pages 958-963

21. The Effect of Light and Dual Cured Resin Cement to the Color of Porcelain Laminate Veneer
Meiissa Delania, Ira Tarti, Roselani W. Odang, Leonard C. Nelwan
Pages 964-969

22. Loss of Taste Buds in The Circumvallate Papillae of Rat Tongue after Ovariectomy
Ervin Rizali, Widurini Dja Juma Suminta, Budiarto Sudiroatmodjo, Nadhira Haifa Prabowo, Elza Ibrahim Auerkari
Pages 970-974

23. The Effect of Brotowali Stem Extract (Tinospora Crispa) Towards Increasing Number of Lymphocytes in the Healing Process of Traumatic Ulcer on Diabetic Wistar Rat
Ira Arundina, Indeswati Diyati, Therese Indah Budhy, Foo Yau Jit
Pages 975-980

24. Antibacterial Effects of Bioceramic and Mineral Trioxide Aggregate Sealers Against Enterococcus Faecalis Clinical Isolates
Rusdiana, Munyati Usman, Ratna Meidyawati, Endang Suprastiti, Dewa Ayu NPA
Pages 981-986

25. Different Food Hardness Affect Memory
Wahyuning Ratih Irmalia, Jenny Sunariani, Christian Khoswanto
Pages 987-990

26. Brotowali Extract (Tinospora Crispa) for Oral Traumatic Ulcer in Diabetes Mellitus Wistar Rat
Retno Indrawati Roestamadi, Ira Arundina, Indeswati Diyati, Dewi Tamara Sambodo, Wahyuning Ratih Irmalia
Pages 991-996

27. Orthodontists Reproducibility and Accuracy in Linear and Angular Measurement on 2d Digital and 3d Cbct Radiographic Examination
Dwita Pratiwi, Benny Mulyono Soegiharto, Krisnawati, Bramma Kiswamjaya
Pages 997-1004

28. Reconstruction with fibula transfer and implant supported overdenture for a mandibular defect: A multidisciplinary approach
Tri Ardi Mahendra, Nina Ariani, Saraventi Murisd, Parintose Atmodirijo, Kristaninta Bangun, Dwi Ariawan
Pages 1005-1009

29. An Overjet Reduction of Class II, Division 1 Malocclusion in Twin Block Dento-facial Orthopedic and Fixed Orthodontic Treatment: Case Report
Harun Achmad, Mardiana Adam, Sri Oktawati, Sri Ramadhany Karim, Hasanuddin Thahir, Rini Pratiwi, Anrissa Wicita
Pages 1010-1016
TABLE OF CONTENTS / 2017: 10 (3)

30. Impact of Delay on Diagnosis and Treatment of Oral Squamous Cell Carcinoma: Three Cases Report
Hamdatun Rakhmania, Irna Sufiawati
Pages 1017-1020

31. The Promising Clinical Applications of Growth Factors in Periodontal Regeneration: A Literature Review
Icheya Yiemwattana
Pages 1021-1028

32. Role of Oral and Maxillofacial Surgeon in Detecting Domestic Violence
Anand Deep Shukla, Abhay T Kamath, Chithra A
Pages 1029-1031

33. A Review of Ribonucleotide Reductase and Cancer Therapies
Khor Gool Heah, Nurul Ain Bt Khoruddin, Nur Rawaidah Bt Mohd Shobri, Syairah Nabila Bt Suhaimi, Tang Thean Hock, Mohd Yusmaidil Putera Mohd Yusof
Pages 1032-1037

34. Digital Hematocrite Test, a New Breakthrough in the Medical Equipment for Non Invasive Hematocrite Level Measurement in Dengue Patients
Prhartini Widianti, Nasronudin
Pages 1038-1041

35. Bone Quality, Biochemical and Blood Markers in High Power Electrical Workers
Cemil SERT, Pelin YAZGAN
Pages 1042-1047

36. The Relation of Reflux Finding Score and Reflux Symptom Index with Middle Ear Pepsin Level in Chronic Suppurative Otitis Media
Ayu Astria Suryana, Susyana Tamin, Syahrial M. Hutahuruk, Saptawati Bardosono, Ina S. Timan, Ratna D. Restuti
Pages 1048-1051

37. Occupational Risk Factors for Acute Fatigue Symptoms among Indonesian Beverage Industry Workers
Baiduri Widanarko, Robiara Modjo
Pages 1052-1054

38. A Study of Readmission Rates and the Implementation of National Health Insurance
Kurnia Sari, Pujianto, Atik Nurwahyu, Atmiroseva
Pages 1055-1059

39. Protective Effect of Propolis Extract in Kidney Male Mice (Mus musculus) Induced by Lead Acetate
Citasari Herra, Wivik Misacc, Hani Plumeriastuti
Pages 1060-1065
TABLE OF CONTENTS / 2017: 10 (3)

40. Maturity and Apoptosis Rate of Cumulus - Oocyte Complex in Aceh Cattle after in Vitro Maturation
 Hamny Hamny, Widjiati Widjiati, Aulanni’am Aulanni’am, Budianto Panjaitan
 Pages 1066-1069

41. Hylocereus Polyrhizus Peel Ethanol Extract- The Potential Effect to Tumor Necrosis Factor-A, Macrophage, and Matrix Metalloproteinase-9 in Endometriosis Mice
 Anindya Hapsari, Hendy Hendarto, Widjiati
 Pages 1070-1073

42. Effect of Combined Cryoprotectant of Ethylene Glicol and Propanediol on Embryo Cryopreservation to Blastomere Cell Apoptosis and Blastocyst Quality
 Epy Muhammad Luqman, Widjiati, Suryo Kuncorojakti
 Pages 1074-1079

43. Effectivity of Insulin Transferrin Selenium and Bovine Serum Albumin Addition on In Vitro Culture Medium on Fertilization and Blastocyst Rate of Mice (Mus musculus)
 Widjiati, Epy Muhammad Luqman, Benjamin Christoffel Tehupuring
 Pages 1080-1083

44. Effect of Radiofrequencies Emitted from Mobile Phones and Wi-Fi on Pregnancy
 Hava Bektas, Suleyman Dasdag
 Pages 1084-1095

J Int Dent Med Res
Effect of Combined Cryoprotectant of Ethylene Glicol and Propanodiol on Embryo Cryopreservation to Blastomere Cell Apoptosis and Blastocyst Quality

Epy Muhammad Luqman1, Widjiati1*, Suryo Kuncorojakti1

1. Department of Veterinary Anatomy 1, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.

Abstract
Freezing embryo is a method to store embryo. So far embryo quality after it is frozen then warmed is still low, therefore when the embryo is transferred to recipient; it will result in low conception rate. Use of single cryoprotectant is not able to maximally protect embryo to extreme temperature change, it is shown on post warming embryo quality which is still low. Use of combined cryoprotectant of ethylene glicol and propanediol in order to maximally protect intracellular embryo as both cryoprotectants have different characteristics to protect cell.

To investigate compositions of cryoprotectant medium which is able to maximally protect embryo so that it results in high conception rate post warming.

The research was divided into four groups: T1 : Etylene Glicol 30%, T2 : Propanediol 30%, T3: Etylene Glicol 10% + Propanediol 10%, T4: Etylene Glicol 15 % + Propanediol 15%. Freezing embryo was done for a week then warming was carried out, next examination on viability and apoptosis of blastocyst was done.

Blastocyst viability of T4 was the highest compared to the other groups (82.75 ± 4.944; p<0.05). Observation on blastomere apoptosis showed that blastomere apoptosis of group T3 (7.20 ± 2.168; p<0.05) and T4 (4.80 ± 1.304; p<0.05) was lower than that of group T1 and T2. Combination of Etylene Glicol 15% + Propanediol 15 % was the best cryoprotectant to increase blastocyst viability and decrease number of apoptosis.

Keywords: Embryo, Vitrification, Blastocyst Viability, Warming, Cryopreservation.

Introduction
Freezing embryo or cryopreservation is a method to store excessive embryos resulted from in vitro fertilization. Excessive embryos can be stored and later at the right time, they can be transfer back to recipient. Excessive embryos are highly expected by patients who are having test tube baby program. It is hoped that when implantation fails, there are still embryos left which are stored without going through long test tube baby process so that embryo resulted from freezing process can be transferred.

Vitrification method is done by freezing embryo fast at low temperature (-196°C) using high concentration cryoprotectant is intended to prevent from ice crystals formed which is able to damage blastomere cell, ice crystals formed during freezing will damage embryo damage organelle in cyst mitochondria and induce cell lose membrane plasma integrity. Cell damage resulted from ice crystals formed is able to lead to cell death of embryo.

Cryoprotectant is needed to protect embryo during cryopreservation process.
Cryoprotectant functions to protect embryo from drastic temperature change that is from warm temperature to minus temperature and on the other hand, during warming from minus temperature to warm temperature. Cryoprotectant used so far is intracellular single cryoprotectant that is only ethylene glicol or only propanediol which works to protect embryo from drastic temperature change so that it is not able to maximally protect embryo seen from low quality embryo post warming. During cryopreservation and warming process, cell will experience damage (apoptosis) as a result of a very low temperature exposure -196°C, it is likely to form ice crystals, free radicals due to temperature shock and rehydration. Combined cryoprotectant ethylene glicol dan propanediol is intended to maximally optimize intracellular cryoprotectant by intracellularly protecting embryo as both cryoprotectants have different characteristics to protect cell during freezing process. According to the research by Somfai et al., (2015) use of double cryoprotectants with respective combined cryoprotectants with right embryo growth for transfer. Cryopreservation using double cryoprotectants is able to increase embryo viability after warming or in vitro culture. Low embryo viability will influence implantation that is adhering embryo to endometrium. Decreased embryo quality and viability is also caused by a number of trophoblast cells which function as embryonic placenta which experiences apoptosis, consequently implantation and gestation do not exist. Besides, endometrium thickness of recipient must be ready to receive embryo.

Embryo viability post warming highly influences implantation rate and gestation after embryo is transferred to recipient. Therefore, study is needed to optimize cryoprotectant medium so that it is able to embryo quality after warming and decrease blastomere cell apoptosis. The research is intended to produce composition of cryoprotectant medium which is able to maximally protect embryo during freezing process and produce embryo with high viability post warming.

Materials and methods

Research Ethical Clearance
This research received ethical clearance number: 717-KE released by Animal Care and Use Committee, Airlangga University, Faculty of Veterinary Medicine.

Research Design
Research design used was complete random design. With this design, the source of variability is only treatment. Besides treatment, other variables are homogenous.

Materials and Research Equipments
Materials used in the research were five month old male rats (Pusvetma Surabaya), three month old female rats (Pusvetma Surabaya), Pregnant Mare Serum Gonadotropin (PMSG) (Folligon®, Intervet, Boxmeer, Holland), Human Chorionic Gonadotropin (HCG) (Chorulon®, Intervet, Boxmeer, Holland), Phosphate Buffer Saline (PBS), Medium Engle Minimum (Sigma®, St. Louis, USA), ethilen glikol (Sigma®, St. Louis, USA), propanediol (Sigma®, St. Louis, USA), mineral oil (Sigma®, St. Louis, USA), gentamycin sulfat, CO₂.

Equipments used in the research were CO₂ incubator (Thermo Fisher Scientific), inverted microscope (Meiji Techno America), image raster program 2.2, syringe, pipet pasteur, Hemi straw (Sigma®, St. Louis, USA), disposable petridish (Thermo Fisher Scientific), millipore (Thermo Fisher Scientific).

Superovulation and egg cell collection
Female rat of BALB/c strain, weighing 30-35grams, three months old, healthy, active, never used for research was injected using hormone of Pregnant Mare Serum Gonadotropin (PMSG atau Foligon) with the dosage of 5 IU. 48 hours later it was injected with hormone of Human Chorionic Gonadotropin (HCG atau Chorulon) and directly mated with male rate of BALB/c strain weighing 40-45grams, five months old which was monomattingly castrated. Seventeen hours after female rat was mated,
vagina plug examination was conducted. Egg cell collection was done on female rat with its vagina plugged. Then, it was decapitated, cut, and its fallopian tube was taken out. Next, fallopian tube was washed with solution of Phosphate Buffer Saline, after that, moved to petridish and flushed under inverted microscope by ripping fertilization pouch. Finally, flushed egg cell was washed and prepared for in vitro fertilization.

In vitro fertilization

Collected egg cell then was washed three times respectively in medium of PBS and MEM. Washed egg cell was next moved to fertilization medium. To wait until spermatozoa prepared for in vitro fertilization. Spermatozoa was taken from cauda epididymis of male rat, then soaked in fertilization medium with egg cell in it. Egg cell which was mixed with spermatozoa was incubated in CO₂ incubator of 5% with temperature of 37°C for 7 hours, then granulosa cell was thrsed to observe 2 pn (Beyer and Griesinger, 2016).

Embryo culture until morula stage

After 2 pn was formed, then zygote was moved to culture medium and incubated in CO₂ incubator of 5% at temperature of 37°C. Culture medium was changed once in two days until embryo reached morula stage.

Embryo cryopreservation was done by using vitrification method and combined cryoprotectant. Overall the research consisted of 4 groups with each group consisting of five rats: Treatment Group 1 (T1) : Etylene Glicol 30 %; Treatment Group 2 (T2) : Propanediol 30 %; Treatment Group 3 (T3) : Etylene Glicol 10 % + Propanediol 10 %; Treatment Group 4 (T4) : Etylene Glicol 15 % + Propanediol 15%. Embryo exposed with cryoprotectant medium of ethylene glicol and propanediol, then was put in the tip of hemi straw. Next, hemi straw exposed with liquid N2 was dipped into liquid N2 and put into big straw. Putting hemi straw into big straw must be done in liquid N2, so that embryo at the tip of straw was not gone. After that, tip of big straw was fixed and put into straw cassette. Finally, straw cassette was put into goblet container of liquid N2.

Warming embryo

Before warming, medium consisting of V4 (PBS medium + Sucrose 0,5 M), V5 (PBS medium + Sucrose 1 M) was warmed for 15 minutes. Embryo after warming was put into medium V4 for 2.5 minutes, then moved to medium V5 for 7.5 minutes. Next, before embryo was tranferred, embryo was incubated in CO₂ incubator for 2 hours.

Apoptosis examination using immunocytochemistry method

Embryo at blastula stage was fixed on glass object, then rehydration was done with level alcohol, next washed with PBS, after that, soaked in 3% hydrogen peroxide \(\text{H}_2\text{O}_2 \) (in DI water) for 20 minutes, 1% BSA in PBS for 30 minutes at room temperature. Apoptag kit (TACS® 2 Tdt DAB *In situ* Apoptosis Detection Kit, TREVIGEN® inc., Maryland) 1:1000 for an hour, cold temperature of 4°C, Secondary antibody biotin labelled (*Anti Rat IgG Biotin Labelled*) and primary antibody of Apoptag kit, 1 hour at room temperature, SA-HRP (Sterp Avidin- Hoseradish Peroxidase), 60 minutes, room temperature, Cromogen DAB (3,3-diaminobenzidine tetrahydrochloride), 20 minutes, room temperature, Countercstain (methyl green), 3 minutes, room temperature then was checked under microscope. Every stage changed, it had to be washed with PBS to clean it from other materials sticking on it.

Data Analysis

Data analysis used data of *One Way ANOVA* (Analysis of Variance). Data was processed using program of SPSS 20 (Statistical Package for Social Science), Chicago, USA. If there was significant difference among treatment groups, Duncan test was carried out.

Results

Blastomere Cell Apoptosis

Based on result of treatment on various groups, number of blastomere cell apoptosis was able to be counted. Data taken was then tested to find out
normality and homogeneity using Kolmogorov-Smirnov test and Shapiro-Wilk test. Number of blastomere cell apoptosis was next tested using One Way ANOVA and if there was significant difference (p<0.05), Duncan test was carried out. Result of test on number of blastomere cell apoptosis using One Way ANOVA showed F count= 13.905 with significant difference (p<0.05). Therefore, Duncan test was conducted to find out difference of each group treatment. Result of Duncan test can be seen in the table 1 below.

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Number of blastomere cell apoptosis (X±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1 (T1)</td>
<td>11.20 ± 3.564</td>
</tr>
<tr>
<td>Treatment 2 (T2)</td>
<td>13.60 ± 1.817</td>
</tr>
<tr>
<td>Treatment 3 (T3)</td>
<td>7.20 ± 2.166</td>
</tr>
<tr>
<td>Treatment 4 (T4)</td>
<td>4.80 ± 1.304</td>
</tr>
</tbody>
</table>

Note: Different superscript in the same column shows significant difference (p<0.05)

Table 1. Average and standard deviation of number of blastomere cell apoptosis of treatment groups with different cryoprotectant.

Result of Duncan test on number of blastomere cell apoptosis showed that group of Etylene Glicol 10 % + Propanediol 10 % (T3) and
an Ethylene Glicol 15 % + Propanediol 15 % (T4) had significant difference if compared to group of Ethylene Glicol 30 % (T1) dan Propanediol 30 % (T2).

Result of the research showed that use of Ethylene Glicol dan Propanediol combined as cryoprotectant had significant difference to decrease number of blastomere cell apoptosis(Figure 1,2,3).

Blastocyst Quality

Duncan test result on blastocyst viability percentage showed that group of T3 and T4 had significant difference to group of T1 and T2. Group T4 had the most difference compared to the other treatment groups with notation c. Group T2 had significant difference with group T1 and T2 with notation b.
Result on treatment on various groups yielded blastocyst quality data. Evaluation on blastocyst quality blastocyst quality was done by counting blastocyst variable after vitrification was done. Data taken was then tested to find out normality and homogeneity using Kolmogorov - Smirnov test and Shapiro - Wilk test. Number of blastocyst variable after vitrification was next tested using One Way ANOVA and if there was significant difference, Duncan test was carried out.

There was significant difference among treatment groups. Result on variant analysis showed that F count = 20.914 with significant difference (p<0.05). Duncan test was carried out as further test to find out difference of each treatment group. Duncan test result can be seen in table 2 below.

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Blastocyst Viability Percentage (X±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1 (T1)</td>
<td>64.24±5.283</td>
</tr>
<tr>
<td>Treatment 2 (T2)</td>
<td>60.48±5.537</td>
</tr>
<tr>
<td>Treatment 3 (T3)</td>
<td>75.01±3.966</td>
</tr>
<tr>
<td>Treatment 4 (T4)</td>
<td>82.2±4.944</td>
</tr>
</tbody>
</table>

Table 2. Average and standard deviation of blastocyst viability percentage of treatment groups with different cryoprotectant.

Discussion

Cell experiences physical stress at cryopreservation procedure, several cells are able to tolerate stress better than other cells, and change on cell membrane is able to induce change on cell to tolerate with stress. Main stress is osmotic change, cell and cell parts experience big change on volume due to movement of water and intracellular cryoprotectant. Further, cell with flexible membrane has less damage compared to cell with rigid membrane. Moreover, the higher
permeability of cell membrane to water and cryoprotectant, the less osmotic stress.22,23

Main components of cell membrane are phospholipid, cholesterol. Other lipids and protein. Except protein, these components are able to be manipulated in various ways such as, nutritional status and composition of culture medium. Overall, these components are necessary in the form of liquid, solid or gel. Some areas of cell membrane are ready for fluidity change to be gel during temperature change. Change that takes place in this phase is irreversible, during warming cellular components are not able to be reunited. The best choice to eliminate transition from liquid to be gel perfectly at freezing process; another strategy used is allowing transition to take place at low temperature or accelerating transition time to decrease changes that are able to damage cell component.7

Slow-rate freezing is intended to balance various factors that are able to cause damage such as ice crystals formed, fractures, toxics, and osmotic change. Controlled freezing rate leads to liquid change intracellularly and extracellularly without serious osmotic effect and change of cell shape (equilibrium freezing).24,25

Cryoprotectant concentration is high at final phase, if toxic effect is able to be minimized. Intracellular ice formation is able to be reduced and it almost does not exist. Phenomenon of freezing water without forming crystals is called vitrification. Vitrification in cryobiology refers to cryopreservation method which has main purpose to make sure that ice crystals do not exist. Vitrification has higher viability rate after warming compared to Slow Cooling Freezing.5,26,27

Vitrification needs high concentration cryoprotectant. Therefore, it is necessary to minimize cell damage due to osmotic stress or chemicals toxicity. cryoprotectant prevents from ice crystals formed which induce main damage, but use of high concentration cryoprotectant is able to be toxic and induce osmotic damage. Various methods used to find out ideal cryoprotectant: reduction of exposure time of cryoprotectant, use of cryoprotectant which has low toxicity, combination of several cryoprotectants, cryoprotectant exposure to low temperature.7 The research found out that use of combined cryoprotectant etylene glicol dan propanediol was able to increase blastocyst quality and decrease blastomere cell apoptosis.

Conclusions

Combination of etylene glicol and propanediol was able to decrease blastomere cell apoptosis and increase blastocyst viability as parameter of blastocyst quality. Combined dosage of etylene glicol 15% and propanediol 15% was the best dosage to decrease blastomere cell apoptosis and increase blastocyst viability.

Acknowledgement

The authors wish to thank Faculty of Veterinary Medicine, Universitas Airlangga.

Declaration of Interest

The authors declare no conflict of interest.

References

