Pharmaceutical Sciences is an open access, free of charge, peer-reviewed, and quarterly providing a forum for basic to clinical issues related to all areas of pharmaceutical sciences.

Current Issue Editor's Choice Most viewed Most Downloaded

Review
1. Phytochemistry and Biological Activities of the Genus Knema (Myristicaceae)
Wan Mohd Nazul Haiham Nazul Salleh, Faridiah Ahmad
[Abstract] [PDF] [XML]

Research Article
2. Wound Healing Potential of Methanolic Extract of Scrophularia striata in Rats
Ali Ghashghaei, Mohammad Hashemi, Zahra Nikoueifard, Mohammad Mahdi Zangeneh, Akram Zangeneh
[Abstract] [PDF] [XML]

Research Article
3. LC-MS/MS Estimation of Propranolol Level in Exhaled Breath Condensate
Samim Hamidi, Maryam Amini, Maryam Khobtinsabjafar, Vahid Jouyban-Gharannaleki, Hossein Sate, Abolghasem Jowhary
[Abstract] [PDF] [XML]

Research Article
Ali Dastgiri, Mohammadreza Siahli, Eliaz Tamiz
[Abstract] [PDF] [XML]

Research Article
5. Preparation and Characterization of Calcocob Agglomerated Nanocrystals and Dry Powder Inhalation Formulations to Improve its Aerosolization Performance
Sepideh Mardani, Maryam Maghsodi, Saeed Ghanbarzadeh, Ali Nokhodchi, Shadi Yaqoubi, Hamed Hamishekar
[Abstract] [PDF] [XML]

Research Article
6. Physical Characteristics of Liposomal Formulation Dispersed in HPMC Matrix and Freeze-Dried Using Maltodextrin and Mannitol as Lyprotectant
Radiaa Yeka Nugraheh, Dwi Setyawati, Helmy Yusuf
[Abstract] [PDF] [XML]

Research Article
7. Evaluation of Antioxidant Activity and Cytotoxicity of Cumin Seed Oil Nanoemulsion Stabilized by Sodium Caseinate- Guar Gum
Parasoon Farahi, Mahnaz Tabibiazar, Marjan Ghorbani, Hamed Hamishekar
[Abstract] [PDF] [XML]

Research Article
8. The Effect of Alkaloidal Fraction from Annona squamosa L. against Pathogenic Bacteria with Antioxidant Activities
Abdulrahim M. Shami
[Abstract] [PDF] [XML]

Research Article
9. Antibacterial and Antioxidant Properties of Methanolic Extracts of Apple (Malus

http://journals.tbzmed.ac.ir/PHARM
pumila), Grape (Vitis vinifera), Pomegranate (Punica granatum L.) and Common Fig (Ficus carica L.) Fruits

Yasser Shahbazi*
[Abstract] [PDF] [XML]

Research Article

10. In Vitro Evaluation of Phenolics Content, Antioxidant and Antimicrobial Activities of Three Centaurea L. Species from Iran
Roya Karamian, Rose Eghbalian
[Abstract] [PDF] [XML]

Short Communication

11. Chemical Composition and Antibacterial Activity of the Essential Oil of Zostera absinthifolia Growing in East Azerbaijan (Iran)
Fariba Hashemi Afshar, Mohammad Bakhshandeh, Masood Mohammadzadeh, Solmaz Asnaaehari, Laleh Khodai*
[Abstract] [PDF] [XML]

Short Communication

12. Modelling the Preferential Solvation of Ferulic Acid in (2-Propanol (1) + Water (2)) Mixtures at 298.15K
Abolghasem Jouyban, Fleming Martinez*
[Abstract] [PDF] [XML]

© 2016 Tabriz University of Medical Sciences; unless otherwise stated
Press Manuscript Online. Powered by MAANDR/PAN
Physical Characteristics of Liposomal Formulation Dispersed in HPMC Matrix and Freeze-Dried Using Maltodextrin and Mannitol as Lyoprotectant

Raditya Weka Nugraheni, Dwi Setyawan, Helmy Yusuf

1Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

ABSTRACT

Background: The present study aims to design formulation of liposomes that are well-preserved during freeze-drying. The combination of Hydroxy Propyl Methyl Cellulose (HPMC) as dispersion matrix and lyoprotectants; maltodextrin or mannitol, was employed to prevent aggregation and/or recrystallization. The obtained dry products were investigated in terms of their physical characteristics.

Methods: Liposomes were prepared using thin film method and hydrated with the lyoprotectant solution. The formed liposomes were mixed with HPMC gel and freeze-dried. The obtained solid products were characterized using Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM).

Results: The DSC thermograms of formulations with maltodextrin were relatively homogenous, yet exhibiting meta-stable properties. In contrast, the formulations using mannitol showed phase separation. These results were confirmed by XRD data, in which formulations with maltodextrin showed no intensive peaks, indicating amorphous solid while the formulations with mannitol exhibited more intensive peaks, indicating the presence of crystalline solids. The SEM images of both maltodextrin and mannitol-containing formulations showed porous matrix with spherical liposomes trapped in the matrices. The SEM images also correspond to the DSC and XRD data, where crystalline solid existed in the mannitol-containing formula.

Conclusion: The developed liposomes formulation using combination of HPMC matrix and maltodextrin showed potential in preserving liposomes structure, contrary to those of using mannitol.

Introduction

Liposomes are spherical vesicles which formed when phospholipids are hydrated with an aqueous solution. Widely used in the pharmaceutical formulation because of its versatility for incorporating both hydrophilic and lipophilic drugs, the liposomes also have particular advantages in vaccine delivery. Many studies have been reported that the activity of liposomes as a vaccine adjuvant is via depot effect, where the injected liposomes are retained on the site and slowly released. The released antigens are then drained into lymph nodes and activate APC (Antigen Presenting Cells) to initiate T cell-mediated immune response. Therefore; liposomes have great potential in delivering antigens, despite the fact that its physical and chemical instability in liquid forms as the major concern. Mediated by water, the phospholipid constituents in the bilayer membrane could undergo oxidation and hydrolysis, which also lead to drug leakage from the vesicles. For instance, liposomes are easily aggregated that lead to bi-layer instability and causing drug leakage.

To address this problem, researches on producing liposomes into solid materials have been conducted extensively. Decreasing molecular mobility in solid state may also improve chemical and physical stability. Lyophilization or freeze-drying is a widely known technique to produce dried liposomes formulation. Freeze-drying process is also challenging as bilayer membrane may shrink when water molecules are removed from the system. Polyhydroxy compounds, such as saccharides, have been reported replacing water molecules in the dried state and successfully maintain liposomes structure during and after drying. Moreover, saccharides

*Corresponding Author: Helmy Yusuf, E-mail: helmy-yusuf@ft.unair.ac.id
©2017 The Authors. This is an open access article and applies the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers
could also form glassy matrix during drying that decrease molecular mobility of the system, therefore, preventing neighboring bilayer to collide.7,8
Succharides such as glucose, lactose, maltodextrins, and mannitol are commonly used as lyoprotectant for protein and liposomes in their dry products.9-13 Among them, maltodextrins—oligomer of glucose—draw attention to its amorphous nature which became an advantage in preserving protein structure during freeze-drying and maintain its performance after the process.14 Another compound which also extensively studied as lyoprotectant is mannitol. Mannitol forms a relatively high eutectic point with ice, allowing the use of a relatively high temperature of primary drying and shorten the cycle. However, the tendency of mannitol to crystallize during freeze-drying process become a draw-back of its usage.15 In this study, hydroxypropylmethylcellulose (HPMC) was employed as dispersing matrix which also works as a polymeric stabilizer to prevent crystallization during storage.16 HPMC is a cellulose-derived polymer that underwent methylation and hydroxypropylation. It is generally used as bioadhesive material, controlled release matrix, solid dispersion matrix, and thickening agent.17 The developed liposomal formulation was using bromide salt of dimethyl-dioctadecyl ammonium (DDA) which offers advantages as lipid bi-layer component for antigen delivery.18-20 Due to its positive charge, DDA forms cationic liposomes, therefore, works effectively as a vaccine adjuvant. However, as DDA easily aggregates even in the presence of small amounts of salt,21 combining DDA as lipid components with soy phosphatidylcholine could improve the stability of the vesicles.22 The present study investigated the effects of lyoprotectants as a function of concentration in combination with HPMC as dispersing matrix on physical characteristics of the solid dried products. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Differential Scanning Calorimetry (DSC) were used to investigate the characteristics of the products; the procedures were carried out according to our previous work.23

Materials and Methods
Dimethyl-dioctadecyl ammonium (Sigma Aldrich, Singapore) and soy phosphatidylcholine S-100 (Lipoid GmBH, Germany) were used as liposomal membrane constituent, while cholesterol (Sigma-Aldrich, Singapore) was used as the liposomal membrane stabilizer. Maltodextrin (DE:13-17) and mannitol (Sigma-Aldrich, Singapore) were used as lyoprotectants to promote stabilization of liposomes upon freeze drying process. Hydroxypropylmethylcellulose (Shin-Etsu, Japan) was selected as a dispersion matrix to increase the mass of the resultant liposomes. Methanol (E. Merck) was selected as a solvent to facilitate the mixing of liposomal ingredients. The solvent used was of analytical grade.

Preparation of Liposomes
Liposomes formula was prepared using thin film hydration methods. SPC, DDA, and cholesterol were dissolved in methanol in the molar ratio of SPC: DDA: Cholesterol = 9:3:1. Lipid phase was then evaporated under vacuum condition at 45°C using rotary evaporator (Büchi, Germany) for 60 minutes. Thin film which was formed after the process was then hydrated with pre-warmed 5 mL solution of lyoprotectant in various concentrations (Table 1). Hydration process was conducted at 50°C for 10 minutes. The liposomes formation was signed by the appearance of white-milky suspension. Liposomes suspension sonicated in water bath sonicator for 5 minutes. HPMC powder was weighed according to Table 1, and dispersed in 5 mL purified water to from HPMC gel. Liposomes suspension was incorporated into HPMC gel and stirred homogeneously, and divided into vials for freeze drying (Virtiz Lyophilizer, US). The freezing temperature was conducted in -80°C for 24 hours and continued by drying at-20°C for 48 hours.

Differential Scanning Calorimetry (DSC)
DSC instrument (Mettler Toledo FP 85, Switzerland) was used to detect the solid state of the dried product. Samples were placed in aluminium crucibles and scanned from 30°C to 300°C at the heating rate of 10°C/min.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Lyoprotectant</th>
<th>Lyoprotectant concentration</th>
<th>HPMC Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2M1</td>
<td>5%</td>
<td></td>
<td>2.5%</td>
</tr>
<tr>
<td>F2M2</td>
<td>Maltodextrin</td>
<td>10%</td>
<td>2.5%</td>
</tr>
<tr>
<td>F2M3</td>
<td>5%</td>
<td></td>
<td>7.5%</td>
</tr>
<tr>
<td>F2M4</td>
<td>10%</td>
<td></td>
<td>7.5%</td>
</tr>
<tr>
<td>F3Mn1</td>
<td>5%</td>
<td></td>
<td>2.5%</td>
</tr>
<tr>
<td>F3Mn2</td>
<td>Mannitol</td>
<td>10%</td>
<td>2.5%</td>
</tr>
<tr>
<td>F3Mn3</td>
<td>5%</td>
<td></td>
<td>7.5%</td>
</tr>
<tr>
<td>F3Mn4</td>
<td>10%</td>
<td></td>
<td>7.5%</td>
</tr>
</tbody>
</table>

Table 1. Prepared Formulation of Freeze-Dried Liposome.
Liposomal Formulation Dispersed in HPMC Matrix and Freeze-Dried Using Maltodextrin and Mannitol

![Graph](image)

Figure 1. The thermal profile of freeze-dried liposomes formulations, in which maltodextrin was employed as lyoprotectant and HPMC as dispersion matrix. Each formulation has a different composition of maltodextrin and HPMC according to the Table 1. Downward peaks indicated endothermic (energy input to the system) responses, while upward peaks indicated exothermic (energy output from the system) responses.

X-Ray Diffraction Analysis (XRD)
Powder X-Ray Diffraction Instrument (Phillips X’Pert PRO PANalytical, Netherlands) was used to observe crystallinity of the dried products. The sample was placed on the sample holder and flatted to prevent particle orientation during preparation. The condition of analysis was as follows: Cu metal target, Kα filter, the voltage of 40 kV, 40 mA performed at room temperature. The analysis was carried out in range of 2 theta of 5-40°.

Scanning Electron Microscopy (SEM)
The morphology of the liposomes contained in the solid gel was analyzed using SEM. The portions of the dried product were scattered and glued onto 25 mm diameter plates, which were attached to SEM specimen mounts. The specimens were sputter-coated with a layer of Au-Palladium approximately 5 nm in thickness and specimens were examined with an electron microscope (Phenom, U.S.).

Results
Thermal Analysis using Differential Scanning Calorimetry
All maltodextrin-containing formulations showed miscible solid dispersion (Figure 1), characterized by single and wide endothermic transition peak ranging from 85°C to 92°C. These results might imply that the solid product were relatively homogenous, in which all components were intimately mixed at the molecular level.24 However, the system might be meta-stable, as the exothermic peaks of re-crystallization were observed around 155°C to 157°C. The amorphous material can crystallize when sufficient molecular mobility provided by energy input in the form of heat exists.25 The increased molecular mobility may enable molecular re-arrangement in the system; results in long-range ordered structures.

In case of mannitol-containing formulations, they showed different results from those using maltodextrin. Based on their DSC thermograms (Figure 2), the formulations were phase-separated in which three distinctive endothermic peaks were observed. Conversely, the wide endothermic peaks detected in the range of 72°C to 81°C might be indicated that the solid systems were partially amorphous. The phase separation was indicated by double endothermic peaks observed at 153-155°C and 164-166°C possibly formed by the polymorphs of mannitol upon freeze-drying.25 These findings were conformed to the previous investigation which determined the melting point of meta-stable δ-mannitol at 155°C, followed by the stable form at 166°C.26

X-Ray Diffraction Analysis
The solid systems of maltodextrin-containing formulations were completely amorphous in fact that there was no intensive peak detected in the powder X-Ray diffractogram analysis (Figure 3). This is a good indication that the employed freeze-drying process was successfully produced an amorphous solid. Amorphous system could protect the liposomes in the formula since crystal components could damage the integrity of bi-layer membrane,12 and can be detrimental to the structure of labile bio-molecules such as proteins.25

Pharmaceutical Sciences, December 2017, 23, 285-292 | 287
In contrast, the X-Ray diffractogram of all mannitol-containing formulations showed sharp and intensive crystallization peaks (Figure 4). These findings support the DSC data where two intensive endothermic peaks in mannitol-containing formulations were detected. Thus, it was confirmed that the formulations using mannitol as lyoprotectant have crystalline properties. The HPMC which was supposed to inhibit crystallization may not too effective in these formulations. Furthermore, it was suspected that the crystals might be the meta-stable δ-mannitol form as it was confirmed by similar investigation on its polymorph in 9.6-9.7° 2θ angle. However, lesser intensive peaks were detected in F3Mn3 which contained lowest concentration of mannitol (5%) and highest concentration of HPMC (7.5%) compared to the other formula. We hypothesized that the optimum ratio of mannitol and HPMC played a role in preventing re-crystallization of mannitol upon the freeze-drying process.

Morphology Analysis by Scanning Electron Microscopy
As observed in SEM microphotograph shown in Figure 4, the liposomes in spherical structures were successfully preserved upon freeze-drying. The porous solid matrices (Figure 5A) might be caused by ice crystal removal during sublimation in freeze-drying processes. Due to the fact that the porosity of the matrix will allow water infiltration, we expect the solid product to be porous as it may ease the rehydration of liposomes. Interestingly, the increase of HPMC concentration tends to reduce the porosity of the solid products (Figure 5B).

Figure 3. X-Ray Diffractogram of freeze-dried liposomes formulation with maltodextrin as lyoprotectant and HPMC as dispersion matrix according to Table 1 composition. No intensive peaks were detected, indicating the amorphous behavior of the system.
The same phenomenon was observed in mannitol-containing formulations. As the HPMC concentration went higher, the less porous it became (Figure 6A and 6B). The remarkable difference was the presence of crystalline materials detected in the formula containing a lower concentration of HPMC (Figure 6A). These results were in accordance with the XRD data that indicated the presence of crystalline in the mannitol-containing formula (Figure 4). Liposomes in spherical shaped were also observed, despite the fact that the presence of re-crystallized materials may damage the liposomes during storage.

Discussions

The most important factor to preserve liposomes in dried solid is to prevent collapse when the water is removed from the system since the water act as a stabilizer which maintains liposomes spherical structure in liquid form. In the present study, two different sugars with distinctive characteristics were employed in the formulations. Maltodextrin, which is amorphous in nature, was selected to provide vitrification effect that may conserve the liposomes integrity. In contrast, mannitol is a crystalline sugar alcohol which was reported to have role in maintaining integrity of dry solid as scaffold structure, thus preventing micro-collapse.
HPMC was selected in the study for its protective effect to prevent particle agglomeration in water dispersion. The use of a polymer as dispersion matrix produce amorphous solid following the dissolution of crystalline materials in the polymer and the solvent removal in the drying process. This feature is beneficial for liposomes or protein preservation where crystallization can be prevented. All of the maltodextrin-containing formulations showed amorphous characteristics, because maltodextrin is amorphous by nature, and the presence of HPMC helped to prevent re-crystallization of the other components such as DDA and cholesterol.

However, we suggested that the mannitol experienced polymorphism upon freeze-drying, which may possibly not beneficial for such formulation. These were confirmed by the crystal profile from x-ray diffraction analysis in which meta-stable α-mannitol were detected in all formula. Mannitol molecules might have arranged themselves in two different manners, which consequently were detected as splitting endothermic peaks in DSC profile. These results were the same conclusion with previous studies which reported mannitol alone could not provide protection as its crystal formation during drying process could cause rupture of liposomes membrane and failed to provide drug retention. Some studies suggested the use of a combination of mannitol with another lyoprotectant such as sucrose and glucose for such issues. Moreover, the presence of HPMC in the formulation was not effective, either because of too high concentration of mannitol or the concentration of HPMC was not sufficient.

In contrast to this, maltodextrin-containing formulations successfully provide a glassy amorphous matrix which might have inhibited molecular mobility and avoiding phase-separation. This was confirmed by the results of X-Ray diffraction analysis, DSC thermogram and SEM data. Therefore, the combined strategy using maltodextrin as lyoprotectant and HPMC as dispersed matrix construct a good formula that showed potential and could be further developed for dry liposomal formulation.

Conclusion
In the present study, we demonstrated that freeze-dried liposomal formulation containing SPC, DDA, and cholesterol can be prepared with lyoprotectant maltodextrin and mannitol that is dispersed in HPMC matrix (2.5-7.5%). All concentration of maltodextrin tested (5-10%) applied to the mixtures is miscible with all components in mixtures, while mannitol showed re-crystallization and phase separated from the mixtures. The protective mechanism of maltodextrin as lyoprotectant was probably via vitrification mechanism and HPMC as dispersed matrix might inhibit re-crystallization of the component in the formula which causes phase separation; indicated by DSC, XRD, and SEM.

Acknowledgements
This research received funding from the Directorate General of Higher Education, The Republic of Indonesia.

Conflict of interests
The authors claim that there is no conflict of interest.
References

Pharmaceutical Sciences is an open access, free of charge, peer-reviewed, and quarterly providing a forum for basic to clinical issues related to all areas of pharmaceutical sciences.

Editors

Editor-in-Chief
Ali Azza Garjani, Pharm.D., Ph.D.
Tabriz University of Medical Sciences, Iran
Email: garjania@tbzmed.ac.ir

Executive Editor
Ali Shayyari, Pharm.D., Ph.D.
Tabriz University of Medical Sciences, Iran
Email: shayyari@tbzmed.ac.ir
http://orcid.org/0000-0001-7897-9057

Associate Editor (Pharmacognosy)
Sanaz Hamideyazdian, Pharm.D., Ph.D.
Tabriz University of Medical Sciences, Iran
Email: yazdians@tbzmed.ac.ir
http://orcid.org/0000-0002-8950-8979

Advisory Board

Hadi Afrasiabi-Ganjazi
Mashhad University of Medical Sciences, Iran
Email: hadi.afrasiabi@yahoo.com

Mehrdad Barzegar-Jalali
Tabriz University of Medical Sciences, Iran
Email: barzegar_jalali@yahoo.com

Sooadbeh Davaran
Tabriz University of Medical Sciences, Iran
Email: davaran@tbzmed.ac.ir

Abbas Dejazgar
Tabriz University of Medical Sciences, Iran
Email: dejazgar@tbzmed.ac.ir

Robert J. Dorken
University of Maastricht, The Netherlands
Email: rjd@alemis.edu

Alireza Ghasemi
Tehran University of Medical Sciences, Iran
Email: ghasemi@pharm.mui.ac.ir

Taravat Ghafoorian
University of Sussex, UK
Email: T.Ghafoorian@sussex.ac.uk

Abasgur Hemmati
Ahvaz University of Medical Sciences, Iran
Email: hemmati_ase@yahoo.com

Nidal Jaradat
An-Najah National University, Palestine
Email: nidel@najah.edu

Fleming Martinez
Universidad Nacional de Colombia
Email: fmarin78@gmail.com