Ketua Dewan Penyunting
Aris Haryanto

Wakil Ketua Dewan Penyunting
Agustina Dwi Wijayanti

Penyunting Pelaksana
Devita Anggraeni
Khristiana Putri
Hevi Wihadmadyatami

Konsultan Penyunting
Sentot Santoso (Justus-Liebig-University, Giessen, Jerman)
Tutut Herawan (University of Malaya, Malaysia)

Pelaksana Teknik
Endah Choiriyah
Surohmiautun

Mitra Bebestari
Agung Janika Sitasiswi (Universitas Diponegoro)
Anwar Rosyidi (Universitas Mataram)
Bambang Ariyadi (Universitas Gadjah Mada)
Deni Noviana (Institut Pertanian Bogor)
Desak Made Malini (Universitas Padjadjaran)
Didik Priyandoko (Universitas Pendidikan Indonesia)
Djoko Winarso (Universitas Brawijaya)
E. Djoko Poetranto (Universitas Airlangga)
Eka Pramyrtha Hestianah (Universitas Airlangga)
Gratiana E.W. (Universitas Jenderal Soedirman)
Gusti Ayu Yuniati Kencana (Universitas Udayana)
Herry Sonjaya (Universitas Hasanuddin)
I Ketut Mudite Adnyane (Institut Pertanian Bogor)
Ida Ayu Pasti Apsari (Universitas Udayana)
Ida Bagus Komang Ardana (Universitas Udayana)
Iis Arifiantini (Institut Pertanian Bogor)
M. Hanafiah (Universitas Syiah Kuala)
Min Rahminiwati (Institut Pertanian Bogor)
Mufasirin (Universitas Airlangga)
Ni Wayan Kurniani Karja (Institut Pertanian Bogor)
Sapto Yuliani (Universitas Ahmad Dhalan)
Sri Murwani (Universitas Brawijaya)
Tongku N. Siregar (Universitas Syiah Kuala)

Dicetak oleh:
Seri Offset
Kalangan Jl. Wonasari Km 6,5
Telp. 0858 6905 4302 email : syarif.sdms@gmail.com
PENGANTAR REDAKSI

Pada JSV volume 35, nomor 2 edisi Desember 2017 ini, kami menginformasikan bahwa per tanggal 1 Juli 2017 JSV telah terindeks di lembaga pengindeks Directory of Open Access Journals (DOAJ). Tentu saja hal ini merupakan pencapaian yang baik untuk perkembangan JSV ke depan mengingat bahwa sampai pada edisi ini secara keseluruhan JSV selain terindeks pada DOAJ juga telah terindeks pada Garuda Scholar, Indonesian Publication Index (IPJ), Google Scholar, (Science and Technology Index) SINTA, Indonesia Scientific Journal Database (ISJD) and OneSearch. Semoga pencapaian publik dapat meningkatkan kualitas artikel dan mutu JSV untuk menjadi salah satu jurnal ilmiah bidang veteriner di Indonesia yang semakin baik lagi pada masa yang akan datang.

Seperti pada edisi sebelumnya, JSV edisi Desember 2017 ini, memuat sebanyak 16 artikel ilmiah dari berbagai bidang veteriner, yaitu bidang reproduksi, patologi klinik, virologi, parasitologi, produksi ternak, ilmu penyakit dalam, farmakologi, histologi, mikrobiologi, epidemiologi.

Bersama ini pula, kami selaku dewan penyunting JSV mengundang bapak/ibu/saudara penulis dan kontributor artikel ilmiah untuk mengirimkan manuskrip artikel ilmiah untuk dapat dipublikasikan di JSV pada edisi yang akan datang. Kami juga menampung semua kritik, saran dan masukan yang bersifat membanging untuk perbaikan JSV. Kami selalu berharap bahwa ke depan JSV akan selalu berkembang semakin baik dalam mempublikasi artikel-artikel ilmiah yang baik, berbobot dan berkualitas tinggi di bidang veteriner.

Terima kasih atas perhatian dan kerjasamanya.

Ketua Dewan Penyunting
DAFTAR ISI

Optimalisasi Pembekuan Sperma Limbah Kauda Epididimis Kambing Lokal dengan Metode Berahas dan Stabilisasi  
Nuela Wanda Yasna Dalmamur, M. Rosyid Ridlo, Agung Budyanto  
150 - 158

Potensi Imunologis Serbuk Umbi Tanaman Sarang Sereut (Myrmecodia tuberosa) terhadap Tikus Wistar Yang Diinduksi Streptozotocin  
Imron Rosyadi, Bambang Hariono  
159 - 164

Infeksi Virus Peste de Petits Ruminants (PPR) pada Kambing dan Domba di Indonesia  
Indrawati Sendow, Raden Mohamad Abdul Adjid, Moharom Saipuloh  
165 - 174

Variasi Morfologi dan Deteksi Leucocytozaon Candidy di dengan Metode PCR pada Ayam Ras di Wilayah Endemis Indonesia  
Endang Suprihati, Wiswik Misaco Yaniarti  
175 - 183

Determination of Cattle and Buffalo Skin Crackers Using Polymerase Chain Reaction Restriction Fragment Length Polymorphism  
Ruli Riana Dewi, Yuny Erwanto, Namung Agus Fitriyanto  
184 - 190

Respon Imun Mencit Terhadap Protein 24 dan 71 kDa Toxocara vitulorum dalam Membentuk Antibodi dan Protektifitasnya  
Candra Dwi Atma, Kiumoto, Eduardus Bimo Aksono H.P.  
191 - 196

Identifikasi Ektoparasit pada Benih Ikan Mas (Cyprinus carpio) di Balai Benih Ikan Kabat, Kabupaten Banyuwangi  
Mohammad Faizal Ulkaq, Dornawan Setia Budi, Gunarti Mohsari, Kismiati  
197 - 207

Pengaruh Ekstrak Buah Delima Terhadap 40% Elagic Acid terhadap Profil Darah Tikus Putih yang Mengalami Nefrotoxisitas akibat Induksi Gentamisin  
Bambang Saktiaro Lukiswanto, Wiswik Misaco Yaniarti  
208 - 215

Kualitas Oosit Kerbau dari Status Reproduksi Ovarium yang Berlaihan  
Sri Gustina, Hasbi, Ni Wayan Kurniawan Karja, Mohamad Agus Setiadi, Iman Supriatna  
216 - 222

Efek Ekstrak Air Biji Pepaya (Carica papaya L.) terhadap Fertilitas Mencit (Mus muscas L.) Betina  
Muhammad Ferialdi Firdaus, Agung Janika Sitasivi, Siti Myshichatun Mardiati  
223 - 229

Efektivitas Terapi Multivitamin, Obat Cacing dan Premiks pada Sapri Terdiagnosa Hipoungsi Ovarium di Wilayah Kecamatan Prambanan, Yogyakarta  
Niken Widarni, Imbang Ru Boda, Agustina Dwi Wijayanti  
230 - 235

Karakteristik Fisik dan Kimia Telur Burung Marabu (Eulipoa Wallacei) di Pantai Uwo Uwo Kecamatan Galela Kabupaten Halmahera Utara  
Yusri Saputra, Nur Sjafian, Nurjana Albaat, Hazriani Ishak  
236 - 242

Daya Vermisidal Ekstrak Lima Jenis Eusofarmakologi terhadap Cacing Haemonchus contortus secara In-vitro  
I Gasti Komang Oka Wirawan, Kurniasih, Joko Prastowo, Wisnu Nurcahyo  
243 - 253

Studi Distribusi Giokosa Transporter 4 pada Oto Skelet Ayam Kedu Cemani  
Teguh Budiputro, Ariana, Tri Widyawati Putrimaryati, Hery Wijayanto, Dwi Liliek Kusirendra, Dewi Kania Musana  
254 - 259

Potensi Ekstrak Atum racemosa Sebagai Anti- Methicillin Resistant Staphylococcus aureus (MRSA)  
Siti Irwina Oktober Salastia, Novra Aryadi Sendi, Fajar Budi Lestari, Verda Farida, Nurhsani Azzar  
260 - 268

Kondisi Bionekurtisi Tempat Penjauan Burung Terkait Avian Influenza di Wilayah Jakarta  
Ardisananto Wicaksono, Ethie Sulistinika, Chasri Basri  
269 - 276

Indek Penulis  
277 - 278

Indek Subyek  
279 - 280

Gambar depan : Kualitas Oosit Kerbau dari Status Reproduksi Ovarium yang berlaihan hal 218
Variasi Morfologi dan Deteksi *Leucocytozoon caulleryi* dengan Metode PCR pada Ayam Ras di Wilayah Endemis Indonesia

*Morphological Variation and Detection of Leucocytozoon caulleryi by PCR on Domesticated Chickens (Gallus Sp.) in Endemic Area of Indonesia*

Endang Suprihati¹, Wiwik Misaco Yuniarti²

¹Departemen Parasitologi, ²Departemen Klinik Veteriner, Fakultas Kedokteran Hewan, Universitas Airlangga, Jl. Mulyorejo, Kampus C, Surabaya, 60115
Email: esuprihati@yahoo.co.id; wiwikmisaco@yahoo.com

Abstract

The purpose of this study was to analyze the variation in morphology and detection *Leucocytozoon caulleryi* by PCR in mtDNA genes cyt b that attacking bred chickens in endemic areas of Indonesia. This study was divided into three stages, data collection of Leucocytozoanosis cases in endemic areas of Indonesia; identification of parasites Leucocytozoon caulleryi morphologically through microscopic examination; and the identification of Leucocytozoon caulleryi cyt b genes that attack bred chickens in endemic areas by PCR. The results showed that there are variations in morphology of Leucocytozoon caulleryi that attacking chicken in endemic areas of Indonesia. Gamec morphometry of L. caulleryi had an average length and width 18.233 ± 4.672 dan 12.934 ± 3.349 μm. Nested PCR clearly showed positive reaction of Leucocytozoon infections by amplicons in 600 bp and 03 bp length.

**Key words:** *Leucocytozoon caulleryi, cyt b gene, domesticated chicken, Indonesia*

Abstrak

Tujuan penelitian untuk menganalisis variasi morfologi dan deteksi *Leucocytozoon caulleryi* dengan metode PCR pada mtDNA gen cyt b yang menyerang ayam ras di wilayah endemis Indonesia. Penelitian ini dibagi dalam tiga tahap, yaitu: koleksi data kejadian kasus Leucocytozoanosis di daerah endemis Indonesia (63 ekor ayam dengan gejala klinis Leucocytozoanosis); identifikasi parasit *Leucocytozoon caulleryi* secara morfologis melalui pemeriksaan mikroskopi (15 sampel darah positif); dan identifikasi gen cyt b *Leucocytozoon caulleryi* yang menyerang ayam ras di daerah endemis dengan metode PCR (15 sampel darah positif). Hasil penelitian menunjukkan, bahwa di wilayah endemis Indonesia variasi morfologi *Leucocytozoon caulleryi* yang menyerang ayam ras memiliki ukuran rata-rata panjang dan lebar 18.233 ± 4.672 dan 12.934 ± 3.349 μm. Hasil identifikasi *Leucocytozoon caulleryi* dengan PCR menunjukkan panjang basa 600 bp pada putaran ke 1 dan 503 bp pada putaran kedua.

**Kata kunci:** *Leucocytozoon caulleryi, gen cyt b, ayam ras, Indonesia*

Pendahuluan


Identifikasi morfologi *Leucocytozoon spp.* tidak dapat digunakan untuk penentuan spesies karena terdapat variasi morfologi, sehingga sering menimbulkan kesulitan dalam mengkarakterisasi morfologi parasit. Penggunaan PCR memungkinkan kita untuk mengetahui perbedaan profil fragment DNA hasil amplifikasi. Hasilnya bisa kita gunakan untuk membedakan mikroorganisme pada tingkat genus, hingga spesies bahkan genotipe spesifik dari patogen Martinson, 2006).

Selama ini analisis DNA terhadap *Leucocytozoon* dilakukan pada gen *cyt b* (Perkins *et al.*, 2002; Sehgal *et al.*, 2006; Sato *et al.*, 2007). Fragmen *gen cyt b* merupakan salah satu fragmen yang berada di dalam genom mitokondria dan banyak digunakan untuk mempelajari filogenetik karena variasi susunan nukleotida di dalam *gen cyt b* sangat berguna untuk membandingkan spesies pada genus ataupun famili yang sama. Rangkaian informasi genetik yang terkandung di dalam DNA mitokondria dilaporkan dapat menggambarkan karakteristik suatu populasi, filogenetik dan merekonstruksi sejarah evolusi (Kvist, 2000).

Penelitian ini dilakukan untuk menganalisis variasi morfologi dan deteksi *Leucocytozoon caulleryi* dengan metode PCR pada mtDNA *gen cyt b* yang menyerang ayam ras di wilayah endemis Indonesia.

**Materi dan Metode**

**Waktu dan Tempat Penelitian**


**Populasi dan Sampel Penelitian**

Ayam ras yang digunakan pada penelitian ini berjumlah 63 ekor ayam yang menunjukkan gejala klinis terinfeksi *Leucocytozoonosis*. Jumlah tersebut berasal dari daerah Blitar (10 ekor), Lamongan (6 ekor), Pasuruan (10 ekor), Lumajang (4 ekor), Boyolali (10 ekor), Purbalingga (8 ekor) dan Banjarmasin (15 ekor) menggunakan metode *purposive sampling*. Sampel yang akan dianalisis adalah darah ayam segar yang berasal dari ayam dengan gejala klinis dan patologi anatomi yang mengarah pada infeksi *Leucocytozoon*.
Teknik Pengambilan Sampel

Pengambilan sampel darah dilakukan dengan menggunakan tabung *vacutainer* yang telah diisi antikoagulan EDTA 10 % melalui vena *brachialis* sebanyak 1 ml. Darah yang diambil sebagian dibuat untuk pembuatan preparat ulas darah dengan pewarnaan Giemsa, sebagian yang lain diekstraksi dengan metode standar fenol kloroform untuk digunakan sebagai sumber DNA genom dan dilanjutkan deteksi DNA *Leucocytozoon* dengan Nested PCR.

Pemeriksaan parasit melalui preparat ulas darah


Variasi morfologi dihitung menggunakan koefisien variasi yang besarnya dihitung dari rasio simpangan baku terhadap nilai rata-rata dari masing-masing variabel yang diukur dikalikan 100 % (Steel dan Torie, 1989 ). Variabel yang diukur adalah panjang, lebar dan lingkaran.
Isolasi Gen cyt b mtDNA Leucocytozoon

Gen cyt b Leucocytozoon di ekstraksi menggunakan metode phenol-chloroform. Gen cyt b mtDNA diisolasi dari darah ayam utuh (whole blood) yang diberi EDTA. Darah ditampung menggunakan tabung vacutainer dari vena brachialis (+ 1 ml) dengan antikoagulan larutan EDTA 10 %. Prosedur ekstraksi DNA darah didasarkan pada metode standar fenol-kloroform dengan modifikasi waktu inkubasi sampel lebih pendek.

Secara ringkas prosedur ekstraksi yang dilakukan adalah mengambil sampel darah sebanyak 200 µl, kemudian ditambah 200 µl larutan penyaringan pelisis (lysis buffer), divortex dan disentrifugasi untuk mendapatkan pelet. Selanjutnya, ditambahkan larutan pencuci (rinse buffer) dan dilakukan vortex sampai endapan larut. Kemudian ditambahkan larutan digesti (digestion buffer), enzim proteinase K dan RNAs dan diinkubasikan overnight pada suhu 55°C. Setelah sampel tercerna semua, ditambahkan fenol dan dilakukan vortex atau digunakan rotary mixer agar larutan tercampur sempurna.

Larutan disentrifugasi pada kecepatan 13 000 rpm selama 2 menit, kemudian supernatan dipindahkan ke tabung eppendorf baru. Supernatan diberi fenol dan klorofom (1:1), kemudian divortex dan disentrifugasi dengan kecepatan 13 000 rpm selama 20 menit. Supernatan diambil dan ditambahkan etanol absolut (100%) untuk presipitasi DNA, kemudian dilakukan sentrifugasi untuk mengendapkan pelet DNA yang diproleh. Selanjutnya etanol absolut dibuang dan pelet dicuci dengan 70% etanol. Selanjutnya, pelet diendapkan kembali dengan melakukan sentrifugasi 13000 rpm, Ethanol dibuang dengan hati-hati agar pelet DNA tidak ikut terbuang. Material atau pelet DNA yang mengendap dalam tabung dikeringkan dengan bantuan aspirator. Setelah kering, pada pelet DNA ditambahkan larutan TE dan disimpan dalam freezer untuk proses selanjutnya.
Setelah DNA hasil isolasi dimurnikan dan diketahui konsentrasi, maka dipreservesikan untuk disiapkan sebagai cetakan (template) pada reaksi PCR.

**Proses polymerase chain reaction**

Perancangan primer didasarkan pada sekuen yang ada sebelumnya, baik dari data hasil penelitian dalam jurnal maupun data yang terdapat dalam GenBank. Primer gen cyt b yang digunakan sebanyak dua primer untuk PCR putaran pertama dan dua primer untuk PCR putaran kedua. Urutan nukleotida untuk putaran pertama: 5' CATATTATTAGAGATTAGAGA 3' dan 5'ATAAAATGGTAAGAAATTACATTCC 3'. Sedangkan untuk putaran kedua adalah 5' ATGTGCTTTAGATATGCTGATGTCT 3' dan 5'GCATTATCTGGATGTGATAATGGT 3', (Hellgren et al., 2004; Omori et al., 2008).

Amplifikasi mtDNA gen cyt b Leucocytozoon spp. dilakukan dengan menggunakan nested PCR, seperti yang dilakukan oleh Cosgrove et al. (2006). Nested PCR adalah proses amplifikasi DNA yang menggunakan dua pasang primer untuk dua kali PCR. Pada putaran pertama menggunakan primer yang bisa menangkap gen lebih panjang dibanding pada putaran kedua (Hellgren et al., 2004; Omori et al., 2008).

Pada putaran pertama, volume total untuk reaksi ini adalah 25 μl campuran larutan terdiri atas 2 μl genomic DNA, 0,125 mM dNTP, 0,2 μM primer, 3 mM MgCl2 dan 0,25 unit Taq Polimerase dengan ditambahkan buffer dengan perbandingan 1 kali volume bahan-bahan tersebut. Suhu denaturasi 94°C selama 30 detik, suhu annealing 50°C selama 30 detik dan suhu perpanjangan (extension) 72°C selama 45 detik. Perbanyaknya siklus diulang 35 sampai 45 kali.

Bahan-bahan untuk putaran kedua sama dengan putaran pertama, kecuali primer yaitu 0,4 μM dan 0,5 unit Taq Polymerase, kemudian 0,2 μl dari produk PCR pertama dijadikan template DNA untuk putaran kedua. Suhu dan waktu di setiap tahapan PCR sama dengan putaran pertama dan perbanyaknya siklus sebanyak 20 sampai 35 kali. Dua sampai 8 μl hasil PCR putaran ke dua di running dalam agarose 2% yang diwarnai dengan ethidium bromide, kemudian divisualisasi menggunakan ultra violet transluminator. Panjang dasa yang diharapkan adalah 600 bp pada putaran pertama dan 503 bp pada putaran kedua.

**Hasil dan Pembahasan**

**Tingkat Kejadian Leucocytozoonosis pada Ayam Ras di Wilayah Endemis Indonesia**

Pengambilan sampel darah ayam ras dilakukan terhadap ayam yang menunjukkan gejala klinis) Leucocytozoonosis di wilayah endemis, meliputi Jawa Timur, Jawa Tengah dan Kalimantan Selatan. Peternakan ayam ras yang mengalami kejadian Leucocytozoonosis bisa dilihat pada Tabel 1

<table>
<thead>
<tr>
<th>No</th>
<th>Lokasi</th>
<th>Ayam yang nampak gejala klinis/PA (ekor)</th>
<th>Parasitemia (ekor)</th>
<th>Histopatologis dari yang parasitaemia (ekor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blitar</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Lamongan</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Pasuruan</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Lumajang</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Boyolali</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Purbalinga</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Banjarmasin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>63</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
Identifikasi *L. caulleryi* Secara Mikroskopis

Pemeriksaan Parasitologis

Hasil pemeriksaan ulas darah dengan pewarnaan Giemsa didukung dengan hasil pemeriksaan PCR menunjukkan bahwa *Leucocytozoon* yang ditemukan dalam penelitian ini seluruhnya adalah *L. caulleryi*, seperti yang terlihat dalam Gambar 1.

Gambar 1. *Leucocytozoon caulleryi* dari daerah penelitian. A = *L. caulleryi* dari Purbalingga 2, B = *L. caulleryi* dari Pasuruan 3, C = Pasuruan 4, D = *L. caulleryi* dari Banjarmasin 1. (*Olympus CX-21, 1000x; OptiLab Camera Digital 2.0 megapixel)*.

*L. caulleryi* yang ditemukan dalam penelitian ini secara umum berbentuk bulat membentuk fusi dengan sel inang, tidak ada proses memanjang dari sitoplasma sel inang seperti yang terjadi pada species lain. Masing-masing parasit dari berbagai daerah endemis ini ada perbedaan fenotipiknya, yaitu ukuran bervariasi: panjang 11,32 - 25,88 μm lebar 9,08 - 21,79 μm, dengan rata-rata panjang 18,23 μm dan lebar 12,93 μm. Koefisien variasi untuk panjang sebesar 25,62 % dan lebar 25,89 % (Tabel 2).

Hasil temuan *L. caulleryi* dalam penelitian ini secara umum berbentuk bulat dan terdapat variasi morfologi di antara *L. caulleryi* yang diambil dari berbagai wilayah endemis. Variasi yang terjadi disamping berdasar ukuran, terlihat sitoplasma parasit yang berbeda dalam penyeraian zat warna Giemsa. Menurut Valkiunas *et al.* (2010), untuk penentuan spesies hal yang paling menentukan adalah bagaimana proses sitoplasma inang dalam mengadakan fusi dengan parasit, masing-masing spesies memiliki
Variasi Morfologi dan Deteksi *Leucocytozoon caulleryi* dengan Metode PCR pada Ayam Ras di Wilayah Endemis Indonesia

Tabel 2. Morfometri Gamet *L. caulleryi* yang Menyerang Ayam Ras dari Berbagai Daerah Endemis di Indonesia

<table>
<thead>
<tr>
<th>Asal sampel</th>
<th>Panjang (µm)</th>
<th>Lebar (µm)</th>
<th>Keliling (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banjarmasin 1</td>
<td>16.5</td>
<td>11.04</td>
<td>44.72</td>
</tr>
<tr>
<td>Banjarmasin 2</td>
<td>22.05</td>
<td>12.84</td>
<td>62.08</td>
</tr>
<tr>
<td>Blitar</td>
<td>25.88</td>
<td>21.79</td>
<td>71.85</td>
</tr>
<tr>
<td>Boyolali</td>
<td>14.26</td>
<td>11.26</td>
<td>47.38</td>
</tr>
<tr>
<td>Lamongan 1</td>
<td>18.83</td>
<td>12.06</td>
<td>45.51</td>
</tr>
<tr>
<td>Lamongan 2</td>
<td>16.02</td>
<td>12.51</td>
<td>60.88</td>
</tr>
<tr>
<td>Pasuruan 1</td>
<td>17.72</td>
<td>15.5</td>
<td>46.33</td>
</tr>
<tr>
<td>Pasuruan 2</td>
<td>24</td>
<td>13.72</td>
<td>37.53</td>
</tr>
<tr>
<td>Pasuruan 3</td>
<td>13.55</td>
<td>10.87</td>
<td>35.16</td>
</tr>
<tr>
<td>Pasuruan 4</td>
<td>11.32</td>
<td>10.19</td>
<td>36.1</td>
</tr>
<tr>
<td>Purbalingga 1</td>
<td>11.36</td>
<td>9.08</td>
<td>59.03</td>
</tr>
<tr>
<td>Purbalingga 2</td>
<td>25.5</td>
<td>9.48</td>
<td></td>
</tr>
<tr>
<td>Rata2</td>
<td>18.233</td>
<td>12.934</td>
<td>47.613</td>
</tr>
<tr>
<td>SD</td>
<td>4.672</td>
<td>3.349</td>
<td>9.441</td>
</tr>
<tr>
<td>Koef. variasi (%)</td>
<td>25.623</td>
<td>25.8934</td>
<td>19.829</td>
</tr>
</tbody>
</table>
mikroskopis baru berupa protozoa darah yang bercirikan bulat membesar dan berwarna kebiruan.


Identifikasi L. caulleryi dengan Penggunaan PCR pada mtDNA Gen cyt b Leucocytozoon

Hasil penelitian menunjukkan bahwa ayam yang mengalami parasitemia, seluruhnya dinyatakan positif terhadap Leucocytozoon dengan pemeriksaan menggunakan metode nested PCR. Gen cyt b mtDNA berhasil diamplifikasi dengan primer Haem NFI dan Haem NR3 untuk menjaring ketiga genus Haemosporidia yang menyerang ayam dan Haem FL dan Haem R3L, khusus untuk Leucocytozoon (Hellgren, 2004). Dari semua sampel yang diamplifikasi menunjukkan produk PCR dengan spesifikasi tinggi yaitu hanya terbentuk band tunggal dengan panjang nukleotida sekitar 600 bp pada PCR putaran pertama dan 503 bp pada PCR putaran kedua (Gambar 2 dan 3).

mikroskopis baru berup
Gambar 2. *Gen cyt b* 503 bp *L. caulleryi* pada putaran II. Lajur 1 marker; lajur 2 dan 5 kontrol negatif, lajur 3, 4, 6 dan 7 hasil positif gen *cyt b L. caulleryi*.

Gambar 3. *Gen cyt b* 503 bp putaran II dan gen *cyt b* 600 bp putaran I.
Lajur 1 marker; lajur 2 kontrol negatif, lajur 3 dan 5 hasil positif gen *cyt b Leucocytozoon* putaran I, lajur 4 dan 6 hasil positif gen *cyt b Leucocytozoon* putaran II.

Hasil positif parasitemia *Leucocytozoon* yang menyerang ayam ras di daerah endemis juga menunjukkan hasil positif produk PCR. Hal ini merupakan bukti bahwa PCR dapat diandalkan dalam mendeteksi infeksi *Leucozoosis* pada ayam ras. Pendapat ini didukung oleh penelitian tentang parasit malaria khususnya *Leucocytozoon* pada ayam lokal di Uganda dan Cameroon yang menggabungkan pemeriksaan menggunakan PCR dengan pemeriksaan konvensional. *Leucocytozoon* pada burung juga dapat dideteksi dengan PCR dengan DNA yang diekskripsi dari darah yang dikoleksi lebih dari 2 tahun sejak
infeksi yang pertama. Hal ini menunjukkan ketahanan
jangka panjang infeksi aktif. Namun, deteksi dengan
metode PCR pada stadium skizont belum pernah
dilakukan (Cosgrove et al., 2006; Sehgal et al., 2006;
Valkiunas et al., 2010).

Nested PCR dipilih pada penelitian ini karena
nested PCR menggunakan dua (2) pasang primer. Satu
(1) pasang primer yang keda (nested) berada dalam
fragmen primer yang pertama. Hasil PCR dengan
primer kedua lebih pendek daripada dengan primer
yang pertama dan lebih spesifik. Selain itu, keuntungan
lain penggunaan nested PCR adalah meminimalkan
kesalahan amplifikasi. Nested PCR memiliki aplikasi
yang luas, karena memiliki spesifisitas dan sensitivitas
yang tinggi, sehingga hasilnya lebih akurat
dibandingkan metode PCR lainnya.

Perkiraan prevalensi parasit berdasarkan ulas
darah dan tes PCR mewakili tingkat minimum infeksi,
sedangkan perkiraan berdasarkan pemeriksaan
serologis dapat mewakili tingkat maksimum infeksi.
Hal ini dapat diperoleh dari hasil penelitian semua
individu yang pernah terinfeksi (Perkins dan Schall,
2002). Teknik diagnostik baru berupa tes PCR perlu
terus dilakukan untuk mengungkapkan prevalensi
parasit malaria unggas (2004). Intensitas infeksi dapat
dengan mudah terdeteksi pada hamparan darah yang
dapat mencerminkan melemahnya sistem kekebalan
inang. Namun kasus Leucocytozoonosis memiliki
kesulitan tersendiri dalam mendeteksi parasit, karena
keberadaan gamet dalam darah hanya 1 menggu.
Penggunaan PCR untuk mendeteksi DNA parasit yang
diamplifikasi dari parasit utuh, tidak mencerminkan
tahap penyakit atau tingkat keparahan infeksi
(Cosgrove et al., 2006).

Cytochrom adalah daerah genom mitokondria
yang merupakan area yang sangat tidak mudah
mengalami mutasi, sehingga lokasi ini sangat baik
untuk merancang primer PCR untuk mendeteksi
infeksi oleh spesies tertentu (Chasar, 2009).

Metode nested PCR pada putaran pertama
bertujuan untuk mendapatkan genom yang panjang
yang dapat mewakili tingkat family, yaitu family
Plasmodidae. Sementara putaran kedua (nested) akan
mendapatkan genom pada tingkat species (spesifik).
Penggunaan PCR juga dapat mendeteksi L. caulleryi
yang bervariasi hingga perbedaan urutan 12% dalam
gen cytochrom b (Martinsen et al., 2006).

Kesimpulan

Berdasarkan hasil penelitian, dapat
disimpulkan bahwa. Terdapat perbedaan variasi
morfologi (bentuk dan ukuran) gamet Leucocytozoon
caulleryi yang menyerang ayam ras di daerah endemis
di Indonesia. L. caulleryi dapat dideteksi menggunakan
PCR dengan panjang basa 600 bp pada putaran pertama
dan 503 bp pada putaran kedua.

Ucapan Terima kasih

Ucapan terima kasih kami sampaikan kepada
Bapak Suyud dari PT SHS yang telah membantu dalam
pengambilan sampel darah ayam ras yang terkena
Leucocytozoonosis di daerah endemis, Bapak Amin
dari Institute Tropical Disease (ITD), Universitas
Airlangga, yang membantu dalam proses PCR, serta
para mahasiswa yang membantu dalam proses
penelitian.

Daftar Pustaka

Veterinary Manual, 8th Ed. National
Publishing, Philadelphia, Pennsivania. 256

Chasar, A., Loiseau, C., Valkiunas, G., Iezhova,
Prevalence and diversity patterns of avian
blood parasites in degraded African rainforest

Complification of Leucocytozoon by PCR
diagnostic test for avian malaria: A cautionary

Pengembangan penanda molekuler untuk
deteksi Phyllophthora palmivora pada tanaman

Hellgren, O.J., Waldenstrom, J., and Bensch,
S.,(2004).A new PCR assay for simultaneous
studies of Leucocytozoon, Plasmodium, and


