JAEB Editorial Board

Editorial Board

Editor-in-Chief
William Ebomoyi
Ph.D., Professor, Department of Health Studies, College of Health Sciences, Chicago State University, USA.
E-mail: editor@textroad.com

Associate Editors
Prof. Dr. Sanaa T. El-Sayed
Ex Head of Biochemistry Department, Professor of Biochemistry, Genetic Engineering & Biotechnology Division, National Research Centre, Egypt.

Saeid Chekani Azar
PhD of Veterinary Physiology; Faculty of Veterinary, Department of Physiology, Ataturk University, Erzurum 25010, Turkey.

Prof. Dr. Sarwoko Mangkoedihardjo
Professor, Professional Engineer of Indonesian Society of Sanitary and Environmental Engineers, Indonesia.

Prof. Dr. Ashraf Latif Tadross
Head of Astronomy Department, Professor of Star Clusters and Galactic Structure, National Research Institute of Astronomy & Geophysics (NRIAG), 11421 Helwan, Cairo, Egypt.

Dr. Chandrasekar Raman
Research Associate, Department of Biochemistry & Molecular Biophysics, Biotechnology Core Facility, 238, Burt Hall, Kansas State University, Manhattan 66506, KS, USA.

Dr. Yubao Cui
Associate Professor, Department of Laboratory Medicine, Yancheng Health Vocational & Technical College, Jiangsu Province, P. R. China.

Dr. Muhammad Altaf Khan
Department of Mathematics, Abdul Wali Khan University Mardan Pakistan.

Dr. Fahrettin Tilki
Assoc. Professor, Artvin Coruh University, Faculty of Forestry, Department of Forest Science, Artvin, Turkey.
Dr. Ibtisam abd el ghany hammad
Associate Professor of Genetics, Faculty of Science, Helwan University, Egypt.

Dr. Charalambos Tsekeris
Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece.

Dr. Elsayed E. Hafez
Associate Professor, Molecular Biology, Plant Molecular Pathology & Arid Lands Institute, Egypt.

Dr. Naushad Mamode Khan
University of Mauritius, Reduit, Mauritius.

Mirza Hasanuzzaman
Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh.

Dr. Hala Ahmed Hafez Kandil
Professor Researcher, National Research Centre, Plant Nutrition Dept. El-Bhouth St. Dokki, Giza, Egypt.

Dr. Yule Yue Wang
Biotechnology and Medicinal Biochemistry, Division of Life Science, The Hong Kong University of Science & Technology, China.

Dr. Aziza Sharaby
Professor of Entomology, Plant Protection Department, National Research Center, Cairo, Egypt.

Editors
Maulin P Shah
PhD-Microbiology, Chief Scientist & Head Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar-393002, Gujarat, India.

Dr. Josphert N. Kimatu
Department of Biological Sciences. South Eastern University College, Kenya.

Dr. Mukesh Kumar Meena
Assistant Professor (Crop Physiology), Department of Crop Physiology, University of Agricultural Sciences, Raichur-584104, Karnataka, India.
Jehngir Khan
Lecturer in Zoology Department, Abdul Wali Khan University Mardan (AWKUM), Buner Campus, Buner, Khyber Pakhtunkhwa, Pakistan.

Syed Muhammad Nurulain
Medical Research Specialist, FMHS, UAE University, Emirates.

Dr. Ayman Batisha
Environment and Climate Research Institute, National Water Research Center, Cairo, Egypt.

Dr. Hakeem Ullah
Assistant Professor, Department of Mathematics Abdul Wali Khan University Mardan Pakistan.

Dr. Datta Asaram Dhale
Assistant Professor, Post Graduate Department of Botany, Ghogrey Science College, Dhule, Maharashtra State, India.

Dr. Muhammad Ismail Mohmand
Tutor/Administrator in the Excellence Training Den College in Newcastle, United Kingdom.

Prof. Dr. Valdenir José Belinelo
Department of Health Sciences and Postgraduate Program in Tropical Agriculture, Federal University of Espirito Santo (UFES), São Mateus, ES, Brazil.

Siva Sankar. R
Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, India.

Dr. Tarig Osman Khider
Associate Professor, University of Bahri-Sudan, College of Applied and Industrial Sciences, Department of Pulp and Paper Technology, Sudan.

Dr. Ali Elnaeim Musa
University of Bahri, Sudan College of Applied and Industrial Sciences, Sudan.

Dr. Basharia Abd Rub Alrasoul Abd Allah Yousef
Deputy Dean at Faculty of Engineering, University of Bahri, Khartoum, Sudan.

Dr. Khaled Nabih Zaki Rashed
Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt.
Govinda Bhandari

Semra Benzer
Assistant Professor in Gazi University, Gazi Education Faculty, Department of Science, Ankara, Turkey.

Ahmed Hashim Mohaisen Al-Yasari
Department of Physics, College of Education For Pure Science, University of Babylon, Hilla, Iraq.

Dr. Hafiz Abdul Wahab
Assistant Professor of Mathematics, Department of Mathematics, Hazara University Mansehra Pakistan.

Dr. Sohrab Mirsaedi
Centre of Electrical Energy Systems (CEES), Faculty of Electrical Engineering (FKE), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia.

Prof. Md. Amin Uddin Mridha
Ph.D. DIC (London), Plant Production Department, King Saud University, P.O.Box 2460, Riyadh 11451, Kingdom of Saudi Arabia.

Jasem Manouchehri
Ph.D. Candidate in Sport Management, University of Tehran (UT) & Instructor in Sport Management, Islamic Azad University, Central Tehran Branch (IAUCTB), Iran.

Dr. Muhammad Akram
Faculty of Agriculture, Department of Eastern Medicine and Surgery, University of Poonch, Rawalakot, Azad Jamu and Kashmir, Pakistan.
Rahadhian Prajudi H., Indri Astrina, Yuswadi Saliya
The Typology of the Balinese Meru Shape and the Roots of Its Development

Nadjit ENNAGHRA, Abderrafik MEDDOUR, Boudjemaa SOUMATI and Lylia KABOUCHI-BOUZIDI
Epidemiological Survey on the Dermatophyte Flora in the Area of Annaba East of Algeria

Waseem Shahzad, Ahsan Yawar, Ejaz Ahmed
Drug Design and Discovery using Differential Evolution

ACHEMAOUI Amine, BENDAHMANE Malika
Evaluation of Bovine Reproduction Management Settings at Dairy Cattle Farms in Western Algeria

Sara Danièle DIENG, Mamadou DIOP, Laurice Codou FAYE, Assane GOUDIABY, Fatimata NIANG-DIOP, Idrissa GUIRO, Simon SAMBOU, Anne Mette LYKKE, Bienvenu SAMBOU
Characterization of Ecosystem Services Provided by Detarium microcarpum around the Protected Forest of Patako (Senegal)

Shabnum Shaheen, Sobia Sarwar, Mehwish Jaffer, Nida Haroon, Amina Zafar, Hammad Ashraf, Mehreen Jalal, Sehrish Ramzan, Sidra Younis, Tahira Ilyas
Palynological Analysis of Carbonaceous Shale of Palaeocene Era Western Salt Range Pakistan

Sunaryo Hadi Warsito, Dady Soegianto Nazar, Herry Agoes Hermadi, Rimayanti, Mirni Lamid

Determination of the Dose of MPA (Medroxy Progesterone Acetate) in Intramuscular who Combined with Estrogen for Produce Pregnancy of the Fat Tailed Sheep

Habiba Fernane, Aicha Tir Touil, Hama Benbarek and Mokhtar Benchohra

Physicochemical Composition and Sanitary Quality of Pasteurized Milk Marketed in Western Algeria

Samsu Adabi Mamat, Iskandar Hasan Tan Abdullah, Nor Farizah Johari, Tuan Mohd Rosli Tuan Hassan

Interactions Ethnic Alignment of Sarawakian Chinese Politics Culture and 11th Sarawak State Election

Aurang Zeb, Dr. Arab Naz, Dr.Qaisr Khan, Waseem Khan, Dr. Faisal Khan, Basharat Shah

The Role of Curriculum and School Administration in Character Building of Students in Government High Schools Khyber Pakhtunkhwa Pakistan

Muhammad Rizwan Yaseen, Naima Serwar, Irfan Hussain Khan

Impact of Energy Consumption on Environment Degradation in Pakistan

Wiwik Misaco Yuniarti and Bambang Sektari Lukiswanto

Altered Liver and Renal Serum Marker Enzymes in Alloxan Induced Diabetic Rats Treated with Phyllantus niruri

Iskandar Hasan Tan Abdullah, Nik Haslinda Nik Hussain, Hilmi Ab Rahman, Tuan Mohd Rosli Tuan Hassan

The Comparative Industry Management of Hyugo Prefecture of Kanagawa and Bayan Lepas Free Trade Zone

Prima Dewi K., Nita Dwi Astikasari, Byba Melda S.

Relation of Personality Type According to Hippocrates with Implementation of Therapeutic Communication Nurse for Patient in the Leprosy Hospital in Kediri

A.A Taleb Bendib, S. Mouffok and Z. Boutiba

Feeding Habits of Two Sharks Species Scyllorhinus canicula (Linnaeus, 1758) and Galeus melastomus (Rafinesque, 1810) in the Western Algerian coasts

Muhammad Bilal, S. A. A. Rizvi, Farooq Ahmad

Theory verses Practice in Science Teacher Education: Perceptions of Student Teachers and Teacher Educators in Pakistan

M. Khurshid Azam, Farooq Ahmad, Mehmet Zeki Sarikaya

Applications of Integral Transforms on some k -fractional Integrals

Altered Liver and Renal Serum Marker Enzymes in Alloxan Induced Diabetic Rats Treated with Phyllantus niruri

Wiwik Misaco Yuniarti* and Bambang Sektiari Lukiswanto

Department of Clinical Science, Faculty of Veterinary Medicine, Airlangga University, Mulyorejo Kampus C Unair, Surabaya, 60115, Indonesia.

Received: August 22, 2016
Accepted: November 3, 2016

ABSTRACT

Extract of Phyllantus niruri had antidiabetic effect. This is interesting to be investigated further remembering that the study of liver and kidney serum marker in diabetic rats has not been widely learned. Five groups of rats were used in this study, consisting of a group of healthy rats and four groups of diabetic rats. The four groups of diabetic rats, one group was no treat and the three other groups were treated with the extract of Phyllantus niruri 1.35 mg / kg / day; 2.7 mg / kg bw / day and 5.4 mg / kg bw / day orally for 28 days. The result showed that the administration of P. niruri extract can reduce levels of AST, ALT, BUN and creatinine as normal in diabetic rats. This is probably due to its antioxidant activity, anti-inflammatory and antidiabetic activity. Hence the study reveal the therapeutic use of P. niruri extract on diabetes and its complications.

KEYWORDS: Diabetes mellitus, alloxan, Phyllantus niruri, liver, kidney, serum marker

INTRODUCTION

Diabetes is currently known as the most widely recognized cause for liver disease in the U.S.A. Liver disease is also an important cause of death in type 2 diabetes [1]. Almost the entire spectrum of liver disease seen in patients with type 2 diabetes mellitus, for example, abnormal liver enzymes, non-alcoholic fatty liver disease (NAFLD), cirrhosis, hepatocellular carcinoma, and acute liver failure. Finally, the prevalence of diabetes in cirrhosis is 12.3 to 57% [2]. Impaired liver function can be used as an indicator of target organ conditions associated with diabetes, such as glomerulopathy, retinopathy, and neuropathy. Annual examination for liver disease might be accomplished by means of a simple biochemical analyte such as alanine aminotransferase [3].

Antidiabetic agents have been shown to reduce levels of serum liver biomarkers [4], and cause serious side effects such as hypoglycemia, indigestion, edema, lactic acidosis, especially for those who are comorbid with heart failure or impaired liver function and kidney [5,6]. Herbs, because of the ease of access, has become an alternative medicine for people with diabetes mellitus in the community. In addition, the herb is also considered to be more effective, have low side effects and relatively low cost [7,8].

Many studies have shown that Phyllanthus niruri Linnaeus has antidiabetic activity and alloxan which has been used to induce experimental diabetes due to the selective destruction of the insulin-producing pancreatic beta-islets [9,10,11]. However, those studies had only had limited data which were available on the possible association between activity of phyllantus niruri linn with liver and renal serum marker enzymes and functions.

MATERIALS AND METHODS

This experiment was carried out in Department of Clinical Science, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia during 2015.

Ethical approval

All the rats were handled based on the ethical principles for animal experiments and all the experiment procedure were approved by the research ethics committee of the university.

Chemicals

Alloxan was obtained from Sigma (St. Louis, MO, USA) and all other chemicals used were of analytical grade. Phyllantus niruri was obtained from Xian Biof Biotechnology Gaoxin District of Xi’an, China.

*Corresponding Author: Wiwik Misaco Yuniarti, Departement of Clinical Science Airlangga University, Kampus C Unair, Jalan Mulyorejo Surabaya 60115, Indonesia. Email: wiwikmisaco@yahoo.com

94
Induction of Diabetes Mellitus

Male Wistar rats weighting from (180-200 g) were housed in standard conditions and fed with normal diet and water ad libitum. Diabetes was induced by intraperitoneal injection of alloxan (Sigma, St. Louis, Mo, USA) at a dose of 150 mg/kg body weight. Alloxan was dissolved in 0.9% sodium chloride. After the injection, they had free access of food and water. The rats were given 5% glucose solution after 6h. from alloxan injection to drink overnight to counter any hypoglycemic shock. The diabetic state was assessed by measuring the fasting plasma glucose concentration 72 h. after alloxan treatment in fasting rats. The rats with a plasma glucose level above 250 mg/dl were selected for the experiment and considered as diabetic [12].

Animal Treatment

Twenty five healthy male Wistar rats (about 180–200 g body weight) were obtained from Animal Experimental Laboratory, Faculty of Biochemistry, Universitas Airlangga. All animals were conditioned at room temperature at a natural photoperiod for 1 week before experiment execution. A commercial balanced diet and tap water ad libitum were provided. The duration of experiment was 4 weeks. The rats were randomly divided into 5 groups (5 rats each) as follows: Group 0 (G0), healthy control rats received distilled water as sole drinking source; Group 1 (G1), diabetic rats; Group 2 (G2), diabetic rats were treated with 1.35 mg phyllanthus niruri extract/day; Group 3 (G3), diabetic rats were treated with 2.7 mg phyllanthus niruri extract/day, and Group 4 (G4), diabetic rats were treated with 5.4 mg phyllanthus niruri extract/day orally.

Biochemical Factors Evaluation

At the end of experiment, rats were sacrificed under chloroform anesthesia and blood samples were collected by intracardiac puncture. The sera prepared through centrifuging at 3000 rpm for 15 minutes at 4°C. Serum biomarkers of liver function include alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Renal serum marker enzymes include blood urea nitrogen (BUN) and creatinine, were measured by using commercially available kits. Aminotransferases (ALT and AST) were measured to determine the concentration of intracellular hepatic enzymes that have leaked into the circulation and serve as a marker of hepatocyte injury. The increasing serum levels of blood urea nitrogen and creatinine, thereby indicate damage to kidneys.

Statistical Analysis

Data are presented as mean ± SD and analyzed for statistical significance among group means by one way analysis of variance (ANOVA) followed by a post-hoc least square difference (LSD) for individual group comparison with the help of a software SPSS 7.5 for windows. The values were considered statistically significant when p-value was less than 0.05.

RESULTS

The effect of repeated oral administration of extract P. niruri on blood glucose is shown in Table 1. In normal control rats, blood glucose levels observed for 28 days after treatment indicate no significant difference with pre-treatment levels. In diabetic control rats there was constant increase in blood glucose for 28 days. However, administration of the most effective dose (5.4 mg/ kg body weight) of the extract produced a hypoglycaemic effect. The level of glucose was almost similar to the normal control rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Blood Glucose Level (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diabetic (Pre-treatment)</td>
</tr>
<tr>
<td>G0</td>
<td>82.17 ± 1.29</td>
</tr>
<tr>
<td>G1</td>
<td>328.45 ± 48.32</td>
</tr>
<tr>
<td>G2</td>
<td>414.14 ± 60.42</td>
</tr>
<tr>
<td>G3</td>
<td>324.01 ± 55.07</td>
</tr>
<tr>
<td>G4</td>
<td>330.21 ± 48.2</td>
</tr>
</tbody>
</table>

Values are expressed as mean of five individuals in each group ± SD. Means with different superscripts letters are significant at p<0.05.

The effects of aqueous extract of P. niruri on the levels of pathophysiological marker enzymes ALP and ALT in serum of experimental rats have been depicted in Table 2. The levels were found to be
increased significantly (p<0.05) in alloxan-treated rats (G1) compared to control rats (G0). Upon treatment with P. niruri extract, the levels were brought back to near normalcy in G2, G3 and G4 group.

Table 2. Effects of alloxan and Phyllanthus niruri on the activities of ALT and AST enzymes in the serum of control and experimental animals

<table>
<thead>
<tr>
<th>Serum constituent</th>
<th>G0</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>46.60±14.60</td>
<td>155.00±16.23</td>
<td>76.60±62.66</td>
<td>50.00±8.90</td>
<td>58.00±19.17</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>88.40±12.44</td>
<td>215.60±24.08</td>
<td>109.40±11.39</td>
<td>89.20±10.69</td>
<td>97.20±18.39</td>
</tr>
</tbody>
</table>

* p<0.05 between normal and diabetic control and between diabetic control and diabetic with fenugreek alkaloid extract

Table 3. shows the effect of aqueous extract of P. niruri on the circulating blood urea nitrogen and serum creatinine concentrations in alloxan induced diabetic rats. Oral administration of 150 mg/kg alloxan for 4 days was associated with significant elevation in the circulating levels of blood urea nitrogen and serum creatinine in G1 rats after 28 days (p<0.05). Treatment with P. niruri attenuated significantly the changes in the serum levels of blood urea nitrogen and creatinine in G2, G3 and G4 groups (p<0.05).

Table 3. Effects of alloxan and Phyllanthus niruri on the levels of blood urea nitrogen (BUN) and creatinine of control and experimental animals

<table>
<thead>
<tr>
<th>Serum constituent</th>
<th>G0</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUN (mg/dL)</td>
<td>15.00±3.92</td>
<td>45.00±4.85</td>
<td>23.90±7.96</td>
<td>16.90±10.26</td>
<td>24.00±13.66</td>
</tr>
<tr>
<td>Creatinin (mg/dL)</td>
<td>0.44±0.10</td>
<td>2.37±0.46</td>
<td>0.41±0.07</td>
<td>0.44±0.05</td>
<td>0.45±0.07</td>
</tr>
</tbody>
</table>

Values are expressed as mean of five individuals in each group ± SD. Means with different superscripts letters are significant at p<0.05.

DISCUSSION

Liver enzymes such as AST and ALP are marker enzymes for liver function and integrity [13]. In this study, increased activities of AST and ALT were observed in the diabetic animals. Hence it indicates that diabetes may induce hepatic dysfunction in rat. The increase in the level of these enzymes in diabetes may be as a result of leakage from the tissues and migration into the bloodstream [14]. Diabetic patients may have damage to various tissues. The damage can increase serum level of ALT and AST. Levels of ALT may rise sharply if there is injury to hepatocytes, cardiac muscle, striated muscle, pancreas, kidney and erythrocytes. Serum level of AST will increases when hepatocytes, cardiac muscle, striated muscle, and pancreas have damage [15].

Administration of P. niruri extract can reduce AST and ALT. This showed that P. niruri has a protective effect on the liver damage in diabetic rats. P. niruri contains hypophyllanthin and phyllanthin which are anti-hepatotoxic activities [16]. Phyllanthin and hypophyllanthin can provide hepatoprotective effects on the liver because they have antioxidant activity [17]. The content of this antioxidant protects liver tissue from oxidative damage and helps liver cell regeneration [18]. Antioxidants also have membrane stabilizing activity of the liver cells which will reduce liver damage [19].

In addition to being anti-oxidants, P. niruri is also proven to have anti-inflammatory activity. In this case, P. niruri acts as a vasoconstrictor caused by inflammation. How it works is by blocking nitrite oxide (NO) and prostaglandine E-2 (PG E2), lowering induced nitric oxide synthase (iNOS), cyclooxygenase-2 (COX 2) and inhibiting the production of NF-κB. In addition, P. niruri also decrease the expression of interleukin-1β, interleukin 10, interferon-γ and tumor necrosis factor-α [20].

The main function of the kidneys is to excrete the waste products of metabolism and to regulate the body concentration of water and salt. Significant increase of total urea and creatinine levels indicated impaired renal function of diabetic rats which led to a negative nitrogen balance, enhanced proteolysis and lowered protein synthesis [21,22]. Similar results are observed in the earlier studies by using different plants [23]. The improvement of renal biochemical functions with P. niruri in the present investigation could be due to its antidiabetic action, which results in alleviation of altered metabolic status in animals and by the regenerative capability of the renal tubules [24].
CONCLUSION
The present study demonstrated clearly that Phyllanthus niruri extract showed the hypoglycemic effect. In addition, the extract can protect liver and renal function in alloxan induced diabetic rats directly, or indirectly through a reduction of blood glucose level. Further research on isolation of compound and the molecular analysis about these effects are required to understand the mechanism.

ACKNOWLEDGEMENT
We would like to thank to Sathosi Sekiguchi, DVM., Ph.D. for his helpful and critical comments during the writing of this manuscript.

COMPETING INTEREST
The authors declare that they have no competing interest.

AUTHORS’ CONTRIBUTION
WMY carried out the main research works, performed the statistical analysis and analyzed the main data in the experiments. BSL helped to draft the manuscript. All authors read and approved the final manuscript.

REFERENCES

