ABSTRACT

STUDY IN VIVO OF \(p \)-METHOXYCINNAMIC ACID (\(p \)MCA)-HYDROXYPROPIL-\(\beta \)-CYCLODEXTRIN (HP\(\beta \)CD) INCLUSION COMPLEX (Prepared By Slurry Method)

IKRIMATUL KHULUQIYAH PRIHANTINI

\(p \)-methoxycinnamic acid (\(p \)MCA) is an active compound obtained from hydrolysis of ethyl \(p \)-methoxycinnamate acid (\(E_p \)MC) which is isolated from \textit{Kaempferia galanga} Linn. and has an analgesic effect. \(p \)MCA has low solubility in water, hence absorption and bioavailability \(p \)MCA in the body becomes imperfect and slow. One of the methods to increase the solubility of drug is by forming inclusion complex of \(p \)MCA with Hydroxypropil-\(\beta \)-siklodekstrin (HP\(\beta \)CD) (1:1). The inclusion complex is prepared using slurry method. The aim of this study was determine the bioavailability (\(t_{\text{max}} \), \(C_{\text{max}} \) and \(\text{AUC}_{0\rightarrow\infty} \)) of \(p \)MCA-HP\(\beta \)CD inclusion complex prepared by slurry compared to \(p \)MCA and \(p \)MCA-HP\(\beta \)CD physical mixture. Bioavailability test is performed using 5 New Zealand male rabbits each treatment group. There are three treatments: \(p \)MCA, \(p \)MCA-HP\(\beta \)CD physical mixture, and \(p \)MCA-HP\(\beta \)CD inclusion complex. Rabbits are given treatment by oral using sonde and blood samples are taken at a certain time. Blood samples of each rabbit are prepared and determined sample concentration using HPLC. Sample concentration in each treatment group are calculated and analyzed parameters bioavailability (\(t_{\text{max}} \), \(C_{\text{max}} \), \(\text{AUC}_{0\rightarrow\infty} \)) using ANOVA one way (\(\alpha = 0.05 \)). The result of ANOVA is bioavailability (\(t_{\text{max}} \), \(C_{\text{max}} \), \(\text{AUC}_{0\rightarrow\infty} \)) of \(p \)MCA-HP\(\beta \)CD inclusion complex increased significantly compared to \(p \)MCA but bioavailability of \(p \)MCA-HP\(\beta \)CD inclusion complex is equal with \(p \)MCA-HP\(\beta \)CD physical mixture.

Keyword: inclusion complex, \(p \)MCA, hidroxypropil-\(\beta \)-siklodekstrin, bioavailability, slurry method