Editorial boards

Most journals operate under the guidance of an editorial board, providing expert advice on content, attracting new authors and encouraging submissions.

The editorial board, or (editorial) advisory board, is a team of experts in the journal’s field. Editorial board members:

- Review submitted manuscripts
- Advise on journal policy and scope
- Identify topics for special issues, which they may guest edit
- Attract new authors and submissions

Selecting editorial board members

Editorial board members are selected by the journal’s editor(s), with input from the publisher. Editorial boards generally undergo a complete revision every two or three years, with members joining, stepping down or continuing for another term. Changes also occur in the interim, for example if a member resigns.

A journal’s editorial board can affect its quality, so editors should consider the following:

- The location of board members should represent the reach of the journal
- Board members' expertise should represent the journal's scope
- Representatives should be appointed from key research institutes
- Former Guest Editors of special issues, and authors of key reviews, and top reviewers may be suitable
- Existing board members may have suggestions for new members

If you’re interested in joining a journal’s editorial board, use the Journal Finder to locate the journal, and contact the editor via the Editorial Board listings.

- Products & Solutions
 - R&D Solutions
 - Clinical Solutions
 - Research Platforms
 - Research Intelligence
 - Education
- Services
 - Authors
 - Editors
 - Reviewers
 - Librarians
- Shop & Discover
 - Books and Journals
1. Review

Red propolis: Chemical composition and pharmacological activity

Open access - Review article
Pages 591-598
Luciane Corbellini Rufatto, Denis Amilton dos Santos, Flávio Marinho, João Antonio Pégas Henriques, ..., Sidnei Moura
Download PDF

An overview on application of phage display technique in immunological studies

Open access - Review article
Pages 599-602
Abbas Rami, Mahdi Behdani, Najmeh Yardehnavi, Mahdi Habibi-Anbouhi, Fatemeh Kazemi-Lomedasht
Download PDF

Euphorbia tirucalli L.: Review on morphology, medicinal uses, phytochemistry and pharmacological activities

Open access - Review article
Pages 603-613
Prashant Y. Mali, Shital S. Panchal
Download PDF

Basic research

1.

Antihypertensive and antioxidant activity of Cassytha filiformis L.: A correlative study

Open access - Original research article
Pages 614-618
Yori Yuliantra, A. Armenia, Helmi Arifin
Download PDF

Antihyperglycemic effect of methanol extract of Tamarix aphylla L. Karst (Salteedar) in streptozocin–nicotinamide induced diabetic rats

Open access - Original research article
Pages 619-623
Roob Ullah, Shafiq Ahmed Tariq, Naeem Khan, Nawaz Sharif, ... Khalid Mansoor
Download PDF
Candida albicans isolated from urine: Phenotypic and molecular identification, virulence factors and antifungal susceptibility

Open access - Original research article
Pages 624-628
Laura Wiebusch, Adriana Araújo de Almeida-Apolonio, Luana Mireli Carbonera Rodrigues, Bruna de Paula Bicudo, ... Kelly Mari Pires de Oliveira
Download PDF

Antimicrobial activity of Tunisian Euphorbia paralias L.

Open access - Original research article
Pages 629-632
Malek Besbes Hlila, Kaouther Majouli, Hichem Ben Jannet, Mahjoub Aouni, ...
Boulbaba Selmi
Download PDF

Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus

Open access - Original research article
Pages 633-639
Achmad Fuad Hafid, Chie Aoki-Utsubo, Adita Ayu Permanasari, Myrna Adianti, ... Hak Hotta
Download PDF

Toxicological evaluation and protective effect of ethanolic leaf extract of Launaea taraxacifolia on gentamicin induced rat kidney injury

Open access - Original research article
Pages 640-646
Lydia Enyonom Kuatsienu, Charles Ansah, Michael Buenor Adinortey
Download PDF
The protective effect of rutin and quercetin on 5-FU-induced hepatotoxicity in rats

Open access - Original research article
Pages 647-653
Volkan Gelen, Emin Şengül, Semin Gedikli, Gözde Atila, ... Mustafa Makav
Download PDF

Chemical constituents, in vitro antimicrobial and cytotoxic potentials of the extracts from Macaranga barteri Mull-Arg

Open access - Original research article
Pages 654-659
Akintayo Ogundajo, Benjamin Okeleye, Anofi Omotayo Ashafa
Download PDF

Optimization of ionic liquid-based microwave-assisted extraction of polyphenolic content from Peperomia pellucida (L) kunth using response surface methodology

Open access - Original research article
Pages 660-665
Islamudin Ahmad, Arry Yanuar, Kamarza Mulia, Abdul Mun'im
Download PDF

Dysregulation of Notch signaling related genes in oral lichen planus

Open access - Original research article
Pages 666-669
Nunthawan Nowwarote, Thanaphum Osathanon
Download PDF
Antibiotic susceptibility and molecular characterization of resistance genes among *Escherichia coli* and among *Salmonella* subsp. in chicken food chains

Open access - Original research article
Pages 670-674
Yith Vuthy, Kruy Sun Lay, Heng Seiha, Alexandra Kerleguer, Awa Aidara-Kane
Download PDF

ISSN: 2221-1691
Antiviral activity of the dichloromethane extracts from *Artocarpus heterophyllus* leaves against hepatitis C virus

Achmad Fuad Hafidh1,2, Chie Aoki-Utsubo3, Adita Ayu Pernonasari1, Myrna Adriani1, Lydia Tuneuw1, Aty Widyawaryanti1,2, Sri Puji Astuti Wahyunsih2, Tuwik Sri Wahyuningsih2, Maria Inge Lasida3,4, Soetjipto3,5, Hak Hotta7

1Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
2Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya 60286, Indonesia
3Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomonoura, Suma-ku, Kobe 654-0142, Japan
4Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia
5Department of Biochemistry, Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia
6Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
7Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, 1-5-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

ABSTRACT

Objective: To determine anti-viral activities of three *Artocarpus* species: *Artocarpus altilis*, *Artocarpus camansi*, and *Artocarpus heterophyllus* (*A. heterophyllus*) against Hepatitis C Virus (HCV).

Methods: Antiviral activities of the crude extracts were examined by cell culture method using Huh7-l-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCV activities was determined by time-of-addition experiments. The effect on HCV RNA replication and HCV accumulation in cells were analyzed by quantitative reverse transcription-PCR and western blotting, respectively.

Results: The dichloromethane (DCM) extract of *A. heterophyllus* exhibited strong anti-HCV activity with an inhibitory concentration (IC₅₀) value of (1.5 ± 0.6) μg/mL without obvious toxicity. The DCM extracts from *Artocarpus altilis* and *Artocarpus camansi* showed moderate anti-HCV activities with IC₅₀ values being (6.5 ± 0.3) μg/mL and (9.7 ± 1.1) μg/mL, respectively. A time-of-addition studies showed that DCM extract from *A. heterophyllus* inhibited viral entry process though a direct virucidal activity and targeting host cells. HCV RNA replication and HCV protein expression were slightly reduced by the DCM treatment at high concentration.

Conclusions: The DCM extract from *A. heterophyllus* is a good candidate to develop an antiviral agent to prevent HCV grant reinfecion following liver transplantation.

1. Introduction

Hepatitis C Virus (HCV) infection is a major health problems that lead to liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Approximately 170 million people of world population are chronically infected with HCV [1–3]. HCV exhibits high genetic diversity and different genotypes which are classified into seven (1–7) genotypes with 67 confirmed and 20 provisional subtypes [4]. In
HCV-positive patients, the cumulative risk of developing hepatocellular carcinoma in the 40–74 age group is 21.6% among males and 8.7% among females [5].

HCV is a small enveloped virus with a positive-sense, single-stranded RNA genome that encodes a large polyprotein consisting of three structural proteins and seven nonstructural proteins. The structural proteins of enveloped glycoproteins E1 and E2 are responsible for virus binding to the receptor molecules on cell surface, such as scavenger receptor class B type I (SR-BI), CD81, claudin 1, and occludin [1]. Meanwhile, the nonstructural proteins of p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B are responsible for viral RNA replication and viral particle construction [6–8].

The current treatment of HCV infection has markedly changed in the recent years. The direct acting antiviral agents (DAAs) combined with Interferon (IFN) have been approved and new IFN-free regimen combinations are recently available in many countries. DAAs targets nonstructural proteins of HCV resulted in the disruptions of the viral replication and infection. Currently approved DAAs consist of NS3 protease inhibitors such as simeprevir, asunaprevir and vaniprevir; NS5A inhibitors such as daclatasvir and ledipasvir; and NS5B RNA-dependent RNA polymerase (RdRp) inhibitors such as sofosbuvir [9,10]. The current treatment regimen using DAAs has dramatically improved sustained virological response (SVR) in most patients of different HCV genotypes. However, the emergence of drug resistance virus, safety for long usage, expensive cost of DAAs therapy, and limited access to the treatment, especially for patients in countries with relatively low income remain major barriers to HCV treatment. Thus, development of effective and inexpensive anti-HCV agents is still required.

Tropical rainforests exhibit a vast diversity in plants and those plants are sources for potential drug development. It has been previously reported that anti-HCV activities of Indonesian medicinal plants, in which 4 out of 21 plants extracts revealed anti-HCV activity against the HCV J6/JFH1-P47. One of the four plants was Ficus fistulosa known as Moraceae family [11]. Moraceae family consists of 60 genera and includes 1400 species. The important genus of the Moraceae family is Arctocarpus which is composed of 50 species [12]. Arctocarpus is known to have wide bioactivities against virus [13,14], bacterial [15,16], malarial [17,18], and fungi [19,20].

In this study, three species of Arctocarpus from Purwodadi Botanical Gardens, East Java, Indonesia, namely Arctocarpus altiss (A. altiss) (breadfruit), Arctocarpus camansi (A. camansi) (breadnut), and Arctocarpus heterophyllus (A. heterophyllus) (jackfruit) were screened for anti-HCV activities.

2. Materials and methods

2.1. Cells and viruses

A clone of human hepatocellular carcinoma-derived HuH7 cells, HuH7t-1 [21], was cultivated in Dulbecco’s Modified Eagle Medium (GIBCO Invitrogen, Carlsbad, CA, USA) supplemented with 10% Fetal Bovine Serum (Biowest, Nuaille, France), 0.15 mg/mL Kanamycin (Sigma–Aldrich, St. Louis, MO, USA) and non-essential amino acids (GIBCO-Invitrogen) in 5% CO2 at 37 °C. A cell culture-adapted HCV variant was propagated as described previously [9]. In brief, HuH7t-1 cells (1.8 × 10^6 cells) were infected with JFH1 1.8 × 10^7 focus-forming unit (ffu) for 4 h with agitation in every 30 min. The HCV-infected cells were incubated for 5 d. The supernatants at day 3 post-infection were collected and used for antiviral experiments.

2.2. Preparation of crude extracts

The leaves of A. altiss, A. camansi, and A. heterophyllus were obtained from Purwodadi Botanical Garden, Indonesia and verified by a licensed botanist. These Arctocarpus leaves were extracted with several solvents (ethanol 80%, hexane, dichloromethane and methanol). The leaves were extracted using n-hexane and ethanol 80%. Meanwhile, the residue from n-hexane extract was further extracted using dichloromethane (DCM). Thereafter, the residue from dichloromethane was extracted using methanol. All extracts were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 100 mg/mL and then stored at −30 °C.

2.3. Virus titration and immunostaining

Virus titration and immunostaining was performed as described previously [9,21,22]. In brief, virus supernatants diluted in the medium and inoculated onto the HuH7t-1 cells. After virus absorption for 4 h, the cells were cultured with medium containing 0.4% methyl cellulose (Sigma–Aldrich) for 41 h. The cells were fixed with 10% formaldehyde solution and permeabilized with 0.5% triton X-100 in PBS. The cells were stained with anti-HCV patient anti-serum and HRP-goat anti-human Ig antibody (MBL). The HCV antigen positive cells were visualized with Metal Enhanced DAB substrate kits (Thermo Fisher Scientific, Rockford, USA) and infectious foci were counted under microscope.

2.4. Antiviral activity assay

Antiviral activity assay was performed as described previously [9,21,22]. HuH7t-1 cells (5.2 × 10^4) were inoculated with HCV at multiplication of infection (MOI) of 0.1 in the presence of different concentrations of plant extracts (100, 50, 25, 12.5, 6.3 and 3.1 μg/mL). After virus absorption for 2 h, the cells were rinsed with the medium and were further incubated in the medium containing the same extracts for 46 h. For time-of-addition experiments, the cells were treated with the medium containing extracts only during viral inoculation (entry event) or only after viral inoculation (post entry event). Culture supernatants at 48 h post-infection were collected for virus titration. The 50% inhibitory effect (IC50) was calculated by SPSS probit analysis.

2.5. Virucidal activity assay

Virucidal activity test was performed as described previously [9]. In brief, the HCV suspension (10^6 ffu/mL, 75 μL) was mixed with an equal volume of DCM extract and incubated for 2 h at 37 °C. Following by inoculating the virus suspension to the cells and incubated for 4 h at 37 °C. After removing viral inoculum, the cells were overlaid with 0.5% methyl cellulose-containing medium and incubated for 41 h.

2.6. Effect of host expression assay

The extract of DCM from A. altiss was preincubated with cell (5.2 × 10^5) for 2 h at 37 °C. Then, cells were incubated with HCV (MOI of 0.1) for 4 h. After viral absorption, cells were replaced with medium and incubated for 41 h. The culture supernatant was collected for virus titration and immunostaining.
2.7. Immunoblotting

The cells were lysed in a sodium dodecyl sulfate (SDS) sample buffer and the protein concentrations were determined using a bicinchoninic protein assay kit (Thermo Fisher Scientific). Equal amounts of RNA were separated in SDS-polyacrylamide gel electrophoresis and transferred onto a polyvinylidene difluoride membrane (Millipore, Bedford, MA, USA). The membranes were probed with an HCV NS5 mouse monoclonal antibody (clone H23; Abcam, Cambridge, MA, USA), an HCV NS5A mouse monoclonal antibody (clone 7BS; Biofront, Tallahassee, FL) or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (MBL, Nagoya, Japan) as primary antibodies followed by HRP-conjugated goat anti-mouse immunoglobulin (MBL) as the secondary antibody. Target proteins were visualized using enhanced chemiluminescence detection system (Biorad; GE healthcare, UK).

2.8. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

RNA extraction, cDNA synthesis, and qRT-PCR were performed as described previously [9]. In brief, RNA was extracted from cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). One μg of total RNA was transcribed using a ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan) with random primers, and cDNA was amplified for real-time quantitative PCR using SYBR Premix Ex Taq (Takara Bio, Shiga, Japan) in a MicroAmp 96-well plate. PCR was performed using ABI 7300 Real-Time PCR system with specific primers to amplify an NS3 region of the HCV genome 5'-CTTTGACTCCTGTGACTCGACT-3' (sense) and 5'-CCCTGTTTCTCCTACCTG-3' (antisense).

2.9. MTT assay

The cytotoxicity of the samples was assessed by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay as described previously [9]. In brief, cells in 96 well plates were treated with various concentrations of crude extracts for 48 h. The medium was replaced with MTT containing medium and incubated for 4 h. Insoluble precipitates were dissolved with DMSO and the absorbance at 560 nm was measured using a microplate reader. The percentages of cell viability were compared to the control and calculated for 50% cytotoxic concentration (CC50) values.

2.10. Data analysis

Results were expressed as mean ± SD. Differences between two data sets were evaluated by Student's two-tailed t-test. A P-value of < 0.05 was considered as statistically significant.

3. Results

3.1. Anti-HCV activities of A. altillis, A. heterophyllus, and A. camansi

We prepared crude extract samples from three *Artocarpus* species (*A. altillis, A. heterophyllus, and A. camansi*) using four various solvents (80% ethanol, n-hexane, DCM, and methanol) and obtained a total of 12 samples. Those samples were assayed for anti viral screening against HCV (JFH1 strain). HCV was inoculated onto HuH7/t-1 cells in the presence of the samples and after viral adsorption for 2 h, the cells were extensively rinsed and further incubated in the same extracts containing medium for 46 h. The 50% HCV inhibition concentration (IC50) and the 50% cytotoxic concentration (CC50) and selectivity indexes (SI; CC50/IC50) of tested samples are shown in Table 1. The results showed that of the 12 samples possessed strong anti-HCV activities with IC50 value of < 10 μg/mL and 3 extracts moderate activities with IC50 value of (10-20) μg/mL. Among samples possessing anti-HCV activity, the DCM extract of *A. heterophyllus* exhibited the strongest activity with an IC50 value of 1.5 μg/mL and CC50 > 200 μg/mL (SI: > 134.8). Methanol extract of *A. heterophyllus* and 80% ethanol extract of *A. heterophyllus* showed anti-HCV activities with IC50 values of 6.8 μg/mL and 12.9 μg/mL, respectively without any cytotoxic effect with CC50 values > 600 μg/mL and > 800 μg/mL and SI values of 88.6 and 62.1, respectively. The DCM extracts of *A. altillis* and *A. camansi* revealed stronger anti-HCV activity with IC50 values of 6.5 μg/mL and 9.7 μg/mL, respectively, with CC50 value of > 50 μg/mL. On the other hand, the hexane extracts of the three *Artocarpus* species did not exhibit significant anti-HCV activities at the concentration of 100 μg/mL. Cytotoxic dependent inhibition of HCV infection and cell viability of each sample was shown in Figure 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>IC50 (μg/mL)</th>
<th>CC50 (μg/mL)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. altillis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80% Ethanol</td>
<td>8.9 ± 0.3</td>
<td>> 50</td>
<td>> 5.7</td>
</tr>
<tr>
<td>Hexane</td>
<td>> 100</td>
<td>> 500</td>
<td>NA</td>
</tr>
<tr>
<td>DCM</td>
<td>6.5 ± 0.3</td>
<td>> 50</td>
<td>> 7.8</td>
</tr>
<tr>
<td>Methanol</td>
<td>10.7 ± 1.6</td>
<td>> 200</td>
<td>> 18.6</td>
</tr>
<tr>
<td>A. heterophyllus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80% Ethanol</td>
<td>12.9 ± 2.5</td>
<td>> 800</td>
<td>> 62.1</td>
</tr>
<tr>
<td>Hexane</td>
<td>> 100</td>
<td>> 400</td>
<td>NA</td>
</tr>
<tr>
<td>DCM</td>
<td>1.5 ± 0.6</td>
<td>> 200</td>
<td>> 134.8</td>
</tr>
<tr>
<td>Methanol</td>
<td>6.8 ± 0.8</td>
<td>> 600</td>
<td>> 88.6</td>
</tr>
<tr>
<td>A. camansi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80% Ethanol</td>
<td>6.7 ± 0.9</td>
<td>> 50</td>
<td>> 7.5</td>
</tr>
<tr>
<td>Hexane</td>
<td>> 100</td>
<td>> 500</td>
<td>NA</td>
</tr>
<tr>
<td>DCM</td>
<td>9.7 ± 1.1</td>
<td>> 50</td>
<td>> 5.2</td>
</tr>
<tr>
<td>Methanol</td>
<td>13.0 ± 0.7</td>
<td>> 100</td>
<td>> 7.8</td>
</tr>
</tbody>
</table>

Data represent mean ± SD of data from triplicate experiments. NA, not applicable, SI, selectivity index.
with media containing same extracts for 46 h (treatment after virus entry). The results showed that all the three extracts (80% ethanol, DCM, methanol) of A. altillis and A. camansi exerted anti-HCV activity mainly at the post-entry event (Table 2). In contrast, the extracts of 80% ethanol, DCM and methanol of A. heterophyllus exhibited HCV inhibition principally at viral entry, while the post entry steps showed the lesser extent (Table 2).

3.3. Thin layer chromatography (TLC) analysis of extracts of A. altillis, A. heterophyllus, and A. camansi

Bioactivities of medicinal plants were influenced by the chemical contents of the plants. Screenings of the bioactive components in the extracts were performed by TLC analysis and the result was demonstrated in Figure 2. The DCM, methanol and 80% ethanol extracts of A. altillis and A. camansi showed to contain with flavonoid component which is indicated by one major orange spot. On the other hand, TLC of methanol and DCM extracts of A. heterophyllus showed the presence of terpenoid and steroid which are indicated by purple and blue spots, respectively. DCM extract of A. heterophyllus also contained chlorophyll-related compounds with detection of red spots under detection of UV irradiation 365 nm. While the hexane extracts of A. altillis, A. heterophyllus, and A. camansi showed the presence of terpenoids as one major spots.

3.4. DCM extract of A. heterophyllus inhibits HCV infection through a direct virucidal effect and affecting host cells

Since the strong inhibition of DCM extract, further analysis to conduct the mechanism of action was performed for DCM

Table 2
Mode of action of crude extracts from A. altillis, A. heterophyllus, and A. camansi.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Conc. (µg/mL)</th>
<th>% Inhibition</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>During + post inoculation</td>
<td>During inoculation</td>
</tr>
<tr>
<td>A. altillis</td>
<td>80% Ethanol</td>
<td>30</td>
<td>97.5</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>30</td>
<td>99.0</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>30</td>
<td>92.4</td>
<td>9.7</td>
</tr>
<tr>
<td>A. heterophyllus</td>
<td>80% Ethanol</td>
<td>25</td>
<td>89.4</td>
<td>56.7</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>6</td>
<td>91.0</td>
<td>81.1</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>25</td>
<td>95.5</td>
<td>72.3</td>
</tr>
<tr>
<td>A. camansi</td>
<td>80% Ethanol</td>
<td>30</td>
<td>97.1</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>30</td>
<td>97.0</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>30</td>
<td>94.0</td>
<td>17.3</td>
</tr>
</tbody>
</table>
Figure 2. TLC analysis of extracts of *A. alitis*, *A. heterophyllus* and *A. camansi*. Silica gel F254 TLC was used as stationary phase and chloroform:methanol (9:1, v/v) as mobile phase. Detection under (A) UV 254 nm, (B) UV 365 nm, (C) heating TLC plate at 105 °C for 5 min after spraying 10% sulfuric acid and (D) observed under UV 365 nm after using spray reagent and heated. Sample: (1) hexane extract of *A. heterophyllus*, (2) DCM extract of *A. heterophyllus*, (3) methanol extract of *A. heterophyllus*, (4) 80% ethanol extract of *A. heterophyllus*, (5) hexane extract of *A. alitis*, (6) DCM extract of *A. alitis*, (7) methanol extract of *A. alitis*, (8) 80% ethanol extract of *A. alitis*, (9) hexane extract of *A. camansi*, (10) DCM extract of *A. camansi*, (11) methanol extract of *A. camansi*, (12) 80% ethanol extract of *A. camansi*.

Time-of-addition experiment to determine the effect of extracts in the entry or post entry steps of HCV life cycle showed that the DCM extract of *A. heterophyllus* exerts anti-HCV activity at mainly in the entry-step. To evaluate whether the DCM extract acted on the target of HCV or host cells, the infectivity of the extract-treated HCV virions were determined. HCV virions were treated with the DCM extract or medium as the control for 2 h at 37 °C and then pretreated-HCV was inoculated onto Huh7.5-1 cells for virus titration. As shown in Figure 3A, pretreatment of HCV inoculum with the DCM extract (6.3 µg/mL) was significantly decreased the HCV infectivity upon 31.2% (P < 0.00001) compared with the untreated control (81.8% reduction). We next assessed the effect of DCM-pretreated host cells on HCV infection. Huh7.5-1 cells were pretreated with the DCM extract for 2 h and then rinsed extensively to remove the extract. The pre-treated cells were challenged with HCV infection in the absence of the DCM extract. The result showed that the pretreatment of the cells with DCM extract (6.3 µg/mL) was significantly decreased HCV infectivity upon 9.9% (P < 0.00001) compared with the untreated control (90.1% reduction) (Figure 3B). These results suggested that the DCM extract of *A. heterophyllus* targeted both HCV virion and host cells. Since treatment of cells with the DCM extracts (6.3 µg/mL) revealed the effect at the post-viral adsorption step and also somehow inhibited HCV infection (Table 2), further confirmation of the effect on HCV RNA replication and HCV protein accumulation in the cells was evaluated. Real-time RT-PCR and immunoblotting analysis demonstrated that low concentration of DCM extract did not clearly suppress HCV replication and HCV protein accumulation, however high concentrations of the DCM (> 12.5 µg/mL) acted to inhibit HCV replication (Figure 3C and D).

Figure 3. (A) Analysis of virucidal activity. HCV suspension was mixed with the DCM extract of *A. heterophyllus* for 2 h at 37 °C before inoculation onto the cells. (B) Effect of pretreatment of cells with DCM extracts of *A. heterophyllus* on HCV infection. Cells were preincubated with the DCM extracts for 2 h and then challenged with HCV infection. (C) The HCV-infected cells were treated with the DCM extracts of *A. heterophyllus*. HCV protein accumulation in the cells was analyzed by western blotting against NS3, NS5A or GAPDH as a loading control. (D) The level of HCV RNA in the cells was measured by qRT-PCR. Data represent means from triplicate experiments ± SD. *P < 0.001 compared to the untreated control; **P < 0.00001 compared to the untreated control.
4. Discussion

Medicinal plants are potential resources for various bioactivities. Several components from medicinal plants have been reported to possess potential bioactivity, including anti-HCV. Plants of Artocarpus genus have been used as traditional medicine in Indonesia for the treatment of fever, dysentery, and malaria. The genus of Artocarpus is rich in phenolic compounds, including flavonoid, stilbenoids, arylbenzofurans, and Jacalin (a lectin) [23–25] that were reported to possess a wild range of biological activities including anticancer, anti-inflammatory, antihypertensive, antibacterial, and antiviral [26].

In the present study, we screened crude extracts of three Artocarpus species: A. altillis, A. camansi, and A. heterophyllus for anti-HCV activities. A plant of A. altillis is known as breadfruit, which was used traditionally to treat liver disorders, hypertension, and diabetic. A total of 130 compounds were identified from A. altillis, of which more than 70 are derived from the prenylpropanoid pathways [25]. Meanwhile A. camansi is known with local name breadnut. The morphology of A. altillis and A. camansi is similar for leaves, fruits, and stems [25]. A. camansi is also believed to have similar medicinal properties to A. altillis [24].

Plant of A. heterophyllus has a local name Jackfruit and the leaves are usually entire (without lobes), much smaller than breadfruit and breadnut leaves. A. heterophyllus was known active as an antibacterial activity against 24 species of bacteria [27]. Jacalin, a Jackfruit lectin from breadnut leaves, A. heterophyllus was reported to inhibit DNA viruses such as herpes simplex virus type II (HSV-2), varicella-zoster virus (VZV), and cytomegalovirus (CMV) [28], however, there is no reported yet about its anti-HCV activities.

Anti-HCV activities were demonstrated that 80% ethanol, DCM, and methanol extract of Artocarpus species mediated strong inhibition against HCV with IC50 value less than 15 g/mL, while the hexane extracts did not access any anti-HCV activities in the concentration of 100 g/mL (Table 1 and Figure 1). Further analysis was demonstrated that extracts of A. altillis and A. camansi exhibited HCV inhibition mainly at the post-entry step with percentage inhibition higher than 90%, while extracts of A. heterophyllus inhibit HCV in the entry step with percentage inhibition higher than 80% (Table 2). Common constituent(s) present in the extracts of A. camansi and A. altillis may exert similar anti-HCV activities.

To confirm the mechanism of A. heterophyllus how to inactivate the virus, virucidal activity and effect of host expression test were conducted. The result showed that pretreatment of the HCV virion or the HuH7/1 cells with DCM extract of A. heterophyllus strongly reduced HCV infection. It suggested that DCM extract of A. heterophyllus exerts antiviral activities through direct virucidal activity and effecting host cells (Figure 2A and B) which may interfere the interaction with some receptors in the host cells. Some host cell molecules have been reported to be important entry factors or co-receptors for HCV, such as glycosaminoglycan (GAG), low density lipoprotein receptor (LDLR), the scavenger receptor class B member I (SR-BI), the tetraspan CD81, claudin-1 (CLDN1), and occludin (OCLN) which play as necessary keys in the attachments process of HCV to the host cells [29]. Since antiviral drug(s) targeting host factor(s) is generally known to lower emergence rate of drug resistance compared to the direct-acting antiviral drugs, the DCM extract of A. heterophyllus may be useful as a new drug development for the treatment of HCV especially to prevent HCV grant reinfection following liver transplantation.

Further analysis to confirm the effect of DCM extract of A. heterophyllus in the post entry step of HCV life cycle, western blot analysis was performed to examine the expressions of NS3 and NS5A HCV protein levels which played the important role in the replication of HCV. The result demonstrated mild inhibition of NS3 and NS5A protein expression level in DCM extract of A. heterophyllus-treated cells. Consistently, the HCV RNA levels were slightly inhibited by DCM extract of A. heterophyllus, however significant inhibition of RNA level was observed when the concentration was increased up to 12.5 and 25 μg/mL. These results were suggested the possible inhibition process attachment, assembly, release of virions and replication steps.

The bioactivities of components were influenced by the biochemical constituents among the plants. Our studies have not yet identified the compound(s) responsible for anti-HCV activity from A. altillis, A. heterophyllus, and A. camansi in this study. Other study was reported that A. heterophyllus contains lectin, arctaricine, arctarceptin, cyclophorohydrin, artonins A, morin, oxydihydroartocarpesin, cynomacurin, isouartcarpin, cyclouartcarpin, artocarpesin, norartocarpin, cylooartrinone and arto-carpanone. The leaves and stem are also reported to contain sapogenins, cylooartrone, cylooartrinone, sitosterol and tannins [24].

Our TLC profiles were identified terpenoid and steroid components which served as major components of the DCM extracts of A. heterophyllus (Figure 2). The DCM, methanol and 80% ethanol extracts of A. altillis and A. camansi contained flavonoid as a major component. Some terpenoids have been reported to inhibit HCV infection such as Saikosaponin b2 from Bupleurum kau [30]; oleic acid and ursolic acid [31]; Platycodon D, D2, D3, deacylatedyoplatycin D, D2, platyoronic acid A [32]; and andrographolide, a diterpenoid lactone from Andrographis paniculata [33]. Many flavonoids have also been reported to exert anti-HCV activity: Epigallocatecine-3-gallate (EGCG) [34], quercetin, luteolin, apigenin and ladanine [35], naringenin and silymarin/silibinin. The grapefruit flavonoid naringenin was reported to inhibit HCV assembly and release. Silibinin, the major component of silymarin, was reported to exert anti-HCV activity by blocking HCV entry, HCV fusion, replication and production of new progeny virus. These compounds are currently in phase 1 and phase 2/3 clinical trial studies, respectively [36,37]. As for the A. altillis, A. heterophyllus, and A. camansi, further analyses is required to determine the responsible compound(s) for anti-HCV activities in their extracts.

Extracts of A. altillis, A. camansi, and A. heterophyllus possess anti-HCV activity. The DCM extract of A. heterophyllus exhibits strong anti HCV activity through a direct virucidal activity and effecting host cells. The DCM extract of A. heterophyllus was a good candidate to develop a new antiviral agent to treat HCV infection and to prevent HCV grant reinfection following liver transplantation.

Conflict of interest statement

The authors declare no conflict of interests.

Acknowledgements

We thank to Dr. Takaji Wakit (National Institute of Infectious Diseases, Tokyo, Japan) for providing pFFH-1 and
Dr. Yohko Shimizu for providing HuH7-lt-1 cells. This work was supported in part by Mandat Project Airlangga University and Science and Technology Research Partnerships for Sustainable Development (SATREPS) program from Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA).

References