African Journal of Infectious Diseases (AJID)

Open Journal Systems
Journal Help
User

Username
Password

☐ Remember me
Login

Journal Content

Search

Search Scope
All

Search

Browse

- By Issue
- By Author
- By Title
- Other Journals

Font Size
Make font size smaller Make font size default Make font size larger

Information

- For Readers
- For Authors
- For Librarians

Hosted By PKP|PS
Part of the
PKP Publishing Services Network

- Home
- About
- Login
- Register
- Search
- Current
- Archives
- Announcements
- Online Submissions on new site
African Journal of Infectious Diseases (AJID)

The African Journal of Infectious Diseases (AJID), is a peer-reviewed, international journal that publishes papers which make an original contribution to the understanding of infectious diseases. Any paper relating to impact, care, prevention and social planning, will be considered for publication in AJID. Reports of research related to any aspect of the fields of microbiology, parasitology, infection, and host response, whether laboratory, clinical, or epidemiologic, will be considered for publication in the journal.

Announcements

Article Processing fee regulation
Authors are strongly advised NOT to pay Article Processing Fee until their manuscripts have been accepted for publication in the journal and appropriate payment invoices/bills have been received by them.
Posted: 2018-01-29

Announcing the appointment of new Editorial Board and Editors of AJID

We announce the appointment of the Editorial Board members of AJID. The appointment is for a period of three (3) - years term and may be reappointed. Members will work with the Editors-in-Chief/Managing Editor in attracting new authors and submissions, and ensure ongoing development of the journal. Each member should handle between 6 and 12 papers per year.
The Editorial Board will hold its meetings either through teleconferences or Skype. Posted: 2017-10-15

More Announcements...

Vol 12, No 1S (2018): Special Issue

Table of Contents

Articles

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
<th>Fulltext pdf</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN VITRO STUDIES ON HEME OXYGENASE-1 AND P24 ANTIGEN HIV-1 LEVEL AFTER HYPERBARIC OXYGEN TREATMENT OF HIV-1 INFECTED ON PERIPHERAL BLOOD MONONUCLEAR CELLS (PBMCs) Retno Budiarti, Kuntaman Kuntaman, Muhammad Nasronudin, muhammad guritno suryokusumo, Siti Qamariyah Khairunisa</td>
<td>1-6</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>GENOTYPING OF HUMAN PAPILLOMAVIRUS IN CERVICAL PRECANCEROUS LESION AND SQUAMOUS CELL CARCINOMA AT DR. SOETOMO HOSPITAL, SURABAYA, INDONESIA Gondo Mastutik, Rahmi Alia, Alphania Rahmiayu, Anny Setijo Rahaju, Nila Kurniasari, Suhartono Taat Putra</td>
<td>7-12</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>DETERMINATION OF ENVIRONMENTAL FACTORS AFFECTING DENGUE INCIDENCE IN SLEMAN DISTRICT, YOGYAKARTA, INDONESIA Tri Wulandari Kesetyaningsih, Sri Andarin, Sudarto Sudarto, Henny Pramoedyo</td>
<td>13-35</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>ANTIVIRAL ACTIVITY OF Justicia gendarussa Burm. f. LEAVES AGAINST HIV-INFECTED MT-4 CELLS Agustinus Widodo, Prihartini Widiyanti, Bambang Prajogo</td>
<td>36-43</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>CD4+ AND CD8+ T-CELLS EXPRESSING INTERFERON GAMMA IN ACTIVE PULMONARY TUBERCLOSIS PATIENTS Betty Agustina Tambunan, Hery Priyanto, Jusak Nugraha, Soedarsono Soedarsono</td>
<td>49-53</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>THE ROLE OF PSYCHOLOGICAL WELL-BEING IN BOOSTING IMMUNE RESPONSE: AN OPTIMAL EFFORT FOR TACKLING INFECTION Abdurachman Latief, Netty Herawati</td>
<td>54-61</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR) Yuniati Yuniati, Nurul Hasanah, Sjarif Ismail, Silvia Anitasari, Swandari Paramita</td>
<td>62-67</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>INCREASED APOPTOSIS SKULL OF PUPS BORN TO TOXOPLASMA GONDII-INFECTED MICE ASSOCIATED WITH INCREASED EXPRESSION OF INTERFERON GAMMA, BUT NOT TUMOR NECROSIS FACTOR ALFA Lucia Tri Suwanti, Mufasirin Mufasirin</td>
<td>68-71</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>ADDITION OF ANTI- Toxoplasma gondii MEMBRANE IMMUNOGLOBULIN Y TO REDUCE NECROTIC INDEX IN MICE’S LIVER Heni Puspitasari, Lucia T. Suwanti, Mufasirin Djaeri</td>
<td>72-75</td>
<td>Fulltext.pdf</td>
</tr>
<tr>
<td>SEROPREVALENCE AND RISK FACTOR OF TOXOPLASMOSIS IN</td>
<td></td>
<td>Fulltext.pdf</td>
</tr>
</tbody>
</table>
SCHIZOPHRENIA PATIENTS REFERRED TO GHRASIA PSYCHIATRIC HOSPITAL, YOGYAKARTA, INDONESIA
Nina Difla Muflikhah, Supargiyono Supargiyono, Wayan Tunas Artama

CONCOMITANT SEXUALLY TRANSMITTED DISEASES IN PATIENTS WITH DIAGNOSED HIV/AIDS: A RETROSPECTIVE STUDY
Densy Violna Haranti, Afif Nurul Hidayat, Muhammad Miftahussurur

RISK FACTORS OF VULVOVAGINAL CANDIDIASIS IN DERMATO-VENEREOLOGY OUTPATIENTS CLINIC OF SOETOMO GENERAL HOSPITAL, SURABAYA, INDONESIA
Dharin Serebrina Arfiputi, Afif Nurul Hidayat, Samsriyaningsih Handayani, Evy Ervianti

COMPARISON OF ANTI BACTERIAL EFFICACY OF PHOTODYNAMIC THERAPY AND DOXYCYCLINE ON AGGREGATIBACTER ACTINOMYCETEMCOMITANS
Ernie Maduratuna Setiafatie, Vina Puji Lestari, Suryani Dyah Astuti

EVALUATION OF THE ANTIGENICITY AND IMMUNOGENICITY OF Eimeria tenella BY REPRODUCTIVE INDEX AND HISTOPATHOLOGICAL CHANGES OF CECAI COCCIDIOSIS VIRULENT LIVE VACCINE IN BROILER CHICKENS
Endang Suprihati, Muchammad Yunus

DETERMINATION OF EFFECTIVE DOSE OF ANTIMALARIAL FROM CASSIA SPECTABILIS LEAF ETHANOL EXTRACT IN PLASMODIUM BERGHEI-INFECTED MICE
Wiwied Ekasari, Tutik Sri Wahyuni, Heny Arwaty, Nindyaa T. Putri

A NEW COPPER (II)-IMIDAZOLE DERIVATIVE EFFECTIVELY INHIBITS REPLICATION OF DENV-2 IN VERO CELL
Teguh Hari Sucipto, Siti Churrotin, Harasari Setyawati, Fahimah Martak, Kris Cahyo Mulyatno, Ilham Harlan Amarullah, Tomohiro Kotaki, Masanori Kameoka, Masanori Kameoka, Subagyo Yotopranoto, Soegeng Soegijanto

COMPARISON OF MULTIPLEX SINGLE ROUND PCR AND MICROSCOPY IN DIAGNOSIS OF AMOEBIASIS
BS Sri-Hidajati, Sukmawati Basuki, Suhintam Pusarawati, Kusmartisnawati Kusmartisnawati, Lynda Rossyanti, Sri Wijayanti Sulistyowati, Dwi Peni Kartikasari, Heny Arwati, Indah Tantular, Alpha Fardah, Andy Darma, Retno Handajani, Subijanto Marto Soedarmo

CLONING AND EXPRESSION OF MCE1A GENE FROM MYCOBACTERIUM TUBERCULOSIS BEIJING AND H37RV STRAIN FOR VACCINE CANDIDATE DEVELOPMENT
Desi Indriari, Andriansjah Rukmana, Andi Yasmun

EFFECT OF VARYING INCUBATION PERIODS ON CYTOTOXICITY AND VIRUCIDAL ACTIVITIES OF Justicia gendarussa Burm.f. LEAF EXTRACT ON HIV-INFECTED MOLT-4 CELLS
Prihartini Widiyanti, Bambang Prajogo, Agustinus Widodo

IN SILICO SCREENING AND BIOLOGICAL EVALUATION OF THE COMPOUNDS OF Justicia gendarussa LEAVES EXTRACT AS INTERFERON GAMMA INDUCER: A STUDY OF ANTI HUMAN IMMUNODEFICIENCY VIRUS (HIV) DEVELOPMENT
Restry Sinansari, Bambang EW Prajogo, Prihartini Widiyanti

ISOLATION AND IDENTIFICATION OF BRUCELLA SUIS IN PIGS AS ZOONOTIC DISEASE IN ENDEMIC AREAS OF EAST JAVA, INDONESIA
Emy S Koestanti, Wiwik Misaco, Sri Chusniati, Lilik Maslachah
Instructions for Authors

INSTRUCTIONS FOR AUTHORS FullText PDF
Babatunde O Olagunju 152-158

Print ISSN: 2006-0165; eISSN: 2505-0419.
Editorial Policies

- Search
- Current
- Archives
- Announcements
- Online Submissions on new site
- Editorial Board
- ATHMSI
- iThenticate

Home > About the Journal > Editorial Policies

Editorial Policies

- Focus and Scope
- Section Policies
- Peer Review Process
- Publication Frequency
- Open Access Policy
- Archiving
- African Journal of Infectious Diseases (AJID)
- Editorial Board
- Policy and Ethics
- Declaration of conflict of interest

Focus and Scope

The African Journal of Infectious Diseases (AJID) is a journal that publishes papers which make an original contribution to the understanding of infectious diseases. Any paper relating to impact, care, prevention and social planning will be considered for publication. Reports of research related to any aspect of the fields of microbiology, parasitology, infection, and host response, whether laboratory, clinical, or epidemiologic, will be considered for publication. Major Articles, Short Communications, Correspondence, Editorials, and Review articles are considered for publication. Papers will be accepted on the understanding that their contents have not been published or submitted for publication elsewhere. All submitted papers will be refereed by at least two appropriately qualified referees. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published approximately two to three months after acceptance.

Section Policies

Conference Report

These should be sent to the Editor.

Editors

- Clement Adewunmi
- Ezekiel Akinkunmi
- Vincent Titanji

☑️ Open
Submissions ✔ Indexed □ Peer Reviewed

Editorial

☐ Open Submissions ✔ Indexed □ Peer Reviewed

Articles

Regular Articles: should describe original investigations and research works that represent new and significant contributions and advances to the field of Infectious Diseases; such articles should contain 4000-6000 words, 4-8 figures/tables and a maximum of 35-40 references. The structured abstract should be 200-250 words. Original/Regular Articles are always peer-reviewed.

Editors

- Clement Adewunmi
- Ahmed Adu-Oppong
- Ezekiel Akinkunmi
- John OJEWOLE
- Babatunde OLAGUNJU

☐ Open Submissions ✔ Indexed ✔ Peer Reviewed

Review

Review Articles: should bear reviews on major areas or sub-areas in the area of Infectious Diseases. Reviews should describe current, new developments, summarize progress, and analyze published works in the field. Such articles should contain 5000-8000 words, 4-8 figures/Tables and a maximum of 40-50 references. The structured Abstract should be 200-250 words. Review Articles are always peer-reviewed.

Editors

- Ezekiel Akinkunmi
- John OJEWOLE
- Babatunde OLAGUNJU
- Babajide sadiq

☐ Open Submissions ✔ Indexed ✔ Peer Reviewed

Instructions for Authors

Editors

- Clement ADEWUNMI

☐ Open Submissions ✔ Indexed □ Peer Reviewed
Case Report

Case Reports: Case report articles contain reports on Infectious Disease-cases of interest. They should contain a maximum of 1,500 words, 3-4 Tables/Figures and no more than 20 references. Case Reports are peer-reviewed.

Editors

- Clement ADEWUNMI
- John OJEWOLE
- Babatunde OLAGUNJU
- Ademola OLANIRAN
- Babajide sadiq

Letter to Editor

These letters should comment on articles previously published in AJID or any other matter of interest to the journal. They should not have Tables or Figures. They should contain 500-750 words in length, and no more than a maximum of 5 references. Letters to the Editors are not peer-reviewed, but the Editor reserves the right to accept or reject any such article. The Editor may also seek expert views and/or opinions in the field before accepting or rejecting such articles. Short Communications are peer-reviewed.

Editors

- Clement Adewunmi
- Saajida Mahomed
- John OJEWOLE
- Babatunde OLAGUNJU
- Ademola OLANIRAN

Focus and Scope

The African Journal of Infectious Diseases (AJID) is a journal that publishes papers which make an original contribution to the understanding of infectious diseases. Any paper relating to impact, care, prevention and social planning will be considered for publication. Reports of research related to any aspect of the fields of microbiology, parasitology, infection, and host response, whether laboratory, clinical, or epidemiologic, will be considered for publication. Major Articles, Short Communications, Correspondence, Editorials, and Review articles are considered for publication. Papers will be accepted on the understanding that their contents have not been published or submitted for publication elsewhere. All submitted papers will be refereed by at least two appropriately qualified referees. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published approximately two to three months after acceptance. The Journal id published twice a year.

Editors
Peer Review Process

Every manuscript submitted to AJID will be initially checked and reviewed by an Editorial Office staff. If it is deemed to be appropriate and within the scope of the journal, the manuscript will be assigned to a sectional editor. If the Sectional Editor judges the article to be suitable for possible consideration for publication in AJID, the manuscript will then be sent to at least two external reviewers who are experts in the study area (using our database of experts in the field). All received manuscripts undergo these processes except (i) Letters to the Editor, (ii) Commentaries, (iii) Editorials and (iv) Meeting Reports—which are based on the Editor’s decision who may ask experts in the field on the scientific and ethical merits of their contents.

At the time of submission, authors are requested to provide two-to-three potential reviewers (with their names, affiliations and e-mail addresses) who could expertly review their manuscripts. However, the Editors reserve the right to choose or not to choose from the authors’ suggested reviewers.

AJID uses a single-blind review process. The reviewers’ identities are kept confidential, while the identity of the author/authors is made known to the reviewers.

Reviewers are expected to maintain confidentiality about the manuscripts that they review. Authors should receive initial decision on their manuscripts within 4-8 weeks after submission. If revision of the manuscript is required, the authors must submit their revised manuscript within 2-4 weeks of the request.

The Editorial Board may require authors to revise their manuscript/s more than once.

Publication Frequency

Biannual publication

Open Access Policy

AJID is now fully free open access. Free online subscription is available for authors and readers from now. Free online subscription is available for all Volumes of AJID after registration. Printed copies are with subscription fees.

Article Processing Fee (APF) and Extra-Page Charges (EPC) will apply to all manuscripts submitted to AJID including: Original articles, review articles, case reports and short communications. The APF is USD300.00. This includes up to 10 black and white published pages. EPC of USD30.00 will be charged per additional black and white page, while a once-for-all Submission Fee (SF) of USD20.00 will be charged for every manuscript submitted to the journal.

Subscription: Individual Annual subscription fee for printed copies is USD150.00, single copy is USD50.00; Institutions and Libraries USD500.00.
Nigerian Authors can pay their subscription to the journal account in Nigerian Naira at:
Account No. 1017042012
UNIVERSITY FOR AFRICA (UBA) PLC
Road 1, OAU Campus, Ile-Ife, Nigeria

International Subscribers could contact the editor at: editor@athmsi.org or may WIRE the transfer
alternatively to the journal account:
African Traditional Herbal Medicine Supporters Initiative (ATHMSI)

United Bank for Africa PLC, Nigeria
Swift Code: UNAFNGLA
Beneficiary account number: 3001646594
Beneficiary’s Name: African Traditional Herbal Practitioners Supporters Initiative (ATHMSI)
Beneficiary address: COJA Villa, 7, Road 1, Otuimaiye Square, P. O. Box 2586 Obafemi Awolowo
University Post office, Ile-Ife, Nigeria
UBA Branch: Road 1, Obafemi Awolowo University Campus, Ile-Ife, Nigeria

Archiving

This journal utilizes the LOCKSS system to create a distributed archiving system among
participating libraries and permits those libraries to create permanent archives of the journal for
purposes of preservation and restoration. More...

African Journal of Infectious Diseases (AJID)

The African Journal of Infectious Diseases (AJID) is a new journal that publishes papers which
make an original contribution to the understanding of infectious diseases. Any paper relating to
impact, care, prevention and social planning will be considered for publication. Reports of research
related to any aspect of the fields of microbiology, parasitology, infection, and host response,
whether laboratory, clinical, or epidemiologic, will be considered for publication. Major Articles,
Short Communications, Correspondence, Editorials, and Review articles are considered for
publication. Papers will be accepted on the understanding that their contents have not been published
or submitted for publication elsewhere. All submitted papers will be refereed by at least two
appropriately qualified referees. The Journal welcomes the submission of manuscripts that meet the
general criteria of significance and scientific excellence. Papers will be published approximately two
to three months after acceptance.

Editorial Board

EDITORIAL OFFICE
COJA VILLA, No 7 Road 1, Otun Maye Square, Ajebamidele, Ile-Ife, Osun State, Nigeria

Managing Editor:
Mr. Babatunde O. OLAGUNJU; MSc (COJA VILLA, No 7 Road 1, Otun Maye Square,
Ajebamidele, Ile-Ife, Osun State, Nigeria). bolagunju@athmsi.org

Editorial Assistants:
Ms Omolade OLABOYE and Mr. Hammed IBRAHEEM, (COJA VILLA, No 7 Road 1, Otun Maye Square, Ajebamidele, Ile-Ife, Osun State, Nigeria).

Editors-in-Chief:
Prof. Anthony O. ONIPEDE, B.Sc; MBChB; MSc; FWACP (Lab. Med.)
Department of Medical Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria.
E-mail: anthony_onipede@yahoo.ca, editor@athmsi.org

Dr. Gbola OLAYIWOLA, BPharm; MSc; PhD.
Department of Clinical Pharmacy and Administration, Obafemi Awolowo University, Ile-Ife, Nigeria.
E-mail: gbolaolayiwola@yahoo.com, editor@athmsi.org

Associate Editors:
Prof. Ademola OLANIRAN; PhD (University of KwaZulu-Natal, Durban, South Africa).
E-mail: olanirana@ukzn.ac.za

Prof. Francesca MANCIANTI; DVM (Faculty of Medicine, University of Pisa, Italy).
E-mail: francesca.mancianti@unipi.it

Dr. Emel SONMEZ; PhD (Anadolu University, Eskisehir, Turkey).
E-mail: emls222224@gmail.com

Prof. Hui WANG; DVM (Chinese Academy of Agricultural Sciences, Gansu, China).
E-mail: wanghai01@caas.cn

Editorial Board:
Dr. Saajida MOHAMED; MMed, FPHM (University of KwaZulu-Natal, Durban, South Africa).
E-mail: mahomeds@ukzn.ac.za

Dr. Frank ONYAMBU; PhD (Kenya Institute of Applied Sciences, Moi University, Kenya).
E-mail: frank.onyambu@iscb.org

Dr. Ezekiel AKINKUNMI; PhD (Obafemi Awolowo University, Ile-Ife, Nigeria).
E-mail: eoakinmi@oaufete.edu.ng

Dr. Josyline KABURI; PhD (University of Nairobi, Kenya). E-mail: jeirindi@kemri.org

Dr. Balram OMAR; MD (King George’s Medical University, Lucknow, India). E-mail: @gmail.com

Prof. Megbaru ABATE; PhD (Bahir Dar University, Ethiopia). E-mail: mgbeyney@gmail.com

Prof. Chrispinus MULAMBALAH; PhD (Moi University, School of Medicine, Kitale, Kenya).
E-mail: csmulambah@gmail.com

Dr. Alok KUMAR; MD (University of the West Indies, Cave Hill, Jamaica).
E-mail: alokkumar.uwhichill@gmail.com

Dr. Sharlene GOVENDER; PhD (Nelson Mandela Metropolitan University, Port Elizabeth, South Africa). E-mail: sharlene.govender@mnmu.ac.za

Dr. Babajide SADIQ; DrPH (Florida A&M University, Tallahassee, USA).
E-mail: babajidesadiq@yahoo.com

Dr. Celsus SENTE; PhD (Makerere University, Kampala, Uganda).
E-mail: csenhte@covab.mak.ac.ug
Policy and Ethics

The author, in his/her covering letter, must declare that the work reported in the manuscript was performed according to the national and international institutional rules concerning animal experiments, clinical studies and biodiversity rights. The importance of the study should also be provided in the covering letter. Authors should submit data that have arisen from animal and human studies in an ethically-guided manner by following the guidelines set up by the World Health Organization (WHO).

Authors submitting papers are advised to read online WIPO and WHO guidelines on these subjects. (http://www.wipo.int/tk/en/consultations/draft_provisions/draft_provisions.html and http://www.who.int/medicines/library/trm/researchdocs.shtml). Authors should make sure that they have acquired appropriate "prior informed consent" (PIC) of patients or volunteers used in their clinical studies. This means that the onus is on the authors, and not on the journal, regarding this important ethical issue. Moreover, authors should state this as a part of the protocol describing how this type of study or survey is made. Papers that violate these principles will neither be accepted nor considered for publication in AJID.

Declaration of conflict of interest

It is mandatory that authors disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations that could inappropriately influence, or be perceived to influence their work. Conflict of Interest disclosure is required for all manuscripts, and will be published. It is the responsibility of the corresponding author to ensure that all co-authors adhere to this policy.

Print ISSN: 2006-0165; eISSN: 2505-0419.
DETERMINATION OF EFFECTIVE DOSE OF ANTIMALARIAL FROM CASSIA SPECTABILIS LEAF ETHANOL EXTRACT IN PLASMODIUM BERGHEI-INFECTED MICE

Wiwied Ekasari1*, Tutik Sri Wahyuni1, Heny Arwaty2, Nindy T. Putri1

1Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia; 2Faculty of Medicine, Airlangga University, Surabaya, Indonesia.

*Corresponding Author E-mail: wiwiedeka@hotmail.com

Abstract

Background: The preliminary study on antimalarial activity of the ethanol extract of Cassia spectabilis leaves against Plasmodium berghei has been carried out by in vivo experiment. It was demonstrated that ethanol extract of C. spectabilis leaves could inhibit growth of rodent malaria parasite P. berghei by 59.29% (at a dose of 100 mg/kg bodyweight). However, further investigation is required to determine an effective dose of the administered extract for a higher inhibitory effect and increasing effectiveness of the extract.

Material and Methods: To determine the effective dose of ethanol extract of C. spectabilis leaves, a 4-day suppressive test of Peter was performed with some modifications. The extract was administered orally to P. berghei-infected mice in multiple doses (twice and thrice daily) and single dose (once daily) with dose ranging from 50 - 250 mg/kg body weight. Antimalarial activities were determined by analyzing suppression of parasitaemia of treated mice.

Results: The results showed that oral administration of the ethanol extract of C. spectabilis leaves at dose of 150 mg/kg bodyweight thrice daily possessed higher inhibition (62.42%) compared to those twice daily (52.58%) and once daily (46.25%).

Conclusion: These results suggested that ethanol extract of C. spectabilis is promising candidate for development of antimalarial drugs. The effective dose of the ethanol extract is 150 mg/kg bodyweight with thrice administration daily.

Keywords: Cassia spectabilis, antimalarial, Plasmodium berghei, in vivo

Introduction

Traditional medicines provide for about 80% of health care in world populations, especially in the developing countries (Bodeker and Kronenber, 2002). In addition, plant-derived compounds have played an important key role in drug discovery. Several plants including their isolated compounds have been reported to inhibit malaria parasite (Oliveira, 2009).

Malaria is currently a public health concern in many countries due to factors such as the emergence of resistance, poor hygienic conditions, poorly managed vector control programs and no available approved vaccines (Onguene et al., 2013).

Malaria is a disease that is transmitted through the bite of a female Anopheles mosquito, which is infected by protozoa of genus Plasmodium. It is still endemic in most parts of Indonesia (WHO, 2015). Elyazar et al., 2011 summarized the distribution of P. falciparum, P. vivax, P. malariae, and P. ovale among Indonesian population during the year of 1900-2009 was 5.8, 4.9, 0.2 and 0.005 % respectively. Those data showed that P. falciparum was the highest cause among the reported infection cases. The morbidity and mortality on malaria cases in Indonesia are routinely under-reported. The WHO estimated that there were 2.5 million cases of malaria in Indonesia in 2006 and over 3000 deaths had occurred in the year of 2006 (Elyazar et al., 2011).

Malaria eradication program has been carried out to suppress the morbidity and mortality caused by malaria, including early diagnosis, prompt treatment, proper surveillance and vector control. However, it also impacted on the increasing of drug resistance cases, (WHO, 2016). A new antimalarial drug to overcome such resistance is absolutely required.

Medicinal plants are potential resources for the search of antimalarial agents. Plants which are belonging to genus of Cassia have been reported possess strong inhibition against malaria parasite (Abdulrazak et al., 2015; Ekasari et al., 2009; Morita et al., 2007).
Cassia Linn. is a major genus of Caesalpinioideae family. It has 600 species and some of which are widely distributed worldwide especially in tropical countries such as India (Dave and Ledwani, 2012; Viegas et al., 2004). They are also widely distributed in tropical and subtropical regions and have been used as traditional folk medicine, particularly for treatment of fever and malaria (Dave and Ledwani, 2012).

Other study reported on the chemical constituents of genus Cassia. The secondary metabolites of C. spectabilis, C. siamea, C. fistula, C. bijlor and C. hirsute have been identified including alkaloids, tannins, saponins, flavonoids, carbohydrates, proteins, steroids, terpenoids, cardiac glycosides and phlobatannins (Usha and Bopaiah, 2011).

Our previous study has been reported on one of the plants from the genus Cassia in Indonesia, i.e. C. siamea that exhibited antimalarial activity. The isolated compound, namely Cassianin A, revealed to effectively inhibit the growth of malaria parasites with IC50 value of 0.005 µg/mL and ED50 value of 12.17 mg/kg body weight (Morita et al., 2007; Ekasari et al., 2009).

Our previous screening on antimalarial activities of different nine plant species from the genus Cassia showed that C. spectabilis produced the highest inhibition against malaria parasite (Ekasari et al., 2015). In vitro analysis revealed that methanol extract of leaves from C. spectabilis showed the strongest antimalarial activity against P. falciparum with IC50 value of 2.66 µg/mL. Moreover, its ethanolic extract also inhibits the growth of the P. berghei in vivo by 59.29% (at dose of 100 mg/kg bodyweight). Further investigation on possible compounds which contributed to its antimalarial activities, revealed that only leaves of C. spectabilis possess an alkaloid compound (Ekasari et al., 2009). However, other study also reported the isolated compounds from C. spectabilis including beta-sitosterol, betulinic acid, caffeine, dihydrokis calamenen, 1,8-dihydrokis-3-methyl-6-metoks antiquinon, friedelin, oleinolic acid, alkaloid piperidin, spectaline, stigmasterol; 1,3,8-trihydrokis-2-methylantraquinone and ursolic acid (Subramanion et al., 2012).

Determination of an effective dose that causing a higher inhibitory effect is needed before the extract can be used as an antimalarial drug. First step is to define ED50 value of the ethanolic extract of C. spectabilis leaves against P. berghei in mice by giving the P. berghei-infected mice with the extract based on Munos et al (2000). Further, based on this value the extract will be given in a single and multiple doses. The multiple doses are given to extend the therapeutic activity of the extract. Plasma level of the drug is maintained as therapeutic range to achieve its maximal effectiveness, therefore, multiple doses are given in order to maintain its plasma level relatively constant. The rules of drug dosing is to give the ideal plasma level without any fluctuation and excessive accumulation of the drug (Shargel et al., 2005).

Materials and Methods

Plant Material

The leaves of C. spectabilis were collected from Purwodadi Botanical Garden, East Java, Indonesia and specimen was deposited as the herbarium (Number: 525/IPH.3.04/HM/IV/2015)

Rodent's parasite

The chloroquine sensitive P. berghei ANKA strain was obtained from Institute of Biomolecular Eijkmann, Jakarta, Indonesia. Mice were maintained at Malaria Laboratorium, Faculty of Pharmacy, Airlangga University, Indonesia. The percentage of parasitaemia of mice donor was examined through gram staining of mice-infected blood. Blood was collected from the mice with high parasitaemia and deposited for the use of next infection. Inoculum of erythrocytes infected with P berghei was prepared by determining the percentage parasitaemia of mice donor and diluting the blood with alecivers solutions with predetermined proportion. The mice were infected intraperitonially with 200μL of 5% parasite-containing blood from frozen deposits. Once the percent of parasitaemia reached 20%, the mice blood was taken intracardially and diluted with PBS up to 1% parasitaemia. The test mice were further infected with 200μL of this parasite-containing blood with 1% parasitaemia (Widyawaruyanti et al., 2014).

Animals

Adult male Balb-C mice with 20-30 g body weight were obtained from Pusat Veterinaria Farma (PUSVETMA) Surabaya. The mice were fed with mice pellet diet and given free access to clean drinking water. The animals allowed to acclimatize for two weeks before treated. The permission and approval for animal studies were obtained from Faculty of Veterinary Medicine, Airlangga University.

Preparation of Extract

The leaves of C. spectabilis were cleaned, shade dried for four days and pulverized to produce powder. One kilogram of the dried leaf powder was extracted with 5 L of 90% ethanol using maceration method.
Antimalarial Activity

Antimalarial activities were performed by in vivo experiment in mice. In order to determine ED$_{50}$, animals were divided into seven groups of five mice, one was negative control group and six were treated groups. The negative control group was given CMC Na 0.5% once a day orally, and treated groups were fed with suspension of 90% ethanol extract of *C. spectabilis* leaves with the dose of 50, 75, 100, 150, 200 and 250 mg/kg body weight of mice once a day orally.

Further investigation to determine the effective dose of extract was also performed. Two kind of experiments were conducted in parallel. First, the ethanol extract of *C. spectabilis* leaves was administered in multiple doses (twice and thrice daily). Second, it was administered in single dose (once daily) orally at a dose of 150 mg/kg of body weight.

Antimalarial activity of ethanol extract of *C. spectabilis* leaves were conducted by 4-day suppressive test of Peters (Phillipson and Wright, 1991). Each mouse was inoculated intraperitoneally on the first day (day 0/ D0) with 0.2 ml of *P. berghei*-infected blood (1%), and followed by treatment of the malarial-infected mouse with ethanol extract of *C. spectabilis* in concentration of 50, 75, 100, 150, 200 or 250 mg/kg bodyweight. The extract was administered orally for four consecutive days.

On the fourth day after treatment (D4), the percentage of parasitaemia in *P. berghei*-infected mouse was evaluated by collecting blood from the tail of mice, and the parasitaemia was examined by gram staining. Parasitaemia level was determined by counting the number of parasite-infected erythrocytes per 3000 erythrocytes, and the ED$_{50}$ was calculated by probit analysis.

The ED$_{50}$ representing 50% suppresion of parasite when it is compared to untreated control. Average percentage of parasite's inhibition was calculated as following:

$$\text{100\%} - \left(\frac{X_{e}}{X_{k}} \times 100 \right)$$

X_{e} = % parasitaemia growth of the treated

X_{k} = % parasitaemia growth of negative control

Results

The results of in vivo antimalarial activity of ethanol extract of *C. spectabilis* leaves against *P. berghei* is presented in Table 1, Table 2 and Table 3. The percentage of parasitaemia was observed from day 0 to day 4 post treatment (Table 1).

Table 1: The percentage parasitaemia value of mice infected-*P. berghei* treated with ethanol extract of *C. spectabilis* leaves per orally

<table>
<thead>
<tr>
<th>Sample (mg/kg body weight)</th>
<th>D_0</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg. control</td>
<td>1.22±0.71</td>
<td>5.24±2.52</td>
<td>5.59±3.56</td>
<td>16.54±4.28</td>
<td>21.77±4.83</td>
</tr>
<tr>
<td>50</td>
<td>1.57±2.16</td>
<td>3.28±2.27</td>
<td>6.57±3.23</td>
<td>11.15±2.56</td>
<td>15.74±3.14</td>
</tr>
<tr>
<td>75</td>
<td>2.11±1.47</td>
<td>3.83±2.94</td>
<td>6.02±3.54</td>
<td>10.93±4.05</td>
<td>15.85±4.61</td>
</tr>
<tr>
<td>100</td>
<td>1.88±1.57</td>
<td>4.35±3.85</td>
<td>7.49±6.32</td>
<td>10.48±6.27</td>
<td>13.47±6.40</td>
</tr>
<tr>
<td>150</td>
<td>1.30±1.23</td>
<td>4.34±2.60</td>
<td>5.73±2.69</td>
<td>7.11±2.18</td>
<td>11.29±3.21</td>
</tr>
<tr>
<td>200</td>
<td>1.26±0.75</td>
<td>3.95±1.39</td>
<td>4.69±0.99</td>
<td>8.16±3.83</td>
<td>9.89±2.70</td>
</tr>
<tr>
<td>250</td>
<td>0.54±0.40</td>
<td>2.51±0.99</td>
<td>4.64±0.96</td>
<td>5.92±1.70</td>
<td>6.90±1.67</td>
</tr>
</tbody>
</table>

Data were obtained from average of 5 replications. D_0-D_4: Observation of percentage parasitaemia from day 0 (D0) until Day 4 (D4) post treatment.

The percentage parasitaemia of negative control was dramatically increased after three day (D3) and four day (D4) post treatment with parasitaemia level of 16.54±4.28% and 21.77±4.83%, respectively. A significant reduction of parasitaemia was observed by treatment at dose of 150 mg/kg body weight in D4 which showed percentage inhibitory of 51.38±12.58% (Table 2). The result indicated that the dose of 150mg/kg bodyweight of extract possess strong inhibition against *P. berghei*.
Table 2: The average percentage of growth and the inhibition of mice infected-P. Berghei treated with ethanol extract of C. spectabilis leaves perorally.

<table>
<thead>
<tr>
<th>Sample (mg/kg body weight)</th>
<th>Average percentage of growth</th>
<th>Average percentage inhibition</th>
<th>ED$_{50}$ (mg/kg bodyweight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>20.55±5.01</td>
<td>-</td>
<td>131.5</td>
</tr>
<tr>
<td>50</td>
<td>14.17±3.25</td>
<td>31.05±15.82</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>13.74±3.55</td>
<td>33.13±17.26</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>11.59±6.07</td>
<td>43.60±29.56</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>9.99±2.59</td>
<td>51.38±12.58</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>8.62±2.18</td>
<td>58.04±10.59</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>6.39±1.82</td>
<td>68.91±8.84</td>
<td></td>
</tr>
</tbody>
</table>

Data were obtained from 5 replications.

Further analysis to determine the effective dose showed that multiple dose administration daily produced higher inhibition with percentage inhibitory of 52.58±7.18 and 62.42±1.62 %, (twice and thrice daily respectively). Those were higher than the single administration which was 46.25±3.83% (Table 3).

Table 3: In vivo inhibition of mice infected-P. berghei treated with ethanol extract of Cassia spectabilis leaves at single dose (150 mg/kg body weight) and multiple dose (2×150 mg/kg body weight and 3×150 mg/kg body weight) during 4 days

<table>
<thead>
<tr>
<th>Sample mg/kg bodyweight</th>
<th>Rep</th>
<th>D0</th>
<th>D4</th>
<th>Percentage of growth</th>
<th>Average percentage of growth</th>
<th>Average of percentage inhibition</th>
<th>Average of percentage inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>1</td>
<td>1.25</td>
<td>8.28</td>
<td>7.03</td>
<td>7.03±1.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.55</td>
<td>10.07</td>
<td>9.52</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.48</td>
<td>8.84</td>
<td>6.36</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.29</td>
<td>8.32</td>
<td>7.03</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.77</td>
<td>7.01</td>
<td>6.24</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.28</td>
<td>7.28</td>
<td>6.00</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>1</td>
<td>2.17</td>
<td>6.37</td>
<td>4.20</td>
<td>3.78±0.27</td>
<td>40.26</td>
<td>46.25±3.83</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.40</td>
<td>5.35</td>
<td>3.95</td>
<td>43.81</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.32</td>
<td>5.17</td>
<td>3.85</td>
<td>45.23</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.25</td>
<td>5.68</td>
<td>3.43</td>
<td>51.21</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.75</td>
<td>5.53</td>
<td>3.78</td>
<td>46.23</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.62</td>
<td>5.08</td>
<td>3.46</td>
<td>50.78</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2×150</td>
<td>1</td>
<td>3.12</td>
<td>5.57</td>
<td>2.45</td>
<td>3.33±0.50</td>
<td>65.15</td>
<td>52.58±7.18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.54</td>
<td>4.81</td>
<td>3.27</td>
<td>53.49</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.94</td>
<td>5.13</td>
<td>4.19</td>
<td>40.10</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.91</td>
<td>5.22</td>
<td>3.31</td>
<td>52.92</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.61</td>
<td>5.04</td>
<td>3.43</td>
<td>51.21</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.83</td>
<td>5.16</td>
<td>3.33</td>
<td>52.63</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>3×150</td>
<td>1</td>
<td>1.94</td>
<td>5.10</td>
<td>3.16</td>
<td>2.64±0.29</td>
<td>55.05</td>
<td>62.42±1.62</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.66</td>
<td>4.50</td>
<td>2.66</td>
<td>62.16</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.73</td>
<td>4.36</td>
<td>2.63</td>
<td>62.59</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.99</td>
<td>3.58</td>
<td>2.59</td>
<td>63.16</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.62</td>
<td>4.42</td>
<td>2.62</td>
<td>62.73</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.89</td>
<td>4.08</td>
<td>2.19</td>
<td>68.85</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Discussion

Medicinal plants are potential resources for antimalarial agent. Preliminary study of C. spectabilis reported the antimalarial activities of this plant and proved to be a promising candidate for antimalarial agent. Further analysis was conducted in this study to determine the effectiveness of ethanol extract of C. spectabilis in the animal test.

In vivo analysis to P. berghei-infected mice was conducted by adopting method of Munoz et al. (2000) which applied some dose modification. The P. berghei-infected mice were treated with C. spectabilis extract in dose range of 50-250 mg/kg body weight. The results showed dose dependent mode of inhibition and 50% inhibition was obtained by the dose of ≤150 mg/kg bodyweight (Table 1 and 2). The dose of 250 mg/kg produced the highest inhibitory (68.91%), while those that received 200 and 150 mg/kg body weight exhibited inhibitory of 58.04±10.59% and 51.38±12.58%, respectively (Table 2). These results suggested that ethanol extract of C. spectabilis leaves can be categorized as good antimalarial activity, with >50% inhibitory effect achieved at dose of 250 mg/kg (Munoz et al., 2000). Other study