ASEAN ENDODONTIC FORUM 2014

LINKING ENDODONTICS IN OUR ASEAN COMMUNITY FOR REGIONAL EXCELLENCE
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
</table>
| **1**
Is Endodontic Retreatment Passé?
Dr. Rico Short |
| **5**
Update on Apexogenesis: Case Reports: Achieving Predictable Root Maturation in Young Patients
Dr. Rico Short |
| **9**
A Comparative Study of the Surface Defects of Two Rotary NiTi Instruments Using Reciprocating and Continuous Rotation
Dr. Moataz Bellah Ahmed AlKhawas
Dr. Ashraf Samir Refai
Dr. Taher Mechat Islam |
| **15**
The Antibiofilm Activity of Extract Propolis Against Biofilm Enterococcus Faecalis as Herbal Medicine Potential in Root Canal Treatment
Dr. Dian Agustin Wahjuningrum
Ari Subijanto |
| **19**
The Difference of Biofilm Activity of Mangosteen Pericarp Extract (Garcinia mangostana L) 25% and NaOCl 2.5% against Porphyromonas gingivalis Biofilm
Prof. Dr. Adiboro Sutojo
Dr. Dian Agustin Wahjuningrum |
| **22**
Apical Periodontitis Treatment: Surgical - Non surgical?
Dr. Juan Gaston Robledo |
| **24**
Evaluation of Fiber Post-Supported Restorations Under Simulated Occlusal Loading
Dr. JWW Chang
Dr. Irwan Soo
Dr. Gary S.P. Cheung |
| **30**
The Beneficial Antioxidant Effect of Minocycline 0.1% Reduced Bleeding on Gingival Inflammation
Dr. Ernie Maduratna Setiawati |
| **33**
Discuss How Pain is Controlled in Endodontic Therapy
Dr. Jarvis “Trigger” Pulpman |

EDITORIAL BOARD

Dr. Maria Rosario Damatac
Dr. Elaine Del Rosario
Dr. Iluminada Viloria

Disclaimer: The statements, opinions in this journal are solely of those of individuals, authors, contributors, editors are indicated. Those statements and opinions do not reflect any endorsement by the Endodontic Society of the Philippines or its agents, authors, contributors and editor. Unless otherwise specified, the Endodontic Society of the Philippines disclaim any and responsibility of liability for such material.
The beneficial antioxidant effect of minocycline 0.1% reduced bleeding on gingival inflammation

Dr. Ernie Maduratna Setiawati

ABSTRACT

Background
Minocycline, have been shown to suppress the growth of bacteria plaque. Minocycline was reported to induce cytoprotective effects in gingival epithelium induced Aggregatibacter actinomycetemcomitans. The beneficial effects of the minocyclines were showed to be related to a reduction of the inhibition of inducible nitric oxide synthase and interleukin (IL)-1β expression. The rationale of the study is based on our previous studies demonstrating the beneficial antioxidant effect of minocycline 0.1% in vitro.

Purpose
The aim of the present study is to assess the clinical efficacy of minocycline 0.1% oral rinse in managing of gingival inflammation.

Material and method
Patients with bleeding on gingiva will randomly receive minocycline rinses. Thirty adult chronic periodontitis patient divided into two groups. Group I comprised fifteen chronic periodontitis involved sites managed by scaling root planing alone. And group II comprised fifteen chronic periodontitis involved sites treated by the same technique in adjunct with the application of antioxidant mouth rinse minocycline. Clinical examination include bleeding on probing (BOP) with papilla bleeding index.

Result
These findings suggest that minocycline oral rinse 0.1% may actually decrease bleeding on gingiva significantly (p<0.05).

Conclusion
We report that minocycline provides inhibitor effect against bleeding on gingiva. Minocycline 0.1% as antioxidant effect potential as adjunct therapeutic agent to reduce gingival bleeding.

INTRODUCTION

Oxidant and bacterial deposits play an essential role in pathogenesis of gingival inflammation. Gram negative anaerobes were predominantly isolated than gram positive in periodontitis cases. The presence of pathogen alone is not sufficient to cause periodontal inflammation. Bacterial pathogen gram negative anaerobes stimulate host cells to release proinflammatory cytokines. This cytokines recruit PMNs to produce proteolytic enzymes such as elastase, collagenases and molecular oxygen by oxidative burst. Free radicals highly reactive and diverse species, capable of extracting electrons and thereby oxidizing a variety of biomolecules vital to cell and tissue functions. Periodontal tissue destruction leads to overproduction of lipid peroxides, inflammatory mediator and oxidized proteins. These products further activate macrophages, neutrophils and fibroblast to generate more ROS. The disturbance of this equilibrium between the free radicals and antioxidant is the prerequisite for healthy periodontal tissue, so has led to search for appropriate antibacteri therapy and anti oxidant therapy for prevention and treatment of periodontal inflammation.

Minocycline is a semi-synthetic tetracycline with broad-spectrum antibacterial activity in addition to their antimicrobial effect have been shown to anti oxidant effect. In addition to antimicrobial activity, minocycline exerts immunomodulatory effects via suppression of T lymphocytes and PMNs leading to reduction of tissue destruction attributed to active T cells and PMNs. Minocycline delays T cell proliferation associated with IL-2 activity and suppresses T cell production of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), which play a role in the epithelial damage. Minocycline in vitro delayed the migration of PMNs and reduced phagocytic activities of the PMNs. It also was reported that incubation of PMNs with minocycline suppressed the tissue damage linked to PMN activity.

Bleeding on probing (BOP) is a widely used criterion to diagnose gingival inflammation. BOP useful prognostic indicator in clinical diagnosis for patients in periodontal disease. The purpose of this study was to evaluate the clinical efficacy of a minocycline mouth rinse in reducing bleeding on probing in gingival inflammation.

Method
Thirty patients with gingival inflammation were enrolled for this study. All subjects signed institutional approved informed consent and were clinically diagnosed with chronic periodontitis. All subjects were otherwise healthy individuals as documented in health history. None had any contraindication to use of tetracycline medications (allergy, breast-feeding, pregnancy and age less than 12 years). Using a random numbers computer program, qualified patients were randomly, starting the treatment
with minocycline 0.1% mouth rinses. They were divided into two
groups, where group I: comprised fifteen chronic periodontitis
involved gingival bleeding sites managed by scaling root planing
alone. And group II: comprised fifteen chronic periodontitis
involved gingival bleeding sites treated by the same technique in
adjunct with the application of antioxidant mouth rinse
minocycline 0.1%. Clinical examination include bleeding on
probing (BOP) with sulcus bleeding index. The rinses were
prepared based upon the effective antioxidant dosage of the
medications, subjects used 0.1% aqueous solution of minocycline
as mouthrinse. The preparations were of similar consistency without
color. The subjects were instructed to begin mouthwash as
randomly assigned. They were instructed to rinse their mouth
with tap water prior to the administration of the study rinse and
then to rinse with 5ml of the solution for 30 second, two times a
day avoiding any food or drink for at least ½ hour after the rinses.
Therapy continued for up to 14 days. Examiner A using a
standardized periodontal probe (CP11 Hu Friedy, Europe)
detected Bleeding on Probing (BOP). The BOP was considered
positive if bleeding occurred between 30 seconds after probing
and used Sulcus Bleeding Index (SBI).

Sulcus Bleeding Index (SBI)
An early sign of gingival inflammation is bleeding on probing.
Muhlemann and Son (1971) described the Sulcus Bleeding Index
(SBI). The criteria for scoring are as follows:
Score 0 – health looking papillary and marginal gingiva no
bleeding on probing;
Score 1 – healthy looking gingiva, bleeding on probing;
Score 2 – bleeding on probing, change in color, no edema;
Score 3 – bleeding on probing, change in color, slight edema;
Score 4 – bleeding on probing, change in color, obvious edema;
Score 5 – spontaneous bleeding, change in color, marked edema.
Four gingival units are scored systematically for each tooth: the
labial and lingual marginal gingival (M units) and the mesial and
distal papillary gingival (P units). Scores for these units are added
and divided by four. Adding the scores of the undivided teeth and
dividing them by the number of teeth can determine the sulcus
bleeding index. Statistical analyses were conducted using the T-test
for independent samples.

Results and Discussion

Table 1: sulcus bleeding index score at minocycline oral rinse
treatment and SRP treatment sites

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sample size</th>
<th>Day 0 SBI score</th>
<th>Day 14 SBI score</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRP</td>
<td>15</td>
<td>4.6</td>
<td>0.73</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>SRP + MINOCYCLINE</td>
<td>15</td>
<td>4.7</td>
<td>0.17</td>
<td>p < 0.05</td>
</tr>
</tbody>
</table>

Periodontal diseases are primarily inflammatory in nature, the
ability to detect inflammatory lesions in gingival tissues is
essential for the diagnosis and monitoring of changes in
periodontal status. One of the first clinical signs of progressivity
of gingival inflammation is the bleeding on probing. Bleeding
occurrs because of frequent micro-ulcerations in the epithelium
probing that lines the gingival sulcus/periodontal pocket. Bleeding
on probing has been used as a key parameter in the evaluation of
periodontitis because of its objectivity and ease of clinical access.
Analyses of gingival biopsies with an inflammatory cell infiltrate in
the gingival tissues are correlated with visual signs of inflammation
and bleeding on probing. Bleeding on probing (BOP) is an
indicator of tissue inflammatory response to bacterial pathogens.
Due to anatomical limitations, the entity and physical state of
microbial aggregations located under the gingival margin and
their relations to BOP have been hardly investigated till now. The
bleeding on probing (BOP) is a widely used clinical sign as
indicator of the periodontal condition and disease progression.

Reactive oxygen species (ROS) are physiologically produced
by the cellular metabolism. Exogenous sources of ROS are
smoking, ultraviolet light, heat, ultrasound, ozone, radiation,
bacteria infection, excessive exercise, trauma, and drugs, whereas
endogenous sources include products of metabolic pathways and
products of immune and connective tissue cells. Antioxidants are
substances that can inhibit the action of oxidant species. There
is a physiological fine balance between oxidant activities and
antioxidant defenses, but when this equilibrium is disrupted to
the advantage of ROS, or to increased ROS activity or to want
of antioxidant defenses, the result is oxidative stress. An amplified
activity of ROS implies a large spectrum of molecular and cellular
damage. This results in covalent binding with proteins, which alters
their structure and function. Some oxidized proteins are difficult
to remove by cells and tend to accumulate with aging and in the
presence of chronic diseases such as chronic periodontitis.

Minocycline is a semi-synthetic tetracycline with broad-
spectrum antibacterial activity in addition to their antimicrobial
effect have been shown to anti oxidant effect. Minocycline
prevents oxidative protein modifications and damage in disease
models associated with inflammatory activation and oxidative
stress. Although the drug has been assumed to act by preventing
the up-regulation of proinflammatory enzymes, minocycline is
direct chemical interaction with reactive oxygen species. The
antibiotic did not react with superoxide or •NO radicals, but
peroxynitrite. The antioxidant activity of minocycline extended
to cellular systems, because it prevented mitochondrial DNA
damage and glutathione depletion.

Its clinical relevance has been shown that the decrease of mean
level of bleeding on probing favor of minocycline starting on
7 day (p < 0.05). A study on this topic, demonstrates that the
absence of BOP represents a reliable indicator of periodontal
function. Besides, the value of BOP as predictor of future
periodontal deterioration seems to significantly increase
when associated with periodontal pocket depth. Bleeding on
probing (BOP) is a widely used criterion to diagnose gingival
inflammation. Many factors can influence bleeding, including
medications, systemic diseases, and smoking. In this study
showed that significant decrease BOP was seen with minocycline
mouthrinse compared to control. These findings suggest possible
use of minocycline for prevention of progressivity of periodontitis.
The concentration of minocycline rinse in the current study
(0.1%). It was based upon the minimum inhibitory concentration
of the subgingival bacteria and antioxidant effect as used in
a previous study. In high doses, systemic minocyclines may be
associated with changes in cutaneous pigmentation and
accumulation of derivates may occur in bones and developing
teeth. Topical minocyclines for chronic periodontitis also report
a lack of major side effects. The topical use of minocycline was based
on the assumption that a bacterial etiology accompanies the onset of
chronic periodontitis. However, the impact of minocycline upon
cytokine production, cellular degranulation and collagenase activity may represent the mechanisms of action has been documented in periodontal disease. The current study, strongly suggests that topical minocycline may have greater impact upon the tissue damage and healing. Administration of minocycline 0.1% as an adjunct to scaling and polishing resulted in statistically significant improvements in periodontal clinical status, and significant reductions of pocket depth and bleeding on probing. The results of the present study show that minocycline rinses 0.1% are significantly effective for management of gingival inflammation.

REFERENCES

