Pharmaceutical Aids - a Review Study (AbstractView.aspx?PID=2017-7-1-1)
Haifa, Arfa, Nuhu Rashid, Abdul Saleem Mohammad
DOI: 10.5955/2231-5713.2017.00001.0
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Asian Journal of Pharmacy and Technology;PID=2017-7-1-1]
[Cite] Viewed: 2 (pdf), 742 (html) Public Access

Pharmaceutical Importance of Anti-Microbials (AbstractView.aspx?PID=2017-7-1-2)
Safa Mohammed Sadia, Amtul Kareem, Nuhu Rashied, Abdul Saleem Mohammad
DOI: 10.5955/2231-5713.2017.00002.2
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Asian Journal of Pharmacy and Technology;PID=2017-7-1-2]
[Cite] Viewed: 0 (pdf), 773 (html) Public Access

A conceptual brief review on pharmaceutical importance of dental products (AbstractView.aspx?PID=2017-7-1-3)
Huda Malik, Sumayya Sultan, Nuhu Rashied, Abdul Saleem Mohammad
DOI: 10.5955/2231-5713.2017.00003.4
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Asian Journal of Pharmacy and Technology;PID=2017-7-1-3]
[Cite] Viewed: 0 (pdf), 508 (html) Public Access

Godbale Ajeet Madhukar, Patel Bhaskar V, Samnachare Sandesh Narayan, Prajapat Ashish R, Yadav Pradeep
DOI: 10.5955/2231-5713.2017.00004.6
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Asian Journal of Pharmacy and Technology;PID=2017-7-1-4]
[Cite] Viewed: 0 (pdf), 643 (html) Public Access

Validated UPLC/Q-TOF-MS Method for Simultaneous Determination of Metformin, Glibenclamide and Pioglitazone in Human Plasma and its Application to Pharmacokinetic Study (AbstractView.aspx?PID=2017-7-1-5)
Hamid Khan, Mushir Ali, Akha Ashiya, Jawed Ali
DOI: 10.5955/2231-5713.2017.00005.8
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Asian Journal of Pharmacy and Technology;PID=2017-7-1-5]
[Cite] Viewed: 2 (pdf), 513 (html) Public Access

Agnes NunLek Winantantii, Dewi Suryawati, Siswadono, Sundari Nurana Soewardhani
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Asian Journal of Pharmacy and Technology;PID=2017-7-1-6]
[Cite] Viewed: 0 (pdf), 676 (html) Public Access

In silico Analysis of Sesamum indicum Seed Proteins (AbstractView.aspx?PID=2017-7-1-7)
Rangarajan Narasinghan, Arbibly Mohan
DOI: 10.5955/2231-5713.2017.00007.1
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Asian Journal of Pharmacy and Technology;PID=2017-7-1-7]
[Cite] Viewed: 4 (pdf), 614 (html) Public Access

Formulation and Characterization of fast Dissolving tablets of Perindopril (AbstractView.aspx?PID=2017-7-1-8)
Raut Indrani, D, Dhara Manisha, Dandwade Sonali, Joshipat S.K., Magdum C.S.
DOI: 10.5955/2231-5713.2017.00008.3
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Asian Journal of Pharmacy and Technology;PID=2017-7-1-8]
[Cite] Viewed: 0 (pdf), 541 (html) Public Access
Solid State Characterization of Acyclovir-Nicotinamide Binary Systems using Solvent Evaporation Technique

Agnes Nuniek Winantari1,2, Dwi Setyawan1, Siswadono1, Sundani Nurono Soewandhi3
1Faculty of Pharmacy, Airlangga University, Jl. Dr. Saka Dalam Surabaya 60286, Indonesia
2Faculty of Pharmacy, University of Surabaya, Jl. Raya Kalirengesi, Surabaya - 60293 Indonesia
3School of Pharmacy, Bandung Institute of Technology, Jl. Ganjuran No. 10, Bandung 40132, Indonesia
*Corresponding Author E-mail: nuniekheating@gmail.com

ABSTRACT:
Objective of the study is to characterize acyclovir-nicotinamide binary systems (AN). Methods of recrystallization was solvent evaporation in equimolar ratio between acyclovir and nicotinamide using ethanol and methanol. The binary systems were characterized by polarization microscope, Differential Scanning Calorimetry (DSC) and Powder X-Ray Diffraction (PXRD). Physical characterization showed that AN binary systems have unique crystal habit in microscopic. A new endothermic peak appears at 123.69°C. The PXRD patterns of AN binary system after recrystallization are different from pure components which specific peak was found on 2θ = 11.27° (AN in ethanol); 21.05° (AN in methanol).

KEY WORDS: Acyclovir, nicotinamide, binary systems, solvent evaporation, ethanol, methanol.

INTRODUCTION:
On average, about a decade of research and development is expended in the discovery and commercialization of a new pharmaceutical product. The molecular structure of the active pharmaceutical ingredient (API) of a drug substance is selected to optimize therapeutic properties, selecting the physical form of an API represents a strategic opportunity for optimizing its physical properties as solubility, dissolution, hygroscopicity, physical stability, and chemical stability. Attempting to find a solid with the desired properties and manufacturability, companies spend significant effort looking for polymorphs, salts and cocrystal of their APIs (Active Pharmaceutical Ingredients)1-2,3,4.
Cocrystal is a homogenous crystalline materials composed of a neutral target and a neutral coformer held together through non covalent bonds. For pharmaceutical applications it is essential that the coformers have GRAS status. The physicochemical properties of API can be modified while the intrinsic activities of these drug molecules remain the same. From the thermodynamic point of view, pharmaceutical cocrystals are stable and high energy forms. Therefore, they can be effective on solubility and dissolution rate of the drug. The strategy involves drug-coformer combinations that have the potential of forming energetically and structurally robust interactions3,5-7. Pharmaceutical cocrystals often rely on hydrogen bonded assemblies between an API and coformer with well-defined stoichiometries. For a target API, we are interested in coformers with functional groups that can interact (i.e., form H-bonds) with the functional groups on the API. Common functional groups, such as carboxylic acids, amines and alcohols are typically found to interact with one another in cocrystals3,6,7.
Acyclovir, a guanines analogue antiviral drug with a solubility of 1.62 mg/mL. Due to its poor solubility and permeability, the oral bioavailability of acyclovir attains just 15-30%.8,9,10,11,12,13
Different methods have been used to produce cocrystals: solution crystallization, solid state and solvent drop grinding, and crystallization from melt. For scale up purposes, solid state crystallization is the most popular.3,14,15

MATERIALS AND METHOD:
Materials:
Acyclovir and nicotinamide was obtained from Sigma-Aldrich (USA). Ethanol and methanol were purchased from Merck Chemicals (Germany) without any purification.

Preparation of binary system of AN using solvent evaporation technique:
Acyclovir and nicotinamide carefully weighed equimolar. Each component was dissolved in solvent separately. The two solutions were mixed and stirred for a few minutes. Equimolar solution of both components was evaporated at room temperature for 48 hours. The obtained of solid binary system stored in a desiccator under vacuum.

Characterization by polarized microscope:
One to two mg of physical mixture between acyclovir and nicotinamide was placed on object glass. A drop of ethanol was added to each physical mixture until dissolved and allowed to recrystallize. Recrystallization process was observed under a polarizing microscope. The microscopic images were recorded with an Olympus BX-51 digital color camera attached to the Olympus BX-51 polarized microscope.

Thermal Analysis by DSC:
Differential Scanning Calorimetry (DSC) was performed using Mettler Toledo. About four mg of each sample was placed in crimped sample pans. The sample was heated from 30°C to 300°C at heating rate of 10°C/min under nitrogen purged.

Characterization by PXRD:
Powder X-ray diffractometer (Philips X'Pert diffractometer) analysis was performed at room temperature. Condition of measurement was set as follows : Cu metal target, Ka filter, voltage 40kV, 40 mA. The analysis was performed on the range of 2θ of 5-45°. Sample was placed on the sample holder and flated to prevent particle orientation during preparation.
RESULTS AND DISCUSSION:
The eutectic crystallization process of AN binary systems observed under polarized microscope. Polarizing light microscopy is particularly useful for studying the optical properties of crystals. When crossed polarized light passes through an anisotropic crystal, the crystal will show bright interference colors, as long as it is in an extinction position or aligned on an optic axis. As shown in Fig. 1, AN binary systems have unique crystal habit.

![Diagram](image)

Melting is a first order process that can be observed in the form of an endothermic peak in DSC curves. Recall that unlike the peak temperature, the onset temperature of melting will be independent of the DSC heating rate.

![Diagram](image)

DSC thermogram showed endothermic peak of acetylsalicylic solids at 251.08°C, while the nicotinamide at 128.13°C (Fig. 2). DSC thermogram of physical mixture equivalent of AN showed endothermic peak at 122.01°C. While DSC thermogram of AN binary systems exhibited endothermic peak at 123.69°C. This indicated that both the solid components transform into new crystalline phase of acetylsalicylic-nicotinamide. The difference of melting point of AN binary systems from starting component is indicated that eutectic was formed.

Since each compound produces its own characteristic powder pattern owing to the unique crystallography of its structure, powder x-ray diffraction (PXRD) is clearly the most powerful and fundamental tool for a specification of the polymorphic identity of an analyte.

Figure 3 shows the X-ray powder diffractogram of AN binary systems, compared to the single component and physical mixture of both components without treatment. PXRD pattern of co-crystall from the pattern of acetylsalicylic, nicotinamide, and physical mixture of AN. AN binary systems pattern showed interference peaks typical at 20 : 11.27° (in ethanol) and 21.05°(in methanol).

![Diagram](image)

CONCLUSION:
Binary systems of acetylsalicylic-nicotinamide were formed using solvent evaporation technique in ethanol and methanol as solvent. The system have been characterized by polarized microscopy DSC and PXRD.

REFERENCES:

Received on 29.11.2016 Accepted on 11.01.2017
DOI: 10.9595/ajpt.2017.0086.X
Solid State Characterization of Acyclovir-Nicotinamide Binary Systems using Solvent Evaporation Technique

Agnes Nuniek Winantari1,2, Dwi Setyawan1, Siswando1, Sundari Nurono Soewandhi3
1Faculty of Pharmacy, Airlangga University, Jl. Dhanawangsia Dalam Surabaya 60286, Indonesia
2Faculty of Pharmacy, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, 60293 Indonesia
3School of Pharmacy, Bandung Institute of Technology, Jl. Ganesh No. 10, Bandung 40132, Indonesia
*Corresponding Author E-mail: nunickhening@gmail.com

ABSTRACT:
Objective of the study is to characterize acyclovir-nicotinamide binary systems (AN). Methods of cocryostallization was solvent evaporation in equimolar ratio between acyclovir and nicotinamide using ethanol and methanol. The binary systems were characterized by polarization microscope, Differential Scanning Calorimetry (DSC) and Powder X-Ray Diffraction (PXRD). Physical characterization showed that AN binary systems have unique crystal habit in microscopic. A new endothermic peak appears at 123.69 °C. The PXRD patterns of AN binary systems after cocryostallization are different from pure components which specific peak was found on 20 = 11.27° (AN in ethanol); 21.05° (AN in methanol).

KEY WORDS: Acyclovir, nicotinamide, binary systems, solvent evaporation, ethanol, methanol.

INTRODUCTION:
On average, about a decade of research and development is expended in the discovery and commercialization of a new pharmaceutical product. The molecular structure of the active pharmaceutical ingredient (API) of a drug substance is selected to optimize therapeutic properties, selecting the physical form of an API represents a strategic opportunity for optimizing such physical properties as solubility, dissolution, hygroscopicity, physical stability, and chemical stability. Attempting to find a solid with the desired properties and manufacturability, companies spend significant effort looking for polymorphs, salts and cocystal of their API’s (Active Pharmaceutical Ingredient)12,14.

Cocrystal is a homogenous crystalline materials composed of a neutral target and a neutral coformer held together through non covalent bonds. For pharmaceutical applications it is essential that the coformers have GRAS status. The physicochemical properties of API’s can be modified while the intrinsic activities of these drug molecules remain the same. From the thermodynamic point of view, pharmaceutical cocrystals are stable and high energy forms. Therefore, they can have impact on solubility and dissolution rate of the drug. The strategy involves drug-coformer combinations that have the potential of forming energetically and structurally robust interactions15,6,7. Pharmaceutical cocrystals often rely on hydrogen bonded assemblies between an API and coformer with well-defined stoichiometries. For a target API, we are interested in coformers with functional groups that can interact (i.e., form H-bonds) with the functional groups on the API. Common functional groups, such as carboxylic acids, amides and alcohols are typically found to interact with one another in cocrystals13,8,9.
Acyclovir, a guanosine analogue antiviral drug with a solubility of 1.62 mg/mL. Due to its poor solubility and permeability, the oral bioavailability of acyclovir attains just 15-30%.[10,11,12,13]

Different methods have been used to produce co-crystals: solution crystallization, solid state and solvent drop grinding, and crystallization from melt. For scale up purposes, solution crystallization is the most popular.[3,4,15]

MATERIALS AND METHOD:
Materials:
Acyclovir and nicotinamide was obtained from Sigma-Aldrich (USA). Ethanol and methanol were purchased from Merck Chemicals (Germany) without any purification.

Preparation of binary system of AN using solvent evaporation technique:
Acyclovir and nicotinamide carefully weighed equimolar. Each compound was dissolved in solvent separately. The two solutions were mixed and stirred for a few minutes. Equimolar solution of both components was evaporated at room temperature for 48 hours. The obtained of solid binary system stored in a desiccator under vacuum.

Characterization by polarized microscope:
One to two mg of physical mixture between acyclovir and nicotinamide was placed on object glass. A drop of ethanol was added to each physical mixture until dissolved and allowed to recrystallize. Recrystallization process was observed under a polarizing microscope. The microscopic images were recorded with an Olympus SC-30 digital color camera attached to the Olympus BX-50 polarized microscope.

Thermal Analysis by DSC:
Differential Scanning Calorimetry (DSC) was performed using Mettler Toledos. About four mg of each sample was placed in crimped sample pan. The sample was heated from 30°C to 300°C at a heating rate of 10°C/min under nitrogen purged.

Characterization by PXRD:
Powder X-ray diffraction (Phillips X’Pert diffractometer) analysis was performed at room temperature. Condition of measurement was set as follows: Cu metal target, Kα filter, voltage of 40kV, 40 mA. The analysis was performed on the range of 2 theta of 5-40°. Sample was placed on the sample holder and flatted to prevent particle orientation during preparation.

RESULTS AND DISCUSSION:
The co-crystallization process of AN binary systems observed under polarized microscope. Polarizing light microscopy is particularly useful for studying the optical properties of crystals. When crossed polarized light passes through an anisotropic crystal, the crystal will show bright interference colors, as long as it is not in an extinction position or aligned on an optic axis.[10] As shown in Fig. 1, AN binary systems have unique crystal habit.

Fig. 1 : Crystal images obtained by polarized microscope of A) acyclovir, B) nicotinamide, C) Contact zone of AN binary systems

Melting is a first order process that can be observed in the form of an endothermic peak in DSC curves. Recall that unlike the peak temperature, the onset temperature of melting will be independent of the DSC heating rate[16].
endothermic peak at 123.69°C. This indicated that both the solid component is transformed into a new crystalline phase of acetylovir-nicotinamide. The difference of melting point of AN binary systems from starting component is indicated that co-cystal was formed.

Since every compound produces its own characteristic powder pattern owing to the unique crystallography of its structure, powder x-ray diffraction (PXRD) is clearly the most powerful and fundamental tool for a specification of the polymorphic identity of an analyte.

Figure 3 shows the X-ray powder diffractogram of AN binary systems, compared to the single component and physical mixture of both components without treatment. PXRD pattern of co-cystal different from the pattern of acetylovir, nicotinamide, and physical mixture of AN. AN binary systems pattern showed interference peaks typical at 20 : 11.27° (in ethanol) and 21.05° (in methanol).

CONCLUSION:

Binary systems of acetylovir-nicotinamide were formed using solvent evaporation technique in ethanol and methanol as solvent. The system have been characterized by polarized microscope, DSC and PXRD.

REFERENCES:

EDITORIAL BOARD:

Associate Editors

Academic Editor

Editors

Dr. P. Kamaravel
Address: Department of Biotechnology, Vysya College, Masinaickenpatty, Salem-636103. Tamil Nadu, India.
Email ID: kumaravelbiotech@gmail.com

Mohammed Rageeb Mohammed Usman
Address: 2/899 SURMAZ Villa, KGN Colony Chopda
Email ID: rageebshaikhs@gmail.com

Dr Subhadeep Ganguly
Address: Department of Physiology, Vidyasagar College, Main Campus 39 Saniior Ghose Lane Phone: 91.33.2241
4447/3018 Kolkata 700 006, West Bengal, India
Email ID: res_biol@rediffmail.com

Lokendra Kumar Ojha
Address: 82, NAND VIHAR COLONY LAST LINE BEHIND NARMADA ROAD RAU INDORE 453331
Email ID: ojha.lokendra@gmail.com

Reviewers

Dr. Vipul Kumar P. Patel
Address: Madhuvan Park, 150 feet road, Opp Water tank, Rajkot
Email ID: vihatvipul@gmail.com

Dr. NANOJ KUMAR PANDEY
Address: Indian Pharmacopoeia Commission, Ministry
Min of Health and Family Welfare, Govt. of India,
Rajnagar, Sector-29, Raj Ghatiazabad Pin-201002. (www.ipc.gov.in)
Email ID: manojcpi@gmail.com

Visit No.: 23179

www.ajptonline.com (http://ajptonline.com) | All rights reserved | Sitemap (sitemap.aspx)

Powered By:
T-Labs Research