- Additional probiotic therapy lowers SCORAD index in children with atopic dermatitis
- Inverse correlation between serum albumin and serum lactate in adults with dengue
- *Formula Jamu Antihypertensi* and captopril are equally effective in patients with hypertension
- Smoking tends to decrease glutathione and increase malondialdehyde levels in medical students
- Obesity contributes toward hypertension in young and older adult
- Decreased magnesium level and membrane potential of glaucoma patients
- Red fruit oil increases trophoblast cell and decreases caspase-9 expression in placenta of lead exposed mice
- Directly observed treatment increases drug compliance in lymphatic filariasis mass drug administration
- Low vitamin C intake increases risk of pre-eclampsia in high pesticide exposure area
- High blood pressure tends to increase carotid intima-media thickness in adult females
UNIVERSA MEDICINA

Accreditation 58/DIKTI/Kep/2013

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor in Chief</td>
<td>Adi Hidayat (Indonesia)</td>
</tr>
<tr>
<td>Managing Editor</td>
<td>Pusparini (Indonesia)</td>
</tr>
<tr>
<td>Editorial Board</td>
<td>Julius E. Surjawidjaja (Indonesia)</td>
</tr>
<tr>
<td></td>
<td>Murad Lesmana (Indonesia)</td>
</tr>
<tr>
<td></td>
<td>Edhyana Sahiratmadja (Indonesia)</td>
</tr>
<tr>
<td></td>
<td>Elly Herwana (Indonesia)</td>
</tr>
<tr>
<td></td>
<td>Yenny (Indonesia)</td>
</tr>
<tr>
<td></td>
<td>Mulyoto Pangestu (Australia)</td>
</tr>
<tr>
<td></td>
<td>Sheetal D Ullai (India)</td>
</tr>
<tr>
<td></td>
<td>Dhananjay K Yadav (Korea)</td>
</tr>
<tr>
<td></td>
<td>Mohamed A Rabei (Mesir)</td>
</tr>
<tr>
<td></td>
<td>Roslida Abd Hamid (Malaysia)</td>
</tr>
<tr>
<td></td>
<td>Gulay Yilmazel (Turkey)</td>
</tr>
<tr>
<td></td>
<td>Muchtaruddin Mansyur (Indonesia)</td>
</tr>
<tr>
<td></td>
<td>Hans Joachim Freisleben (Germany)</td>
</tr>
<tr>
<td></td>
<td>Ruvan A I Ekanayaka (Sri Lanka)</td>
</tr>
<tr>
<td></td>
<td>M Afzal Mahmood (Australia)</td>
</tr>
<tr>
<td></td>
<td>Umi Fahmida (Indonesia)</td>
</tr>
<tr>
<td>Language Editor</td>
<td>Richard Tjan (Indonesia)</td>
</tr>
<tr>
<td>Layout Editor</td>
<td>Teguh Nopriyanto</td>
</tr>
<tr>
<td>Secretary</td>
<td>Rita Hemawati</td>
</tr>
<tr>
<td>Business Manager</td>
<td>Eddy Kasim</td>
</tr>
<tr>
<td>Correspondence Address</td>
<td>Medical Faculty, Trisakti University</td>
</tr>
<tr>
<td></td>
<td>Jl. Kyai Tapa No.260 Grogol - Jakarta 11440</td>
</tr>
<tr>
<td></td>
<td>Phone: +6221-5672731 ext. 2504 Fax: +6221-5660706</td>
</tr>
<tr>
<td></td>
<td>Homepage: www.univmed.org Email: editors@univmed.org</td>
</tr>
<tr>
<td>Subscription rates</td>
<td>Subscription for the printed issue runs for a full calender year. Prices are given per year. Personal subscription: IDR 300.000,- or USD 30.00. Institutions subscription: IDR 500.000,- or USD 50.00. All plus airmail surcharge</td>
</tr>
<tr>
<td></td>
<td>Published by Faculty of Medicine Trisakti University</td>
</tr>
</tbody>
</table>

Abstract / Indexing

[(DOI) Logo] (http://example.com) [Google Scholar] [CrossRef] [ISJDB]
Instructions For Authors

Universa Medicina (univ.med) is a four-monthly medical journal that publishes new research findings on a wide variety of topics of importance to biomedical science and clinical practice. Universa Medicina Online contains both the current issue and an online archive that can be accessed through browsing, advanced searching, or collections by disease or topic.

Submission
Universa Medicina accepts manuscripts written in Indonesian or English that should not have been published previously and must not be under simultaneous consideration by any other journal.

Manuscript Preparation
The manuscript should be formatted as follows: paper size A4 (212 x 297 mm), with margins of at least 2.5 cm; use double-spacing in a serif font (e.g., Times), 12-point and limited to approximately 16 pages in length including references, tables and figures. Do not justify the right margin. Number pages consecutively in the upper right-hand corner of each page, beginning with the title page. Each manuscript component should begin on a new page in the following sequence: title page, abstract and key words, text, conflict of interest, acknowledgments, references, tables and figures. Each table should be on a separate page, complete with title and footnotes. Figures should be provided with legends. All manuscripts should be accompanied by a cover letter from the author responsible for correspondence.

Manuscript Sections for Papers
Title
Title page
Abstract and keywords
Text
Conflict of interest
Acknowledgements
References
Tables
Figures

Title
The title of the article should be precise and brief, of not more than 12 words or 100 characters. Authors should avoid the use of non-standard abbreviations. Authors should also provide a short running title for page headings of not more than 40 characters.

Title Page
This should carry the title of the article, the names and addresses of all authors (the institution to which the work is to be attributed should be listed first), and the name, address, fax number and email address of the corresponding author.

Abstract and Keywords
A structured abstract that contains no more than 250 words, and should consist of background (including objective), methods, results and conclusions. Below the abstract, provide a list of 3–10 keywords.

Text
The text of research papers should be divided into sections with the following headings: Introduction, Methods, Results, Discussion and Conclusions. Conflict of Interest Acknowledgement, and References.

Conflict of Interest
Authors should disclose at the time of revision any financial arrangement they may have with a company whose product is pertinent to the submitted manuscript or with a company making a competing product.

Acknowledgements
Anyone (individual/company/institution) who has substantially contributed to the study for important intellectual content must be acknowledged. Acknowledge only persons who have made substantive contributions to the study.

References
It is the authors’ responsibility to check all references very carefully for accuracy and completeness. References must be double-spaced and numbered consecutively as they are cited. Identify references in the text by superscripted arabic numerals within round brackets. References first cited in a table or figure should be numbered so they will be in sequence with the references cited in the text at the point where the table or figure is first mentioned. “Unpublished observations” and “personal communications” may not be used as references. Authors should avoid using abstracts as references. The minimal number of references should be 20 and 85% of them should be recent (published during the last 10 years, with the majority during the last 5 years). Abbreviate journal names according to the Index Medicus system (See also International Committee of Medical Journal Editors Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Sample References http://www.nlm.nih.gov/bsd/uniform_requirements.html). Examples of correct references are given at the end of these instructions.

Tables and Illustrations (Figures)
Type or print each table with double spacing on a separate sheet of paper. Number tables consecutively in the order of their first citation in the text and supply a brief title for each. Do not use internal horizontal or vertical lines. Give each column a short or abbreviated heading. Authors should place explanatory matter in footnotes, not in the heading. Explain in footnotes all nonstandard abbreviations. For footnotes use the following symbols, in sequence: *, †, ‡, §, ¶, ‖, *†, ‡§, ¶‖ Identify statistical measures of variations, such as standard deviation and standard error of the mean. There is normally a limit of 5 figures and tables (total) per manuscript.
Figures should be either professionally drawn and photographed, or submitted as photographic quality digital prints. For x-ray films, scans, and other diagnostic images, as well as pictures of pathology specimens or photomicrographs, send sharp, glossy, black-and-white or color photographic prints, usually 127 x 173 mm (5 x 7 inches). Figures should be numbered consecutively according to the order in which they have been first cited in the text. If a figure has been published, acknowledge the original source and submit written permission from the copyright holder to reproduce the material. Permission is required irrespective of authorship or publisher except for documents in the public domain.

Units of Measurement
Measurements of length, height, weight, and volume should be reported in metric units (meter, kilogram, or liter) or their decimal multiples. Temperatures should be in degrees Celsius. Blood pressures should be in millimeters of mercury, unless other units are specifically required by the journal.

Statistical Methods
In manuscripts that report on randomized clinical trials, authors may provide a flow diagram in CONSORT format and all of the information required by the CONSORT checklist. The CONSORT statement, checklist, and flow diagram are available on the Consort website. For tables comparing treatment groups in a randomized trial (usually the first table in the trial report), significant differences between or among groups (i.e. p<0.005) should be identified. In general, p values should be reported to three decimal places (i.e. p<0.001).

Submission Fee & Payment Policy
A submission fee of Rp. 500,000,- must be paid when submitting a manuscript. A fee is also required when resubmitting an article that was previously rejected. The submission fee covers a portion of the costs associated with peer review.
A publication fee of Rp. 500,000,- is required for articles that are accepted for publication.
For international authors the submission fee is $ 50.00 and the publication fee $ 50.00.
Figures in color will be charged a additional fee of Rp. 300,000,- per page. Payments should be transferred to the Universa Medicina account: Tahapan BCA KCP Kyai Tapa Acc no 373 1072 602 a/n Drg. Eddy Kasim. Transfer receipts should be sent to the Editor-in-Chief. Thank you.

Authorship
As stated in the ICMJE Recommendations, credit for authorship requires (a) substantial contributions to the conception and design; or the acquisition, analysis, or interpretation of the data, (b) the drafting of the article or critical revision for important intellectual content, (c) final approval of the version to be published, and (d) agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the article are appropriately investigated and resolved. Each author must sign a statement attesting that he or she fulfills the authorship criteria of the ICMJE Recommendations. At least one person’s name must accompany a group name (e.g., Thelma J. Smith, for the Boston Porphyria Group).

Ethical clearance
Authors are required to describe in their manuscripts ethical approval from an appropriate committee and how consent was obtained from participants when research involves human participants and animals.

Manuscript submission
The manuscript and other required documents and a list of two potential referees from outside your University/Institution should be emailed as attachments to:
editor@univmed.org
Professor Adi Hidayat
Editor-in-Chief
Universa Medicina
Once the manuscript has reached the Editor, the corresponding author will be informed by email within two weeks. The review process is between one and three months, and the results will be send by email to the corresponding author. A note of acceptance or non-acceptance for publication of the manuscript will be sent to the corresponding author. Authors are required to provide at least two potential referees, with affiliations and addresses, including email addresses.

Examples of correct forms of references

Journals
1. Standard journal
List all authors when there are six or fewer; when there are seven or more, list only the first three, followed by “et al.”
Abbreviate journal titles according to Index Medicus style, which is used in MEDLINE citations.
2. Corporate author
3. Volume with supplement
4. Electronic journal without page numbers
Books and Other Monographs
1. Editor(s), compiler(s) as author

2. Chapter in a book

3. Conference paper

4. Dissertation
Hos J. Mechanochemically synthesized nanomaterials for intermediate temperature solid oxide fuel cell membranes [dissertation]. Crawley, Western Australia: University of Western Australia; 2005.

Electronic Material
1. Electronic documents

2. Journal article on the internet

3. Monograph on the internet

Manuscript Submission Checklist
All manuscripts must be submitted online to editors@univmed.org

Cover letter
☐ Your cover letter should describe the significance of the work, its originality, and any similar work the authors reported previously.
☐ The letter should also state the specific contributions of each author to the preparation of this manuscript. Please include information about author’s department, university, university address, phone numbers and email address.

Manuscript
☐ Manuscripts should be prepared in a clear font (12-point Time New Roman is preferred) and double spaced.

Ethical clearance
☐ Manuscripts reporting data from studies involving human participants or animals require a formal review and approval by an appropriate institutional review board or ethics committee is required.

Conflict of interest
☐ A conflict of interest section should be presented after the conclusion

Acknowledgement
☐ In your manuscript you acknowledge anyone for a contribution that goes beyond administrative assistance.

References
☐ Each reference should be cited in the text. In the reference list, number the references according to the order in which they are first cited in the text and format them according to the Vancouver style.
Table of Contents
Volume 35 — May-August, 2016 — Number 2

Editorial
The burden of the complications of diabetes mellitus ... 65
Adi Hidayat

Research Articles
Additional probiotic therapy lowers SCORAD index in children with atopic dermatitis........ 68
Jessica Ekaputri, Rita Evalina, and Melda Deliana

Inverse correlation between serum albumin and serum lactate in adults with dengue......... 75
Ifoel Yerosias Mauleni, Suhendro, Leonard Nainggolan, and Martin Rumende

Formula Jamu Antihipertensi and captopril are equally effective in patients with hypertension ... 81
Atina Hussaana, Hadil Sarosa, Ulfah Dian Indrayani, Chodidjah, Bagas Widiyanto, and Danis-Pertiwi

Smoking tends to decrease glutathione and increase malondialdehyde levels in medical students ... 89
Safyudin and Subandrate

Obesity contributes toward hypertension in young and older adult.. 96
Julianty Pradono and Simrawati

Decreased magnesium level and membrane potential of glaucoma patients.......................... 105
Nnodim Johnkennedy, Nsonwu Magnus, Obioma Elemenba J.E., Nwadike Constance, Edward Ukamaka, Njoku-Obi Treasure, and Jimoh Raifu Folorunso

Red fruit oil increases trophoblast cell and decreases caspase-9 expression in placenta of lead exposed mice ... 110
Portia Sumarsono, Widjiati, and Suheri Susilowati

Directly observed treatment increases drug compliance in lymphatic filariasis mass drug administration ... 119
Tutik Ida Rosanti, Sugeng Jawono Mardihusodo, and Wayan T. Artama

Low vitamin C intake increases risk of pre-eclampsia in high pesticide exposure area 128
Rifatul Masrikiyyah, Suhartono, and Martha Irene Kartasurya

High blood pressure tends to increase carotid intima-media thickness in adult females 135
Yudhisman Imran, Pukovisa Prawijoharjo, and Martiem Mawi
Red fruit oil increases trophoblast cells and decreases caspase-9 expression in placenta of lead exposed mice

Portia Sumarsono*, Widjiati**, and Suherni Susilowati***

ABSTRACT
BACKGROUND
Lead is able to pass through the placental barrier and interfere with fetal development. Red fruit has high antioxidant activity, due to carotenoids (pro-vitamin A), tocopherols (vitamin E) and unsaturated fatty acids. This study aims to examine the effect of red fruit oil towards placenta in pregnant mice before lead exposure.

METHODS
This was a laboratory experimental post test only study, using 20 pregnant mice (Mus musculus) that were randomized into five groups. The negative control group was not exposed to lead; intervention group 0 (P0) was exposed to lead at 0.011 mg/20 g BW/day on days 6-15 of gestation. The intervention groups P1-P3 were given red fruit orally at 0.3 mL/20 g BW/day, 0.8 mL/20 g BW/day, 0.9 mL/20 g BW/day, respectively, before lead exposure. Normal trophoblast cell count and caspase-9 expression of trophoblasts were calculated. One-way ANOVA, Kruskal-Wallis and Mann Whitney tests were used to analyze the data.

RESULTS
The intervention groups P2 and P3 given red fruit at 0.8 mL/20 g BW/day and 0.9 mL/20 g BW/day showed a significant increase in normal trophoblast cell count of 88.2% (p=0.024) and a decrease in caspase-9 expression of 70.8% compared with P0 to which was not given red fruit (p=0.020).

CONCLUSION
Red fruit increased normal trophoblast cell count by 88.2% and decreased caspase-9 expression by 70.8% in pregnant mice before lead exposure. It should be noted that red fruit may prevent oxidative damage to cells. Keywords: Lead, red fruit, caspase-9, trophoblasts, pregnant mice.
Hypoxia may cause apoptosis of trophoblasts by decreasing Bcl-2 expression, increasing p53 and Bax expression, and activating caspase.\(^{(3)}\)

One of the native Indonesian plants with a high antioxidant content is red fruit (buah merah, Pandanus conoideus Lam.). From this plant, red fruit oil may be extracted, which is highly beneficial since it has high antioxidant activity, in the form of carotenoids (provitamin A), tocopherol (vitamin E) and unsaturated fatty acids.\(^{(4)}\)

In the study by Dearth et al.\(^{(5)}\) it was demonstrated that lead concentrations in the blood of females receiving lead during pregnancy and lactation was equal to lead concentrations in the blood and tissues of their offspring, thereby also affecting hormonal levels and onset of puberty. Lead may depress insulin-like growth factor-1 (IGF-1), luteinizing hormone (LH), and estradiol (E2), thus delaying puberty. In addition, Isradji\(^{(6)}\) proved in his study that lead acetate affects the fertility of male mice through a reduction in the number of pregnancies and litter size of their mates. Sharma et al.\(^{(7)}\) reported that administration of the antioxidant vitamins E and C to mice exposed to lead was capable of improving fertility by increasing implantation rate, fetal weight and by protecting the ovaries. Red fruit can be used as a source of natural antioxidants to prevent diseases associated with free radicals.\(^{(8)}\)

Thus there is a need to prove the protective efficiency of red fruit (Pandanus conoideus Lam.) antioxidants in pregnant mice (Mus musculus) when administered before exposing them to lead, thereby revealing the potency of the plant against placental disorders during pregnancy. The objective of the present study was to evaluate the effect of red fruit oil antioxidants on the placenta of mice exposed to lead.

METHODS

Research design

The present study was an experimental study of completely randomized design conducted from October to December 2015 at the experimental animal and the veterinary pathology laboratories, Veterinary Faculty, Airlangga University.

Experimental animals

The subjects of this study were 20 pregnant Balb/c mice (Mus musculus) selected from among 35 three-month-old females weighing around 25-30 grams, who had been acclimatized for one week. The sample size was determined using Federer’s formula, resulting in 4 pregnant mice per group. The optimal total sample size was 20. The mice were assigned by simple random sampling to five groups. The negative control group (K) consisted of pregnant mice that were not exposed to lead on days 6 to 15 of gestation. The intervention group 0 (P0) consisted of pregnant mice exposed to lead acetate at an oral dose of 0.011 mg/20 g BW/day, dissolved in 0.1 mL distilled water, on days 6 to 15 of gestation. The intervention groups (P1, P2, and P3) consisted of pregnant mice receiving red fruit oil at a dose of 0.3 mL/20 g BW, 0.8 mL/20 g BW, 0.9 mL/20 g BW, and being exposed to lead acetate one hour afterwards.

Extraction of red fruit oil

Selected ripe fruits were split lengthwise to remove the pith, then the fruit pulp was cut up into slices and rinsed. The pulp was steamed for 1-1.50 hours until well-done or soft, after which it was taken out to cool. A small quantity of water was added to the cooked slices, which were subsequently mashed into a paste. The fruit paste was screened to remove seed residues, then boiled for 4-5 hours. It was allowed to remain on the fire for 10 minutes until a black oil appeared on the surface. The boiled paste was removed from the fire and left standing for 24 hours, then the oil was carefully ladled to a transparent vessel, and left standing for 2 hours to separate the oil from the water and fruit paste. This last step was repeated several times until no more water remained under
the layer of red fruit oil, which was then cooled and packaged.

Estrus synchronization procedure

Induction of estrus was effected by the use of pregnant mare serum gonadotropin (PMSG), followed by human chorionic gonadotropin (HCG) for estrus synchronization. The PMSG hormonal preparation was administered intraperitoneally at a dose of 5 IU, while 5 IU of HCG was given 48 hours afterwards.\(^{(9)}\)

Intervention

The hormonally-induced females were subsequently mated with the stud male by monomating. Mated females were identified by the formation of a vaginal plug 17 hours after mating. The presence of a vaginal plug is considered indicative of copulation and day 0 of gestation. The dose of 4 mg/kg BW of lead for rats was converted to a dose of 0.011 mg/20 g BW for mice.

The intervention groups P1, P2, and P3 received red fruit antioxidants one hour before lead exposure. The lead exposure dose of 0.011 mg/20 g BW for the mice was based on the study of Aprioku and Siminialayi \(^{(10)}\) who proved in Wistar rats that at a dose of 4 mg/kg BW, lead exposure was capable of decreasing the number of births and of causing teratogenic effects in the form of abnormally-formed skulls, short forelimbs, and absence of hindlimbs in the fetus. The three doses of red fruit antioxidants were obtained from the study of Udju et al. \(^{(11)}\) who demonstrated that red fruit antioxidants at a dose of 1199.25 mg/kg BW could reduce total cholesterol concentrations in male Swiss albino mice. There are no previous data regarding the effect of red fruit administration on caspase expression in lead exposed mice.

The interval between red fruit antioxidant administration and lead exposure is known from study results showing that the concomitant administration of vitamin C and vitamin E with lead may protect cells from damage by free radicals during reproduction and fertilization.\(^{(7)}\) The one-hour interval between administration of antioxidants and lead is presumably effective in protecting the body against free radicals.

Measurements

The trophoblast cell count was performed in five fields of view. Trophoblast cells are located in the floating villi of the placenta, so that the five fields of view comprise 5 floating villi. Floating villi are characterized by the presence of trophoblast cells, Hofbauer cells, and blood vessels. The scoring of caspase-9 expressing placental trophoblast cells was by means of a modified semiquantitative IRS scale of Remmele, in which the scores are obtained by multiplying the percentage of positive cells and the intensity of the color reaction.\(^{(12)}\)

Statistical analysis

Caspase-9 expression scores were analyzed by means of the Kruskal-Wallis test, followed by the Mann Whitney test. Trophoblast cell counts were analyzed by one-way ANOVA, followed by Duncan’s test, at a significance level of 0.05.
Ethical clearance

Ethical clearance for the present study was obtained from the Research Ethics Commission, Veterinary Faculty, Airlangga University, Surabaya.

RESULTS

From the results shown in Tables 1 and 2 it is apparent that administration of red fruit antioxidants to pregnant mice of intervention groups 2 and 3, before they were exposed to lead, was capable of substantially decreasing caspase-9 expression in placental trophoblast cells.

In general the normal trophoblast cell counts differed considerably. According to one-way ANOVA, there were significant differences in mean trophoblast cell counts between groups (p<0.05) (Table 1). This was followed by Duncan’s test to find differences between intervention groups.

The results of Duncan’s test for mean normal trophoblast cell count and SD showed that in the negative control group, i.e. the group of pregnant mice without lead exposure or red fruit administration, there were significant differences with the intervention group zero, i.e. the group of pregnant mice receiving only lead exposure. In contrast, there were no significant differences between the negative control group and intervention groups 1, 2, and 3, i.e. the groups of pregnant mice receiving red fruit antioxidants at different doses, and one hour afterwards being exposed to lead. However, there were significant differences between the intervention group 0 and the three intervention groups 1, 2, and 3 (Table 2). In the intervention group given red fruit at 0.9 mL/20 g BW and lead exposure one hour afterwards (P3) there was a significant increase of 88.2% in trophoblast cell count, in comparison with the group exposed to lead at 0.011 mg/20 g BW/day dissolved in 0.1 mL of distilled water on days 6-15 (P0) (p=0.024). There was also a significant reduction of 70.8% in caspase-9 expression of group P3 (p=0.020) (Table 2).

<table>
<thead>
<tr>
<th>Normal trophoblasts</th>
<th>Mean difference</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-P0</td>
<td>17.35</td>
<td>0.062</td>
</tr>
<tr>
<td>P1</td>
<td>9.25</td>
<td>0.071</td>
</tr>
<tr>
<td>P2</td>
<td>6.00</td>
<td>0.227</td>
</tr>
<tr>
<td>P3</td>
<td>5.60</td>
<td>0.258</td>
</tr>
<tr>
<td>P0 P1</td>
<td>5.30</td>
<td>0.102</td>
</tr>
<tr>
<td>P2</td>
<td>10.55</td>
<td>0.028</td>
</tr>
<tr>
<td>P3</td>
<td>11.65</td>
<td>0.024</td>
</tr>
<tr>
<td>P1 P2</td>
<td>3.25</td>
<td>0.505</td>
</tr>
<tr>
<td>P3</td>
<td>4.65</td>
<td>0.455</td>
</tr>
<tr>
<td>P2 P3</td>
<td>0.40</td>
<td>0.934</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caspase-9 expression</th>
<th>Mean difference</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-P0</td>
<td>4.35</td>
<td>0.021</td>
</tr>
<tr>
<td>P1</td>
<td>2.85</td>
<td>0.021</td>
</tr>
<tr>
<td>P2</td>
<td>1.80</td>
<td>0.559</td>
</tr>
<tr>
<td>P3</td>
<td>1.25</td>
<td>0.765</td>
</tr>
<tr>
<td>P0 P1</td>
<td>1.30</td>
<td>0.021</td>
</tr>
<tr>
<td>P2</td>
<td>10.25</td>
<td>0.021</td>
</tr>
<tr>
<td>P3</td>
<td>13.10</td>
<td>0.020</td>
</tr>
<tr>
<td>P1 P2</td>
<td>1.05</td>
<td>0.191</td>
</tr>
<tr>
<td>P3</td>
<td>1.60</td>
<td>0.020</td>
</tr>
<tr>
<td>P2 P3</td>
<td>0.55</td>
<td>0.465</td>
</tr>
</tbody>
</table>

K- = pregnant mice not exposed to lead on days 6-15 of gestation; P0= pregnant mice exposed to lead at 0.011 mg/20 g BW/day dissolved in 0.1 mL of distilled water on days 6-15 of gestation; P1, P2, and P3= pregnant mice given red fruit at 0.3 mL/20 g BW, 0.8 mL/20 g BW, and 0.9 mL/20 g BW and then exposed to lead.

In immunohistochemical and HE stained placental slide preparations, the intervention group 0 receiving lead exposure only showed a reduction in normal trophoblast cell count in comparison with the negative control group (Figure 1 and 2). With regard to red fruit doses, intervention group 1 given red fruit antioxidants at 0.3 mL/20 g BW, yielded no significant differences with intervention group 0, since the normal trophoblast cell counts approximated those of intervention group 0. In contrast, intervention groups 2 and 3 yielded significant differences with intervention group 0, since the normal trophoblast cell counts approximated those of the negative control group.
DISCUSSION

This study showed that there was increased caspase-9 expression in intervention group 0 (lead exposure only). The three intervention groups showed low caspase-9 expression, when compared with intervention group 0. This is because lead as a toxicant causes damage to both the plasma membranes and the membranes of internal organelles, and also causes lipid peroxidation.

The membranes of mitochondria and microsomes are very sensitive to lipid peroxidation, because of the high polyunsaturated fatty acid (PUFA) content of the

Figure 1. Caspase-9 expression in placenta of pregnant mice (Mus musculus) for each intervention. (A) not showing caspase-9 expression and (B) showing caspase-9 expression. (immunohistochemical staining; 400x).
Figure 2. Histopathology of normal trophoblasts in pregnant mice (Mus musculus) before lead exposure. Yellow arrows = normal trophoblasts; red arrows = necrosis of trophoblasts (Hematoxylin Eosin stain, 400x)

Lead exposure during organogenesis causes stress in the placental cells and in the mitochondria of these cells, resulting in the expression of several proteins by these cells, such as Bax, a protein carrier of apoptosis signals from within the cells. Excessive Bax expression in the cytoplasm may damage the mitochondrial membrane so that the cell loses energy. The damaged mitochondrial membrane releases one of the most important proteins, i.e. cytochrome-c, into the cytoplasm. The expression of Bcl-2 protein increases, represses Bax and inhibits apoptosis. This causes release of mitochondrial cytochrome-c into the cytosol, where it promotes oligomerization of apoptotic protease activating factor-1 (Apaf-1), procaspase-9 and ATP, forming a complex called the apoptosome. The apoptosome is recruited and activates caspase-9, which in turn promotes caspase-3 activation. This mechanism constitutes the intrinsic pathway of apoptosis.

The high level of apoptosis in this study is reflected in the brownish colored caspase-9 antibody-antigen complexes. This proves that caspase-9 plays a role in the apoptosis of placental cells at the final stages of pregnancy. The study results show that caspase-9 is expressed by placental cells, i.e. trophoblast cells, decidual cells, fibroblasts, and placental blood cells. Caspase-9 induces cell death through the intrinsic pathway, which is activated through the stress induced pathway (mitochondria-mediated pathway).

Caspase-9 expression was also seen in the negative control group, because apoptosis of placental cells is a physiological process at the approach of parturition. Therefore the negative
control group still exhibited a brown color, but not more than did group P0 receiving lead exposure. Apoptosis of decidual cells and trophoblast cells increases with age of gestation in normal pregnancies.\(^{(15)}\) However, Qumsiyeh et al.\(^{(16)}\) state that apoptosis of decidual cells and chorionic villi in cases of spontaneous abortion is more than in normal pregnancies. Physiologically, apoptosis in trophoblast cells occurs in the third trimester. With increasing age of gestation, the rate of apoptosis is normally increased, so that the number of living cells decreases.

Placental trophoblast cells differentiate into cytotrophoblasts, then the cytotrophoblasts fuse with one another, forming the syncytiotrophoblast. In addition, the cytotrophoblasts also differentiate into spongiotrophoblasts. In humans and mice, the trophoblasts at the end of gestation differentiate into glycogen cells that play a role in energy storage. Furthermore, at the end of gestation the trophoblasts normally also undergo apoptosis at the approach of parturition. Lead exposure influences the morphology and physiological response of the rat placenta, particularly in the placental labyrinth, i.e. the confluence of the maternal and fetal circulation. The presence of lead causes high ROS levels in placental cells, including vascular endothelial cells, resulting in necrosis and apoptosis of these endothelial cells. Damage to the blood vessels triggers a physiological response to form new blood vessels (angiogenesis).\(^{(17)}\) Lead results in a high rate of cell death and affects the physiological response and morphology of the rat placenta. Lead exposure during organogenesis in pregnant mice may cause accelerated apoptosis, thus resulting in abortion. Increased placental cell death and high levels of inflammation induces secretion of inflammatory cytokines in the blood, while within the cells there is oxidative stress. Remodelling of placental vascularization does not occur because the majority of placental cells have undergone normal apoptosis, with extremely high cell death rates and decreased supply of nutrients and vascularization, resulting in abortion.

One method to find abnormalities of pregnancy due to lead is to determine the level of apoptosis of placental cells, and one of its indicators is expression of caspase-9 protein in placental trophoblasts. The presence of caspase9 demonstrates the occurrence of apoptosis in the placenta, and may be determined by immunohistochemical techniques.

In group P3 receiving the highest dose of antioxidants there was a substantial difference with group P0, but none with group P2. This was because the dose range between groups P2 and P3 was not too great. However, if compared with group P1 it may be seen that the doses of groups P2 and P3 were more influential in decreasing caspase-9 expression, showing that at these doses the antioxidants were capable of reducing caspase9 expression. The antioxidants contained in red fruit function as immunosuppressor, thus acting to decrease caspase-9 expression in trophoblasts as a result of induction by lead. Therefore red fruit antioxidants decrease apoptosis of the cells and increase the number of normal trophoblasts.

Group P0 showed a substantial difference from the other intervention groups, whether the negative control group or the intervention groups. The lead exposure presumably induced many of the placental trophoblasts to undergo necrosis due to the presence of the inflammatory cytokine TNF\(\alpha\), that is capable of causing apoptosis of trophoblasts.

In contrast, among the intervention groups receiving red fruit antioxidants before lead exposure, it was found that groups P2 and P3 did not substantially differ from the negative control group, but did substantially differ from group P0. This was due to the betacarotene and tocopherol content of red fruit as a source of natural antioxidants capable of protecting the body against ROS. Antioxidants are not only important for preventing oxidative stress and tissue damage, but also for preventing increased production of proinflammatory cytokines, that are the result of continuous activation of the defense system. The benefit of red fruit antioxidants is to
disrupt the free radical chain reaction, such as is done by vitamin E (alpha tocopherol), vitamin C (ascorbic acid), and vitamin A (betacarotene).

Tocopherol and betacarotene are antioxidants that can terminate the free radical chain reaction. Tocopherol has the ability to terminate lipid peroxidation by donating one hydrogen atom from the OH group to the lipid peroxyl radical, so that it becomes less reactive and does not cause damage. When there are free radicals, lipid peroxides increase due to reactions between lipids and free radicals. The doses of 0.8 mL/20g BW and 0.9 ml/20 g BW of red fruit antioxidants in groups P2 and P3 showed an increase in normal trophoblast cell counts, which was greater than the increase produced by the dose of 0.3 mL/20 g BW. Primary antioxidants are capable of cleaving free radicals by initiating a chain reaction through chain-breaking, i.e. by donating a free electron to ROS and lipid radicals that are produced in biological systems and converting them to more stable molecules. Tocopherol when given to lead-exposed rats can neutralize lead toxicity by cleaving free radicals and preventing oxidative stress. Tocopherol as an antioxidant acts by competitive inhibition of lead and prevents the formation of lipid peroxides as a result of lead exposure.

The carotenoids contained in red fruit antioxidants may induce metabolic enzymes so as to prevent cell damage or death caused by lead. All carotenoids, whether as provitamin A or not, may act as antioxidant. Carotenoids also prevent the formation of lipid peroxides and bind to free radicals. The antioxidant mechanism of carotenoids is through quenching of singlet oxygen and subsequently interacting with free radicals.

The limitations of this study are firstly, that the sampling was done in stages, since not all of the mice were found to be pregnant. Secondly, that several oxidative stress parameters were not measured, e.g. malondialdehyde (MDA) and superoxide dismutase (SOD). In accordance with the results of this study, its clinical implication is that the use of antioxidants as a preventive measure, both in humans and animals, is urgently required, in view of the occurrence of heavy metal pollution that may affect reproductive health. Further studies are needed to evaluate red fruit administration at various time points before lead exposure.

CONCLUSIONS

Administration of red fruit to pregnant mice before lead exposure has the potential to increase the normal trophoblast cell count by 88.2% and decrease caspase-9 expression by 70.8%. Red fruit is a potential protective agent against ROS-mediated disorders.

CONFLICT OF INTERESTS

None declared.

ACKNOWLEDGEMENT

We thank the staff of the Embryology and Veterinary Pathology laboratories. Veterinary Faculty, Airlangga University for support in the completion and publication of this study.

REFERENCES

5. Dearth RK, Hiney JK, Srivastava V, et al. Effects of lead (Pb) exposure during gestation and