CASE STUDY(S)

POST-TRAUMA ROOT FRACTURE IN TEETH WITH INCOMPLETE ROOT DEVELOPMENT: A CASE REPORT
MEHMET SINAN DOÄŽAN, DIAH AYU MAHARANI, LINDAWATI S KUSDHANY, MELÄ"SSA ADÄ“ATMAN, IZZET YAVUZ
Pages 1-3
[View PDF] [Abstract] [Download PDF]

DIABETIC NEPHROPATHY AN OBVIOUS COMPLICATION IN LONG TERM TYPE 1 DIABETES MELLITUS: A CASE STUDY
JAHIDUL ISLAM MOHAMMAD, SRIDEVI CHIGURUPATI, AZLI SHAHRIL OTHMAN, MUHAMMAD ZAHID IQBAL
Pages 4-7
[View PDF] [Abstract] [Download PDF]

RECURRENT TEMPOROMANDIBULAR JOINT DISLOCATIONS IN GERIATRIC PATIENT ON ANTIPSYCHOTIC DRUGS AND ITS CONSERVATIVE MANAGEMENT
DEEPIKA PAI, ABHAY KAMATH T, GIRISH MENON, ARUN URALA, SAURABH KUMAR, SUNIL NAYAK, ADARSH KUDVA
Pages 8-10
[View PDF] [Abstract] [Download PDF]

https://innovareacademics.in/journals/index.php/ajpcr/issue/view/314
THE BENEFITS OF ACTIVE COMPOUNDS IN KALANCHOE PINNATA (LMK) PERS ETHYL ACETATE FRACTION ON LUPUS ARTHRITIS MICE
NIKEN INDRIYANTI, JOEWONO SOEROSO, JUNAIDI KHOTIB
Pages 199-203

EVALUATION OF ANTIMICROBIAL AND SYNERGISTIC ANTIMICROBIAL PROPERTIES OF PTEROCARPUS SANTALINUS
SAVAN DONGA, POOJA MOTHERIYA, SUMITRA CHANDA
Pages 204-209

ACUTE TOXICITY TESTING OF NEWLY DISCOVERED POTENTIAL ANTIHEPATITIS B VIRUS AGENTS OF PLANT ORIGIN
SUBAIEA GM, ALIOFAN M, DEVADASU VR, ALSHAMMARI TM
Pages 210-213

IMPACT OF DELETERIOUS NON-SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS OF CYTOKINE GENES ON NON-CLASSICAL HYDROGEN BONDS PREDISPOSING TO CARDIOVASCULAR DISEASE: AN IN SILICO APPROACH
SAI RAMESH A, RAO SETHUMADHAVAN, PADMA THIAGARAJAN
Pages 214-219

GEL NANOEMULSION OF RAMBUTAN (NEPHELIUM LAPPACEUM L.) FRUIT PEEL EXTRACTS: FORMULATION, PHYSICAL PROPERTIES, SUNSCREEN PROTECTING, AND ANTIOXIDANT ACTIVITY
MUHTAFI MUHTAFI, ANDI SUHENDI, ERINDYAH RETNO WIKANTYASNING
Pages 220-224

SIMULTANEOUS SPECTROPHOTOMETRIC DETERMINATION OF DICLOFENAC SODIUM, PARACETAMOL, AND CHLORZOXAZONE IN TERNARY MIXTURE USING CHEMOMETRIC AND ARTIFICIAL NEURAL NETWORKS

https://innovareacademics.in/journals/index.php/ajpcr/issue/view/314
THE BENEFITS OF ACTIVE COMPOUNDS IN KALANCHOE PINNATA (LMK) PERS ETHYL ACETATE FRACTION ON LUPUS ARTHRITIS MICE

NIKEN INDRIYANTI¹, JOEWONO SOEROSO², JUNAIDI KHOTIB²∗

¹Department of Pharmacology, Faculty of Pharmacy, Mulawarman University, Samarinda, East Kalimantan, Indonesia. ²Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo Surabaya, East Java, Indonesia. ³Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Jl. Dharmawangsa Surabaya, East Java, Indonesia. Email: junaidi-k@fs.unair.ac.id

Received: 16 June 2017, Revised and Accepted: 25 July 2017

ABSTRACT

Objective: The aim of this research was to measure the effects of the ethyl acetate fraction of Kalanchoe pinnata (Link) Pers (EF-KP) on lupus arthritis mice.

Methods: The research was performed by testing of CD123⁺ interferon-α (IFN-α⁺) dendritic cells and CD68⁺ interleukin 6 (IL-6⁺) macrophages as the main biomarkers using flow cytometry method, and then, the outcomes were directly observed in the joint’s tissue structure. The results of the research were analyzed using statistics.

Results: The EF-KP reduced the relative percentages of CD123⁺IFN-α⁺ dendritic cells significantly (p<0.05) with the percentage of 32.95±8.25% (negative control); 23.20±9.31%⁺ (EF-KP); and 22.90±10.39%⁺ (positive control). It also reduces the relative percentages of CD68⁺IL-6⁺ macrophages but not significantly. Finally, the outcome to the grade of joint damage was scored using Pritzker method. The treated groups have one grade lower, and the joint spaces were narrowed than the untreated group.

Conclusion: The results show the ability of the active compounds in EF-KP, which are comparable to 0.042 mg/kg of quercetin, to inhibit the progress of lupus arthritis pathogenesis in mice. It might reveals the effectiveness of the EF-KP in human with lupus arthritis. However, the further clinical research is necessary.

Keywords: Kalanchoe pinnata (Link) Pers, Flavonoids, Lupus arthritis, CD123⁺interferon-α dendritic cells, CD68⁺ interleukin 6 macrophages.

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ijpcr.2017v10i11.20766

INTRODUCTION

Lupus arthritis, as a kind of lupus manifestation mainly attacks to joints, develops fast by the regulation of feedback loop mechanism to produce lupus autoantibodies. The most important biomarker in this mechanism is interferon-α (IFN-α) [1-3]. The high release of IFN-α impacts the activation of T-helper to induce B-cell activity and also directly increases the B-cells activity to produce lupus-specific antibodies [4]. The excessive amount of IFN-α will make the manifestation of systemic lupus inflammation appears. The pro-inflammatory cytokine which has the main role in lupus arthritis is interleukin 6 (IL-6) [5,6]. The high level of IL-6 will be comparable to the severity grade of the joint damage.

The severe lupus arthritis is a life-threatening disease without any possibilities to be cured. Its treatments are focused on increasing the quality of life, but the long-term treatments lead to many harmful side effects. A new breakthrough to find appropriate therapeutic outcomes for lupus patients is based on the promising effects of herbal medicines [7-9]. In a very long history, the Chinese Herbal Medicine (CHM), Ayurveda (India), and Kampo (Japan) treatments develop herbal prescriptions for lupus based on their experiences. Most of them are used without any sufficient scientific data but have good outcomes [8].

Despite the efficacy, some herbal medicines are known to induce liver enzyme abnormalities [10]. Moreover, one widely known plant, Kalanchoe pinnata (Link) Pers extract inhibits lupus manifestations without hepatotoxicity in our previous study.

Flavonoid compounds in ethyl acetate fraction of an aqueous extract of K. pinnata (Link) Pers leaves (EF-KP) have many useful effects for lupus treatment, especially immnosuppressive [11,12] and anti-inflammatory effects [13-15]. The crude extract repairs the kidney tissue structure of lupus mice induced using 2, 6, 10, 14-tetramethylpentadecane (TMPD) in the previous study [16]. This material is also not toxic, not affects to the hematolgy and biochemistry properties of blood [17], and safe for maternity [18], so it can be a better choice for lupus since the current treatment has too many serious side effects [19-22]. K. pinnata (Link) Pers also has the hepatoprotective effect [23,24], so this plant is highly potent for lupus drug development. Therefore, this research purpose was to determine the activity of the active multiple compounds in the EF-KP on severe lupus arthritis mice.

In this study, the active compounds in the EF-KP potentially effective to inhibit the IFN-α production and also reduce the IL-6 in lupus arthritis mice. The EF-KP quality control was performed using total quercetin as an active marker. The test of IFN-α was focused on the IFN-α produced by dendritic cells, with the marker of CD123⁺IFN-α⁺ dendritic cells. In addition, the IL-6 measurement was focused on IL-6 produced by macrophages (CD68⁺IL-6⁺ macrophages). Then, the outcome was observed in the joint tissue structure of all experimental mice using Pritzker method [25]. The data will be useful to find an effective and safe drug for lupus arthritis which is ready to be continued to a clinical study.

MATERIALS AND METHODS

Materials

K. pinnata (Link) Pers fresh leaves were collected from our cultivation farm in Trenggalek, East Java, Indonesia. The female BALB/c mice were obtained from LPPT Gadjah Mada University, and the induction of the
The preparation of EF-KP as the tested material
The plant determination was performed in UPT BKT Kelan Raya Purwodadi, Indonesia, with the identification number of 0294/IPH.06/ HM/II/2015. K. pinata (Link) Pers fresh leaves at the harvest time of 10 months were obtained from our cultivation farm in Trenggalek, East Java, Indonesia. The aqueous extract of the leaves was taken by a pressing method, and then, the yellow extract was dried by facilitating of freeze dryer. About 20 g of the dried extract was fractionated using liquid-liquid extraction method to obtain the EF-KP. The EF-KP was prepared for liquid chromatography-mass spectrometry (LC-MS)/MS assay to measure its total quercetin.

A series concentration of quercetin standard (Sigma), with the purity of >95%, was calculated to make a standard curve. Nearly 0.5 g of the EF-KP was added with 5 ml of methanol 0.5%. This mixture was vortexed to obtain a solution. About 0.1 ml of the solution was taken, and then, 0.9 ml of methanol 50% was added. The mixture was vortexed. The dilution factor of 100.0 was used for the quercetin quantitation. Finally, the solution was injected in a particular volume to the LC-MS/MS instrument (AB Sciex 4000). Then, the chromatogram data were translated into the peak area data, so the concentration of quercetin in the EF-KP could be calculated by the instrument program Analyst Instrument Control and Data Processing Software AB Sciex.

The lupus mice preparation
The mice used in this research were female Balb/c mice which were pathogen-free species. The mice aged 7 weeks when induced using TMPD. The positive lupus mice were obtained after 6 months [26,27]. The lupus mice were divided into 3 experimental groups (10 mice per group). The negative control group consisted of lupus mice which received placebo. The EF-KP group consisted of lupus mice which received EF-KP with a dose which comparable to 400 mg/kg BW of the crude extract [16]. In addition, the positive control group consisted of lupus mice which received a dose which comparable to 1 mg/kg BW cyclophosphamide as a standard treatment. The treatment lasted for 21 days. After the treatment, mice were sacrificed, and then, the femur bones, spleens, and joints were isolated as the sample for the parameters observation. This procedure was approved by local ICU of the Faculty of Veterinary Medicine, Universitas Airlangga, with the certificate number of 526-KEL in January 2016.

The measurement of tested parameters
Isolation of dendritic cells from the mice femur bones and macrophages from the spleen
Each spleen was washed in phosphate-buffered saline (PBS) solution and then isolated in a small chamber contained PBS using an apparatus to separate the cells from its connective tissues. The isolated cells of each spleen were placed in a flask, and the volume was homogenized into 15 ml/flask.

Each femur was isolated from other parts of the mice hip. The bone marrow was flushed along both points of the femur until the bone seemed white. The flushing result was collected in a flask, and the volume was added until the final volume of 15 ml using PBS.

Staining process
Each flask was centrifuged at the speed of 2500 rpm and 10°C for 5 minutes. The supernatants were thrown away to obtain the pellets.

The cell pellets were added with 1 ml PBS and then divided into some microtubes based on the need of staining combination. The microtubes contained PBS before the pellets were added. In addition, the suspender in the microtubes was separated from the cells using centrifugation at the speed of 2500 rpm, 10°C in 5 minutes. The supernatant was thrown away, so the pellets were ready for the staining process.

The CD123/FcRn+ dendritic cells and CD68/IL-6+ macrophages were stained by performing extracellular antibody phycoerythrin staining. In the CD123/FcRn+ dendritic cells staining, each bone marrow pellet in each microtube was added with the volume of 50 µl of specific antibodies anti-CD123 and then anti-FcRn+ before incubated. Besides, in the CD68/IL-6+ macrophages staining, the spleen pellet in each microtube was added with anti-CD68 and anti-IL-6 antibody. All of the microtubes were incubated for 20 minutes at the temperature of 4°C in the dark place. Finally, in each microtube, PBS with the volume of 400 µl was added, and then, the sample was moved into a cuvette for flow cytometry analysis. The program used to interpret the result was BD Cell Quest.

The joint observation
The structural tissue of knee joint of each mice was observed under an Optiphot microscope. The mice knees were isolated from each mice tested. Then, the fixation process began using formalin 10%, and then, the decalcification was performed using nitric acid 5%. The dehydration processes were step by step using ethanol 70%, 80%, and 90%, one concentration in a day. The clearing and impregnating processes were done, and then the blocking step of the sample preparation was also done well to provide the joint tissues to be observed. The sectioning was done with the thickness of 3-5 µm, so the staining using hematoxylin and eosin can be done well. The observation materials were fixed in object glass for the microscope observation. The statistics used in the one-way ANOVA test of the data, with p<0.05* and p<0.01**.

RESULTS
Quercetin as the active marker in the EF-KP
The K. pinata (Link) Pers plants were successfully cultivated in one cultivation place. The sunlight during the day and enough water [28] made them grow about 1 m in 10 months and be predicted to have the homogeny active compounds. After the fresh leaves were extracted and then fractionated as the EF-KP, its quercetin was analyzed for the quality control. The quercetin was chosen since most of the flavonoid content of K. pinata (Link) Pers leaves was quercetin in the form of glycoside [29]. The fragmentation process in the instrument separated them into its aglycone, so the quantitated marker was total quercetin.

The quercetin concentration in the EF-KP was calculated, and the result is shown in Table 1. Total quercetin found in a high concentration of 253 mg/kg. It resembles other research [28] which counted the level of each quercetin glycoside in K. pinata (Link) Pers leaves. Since quercetin has anti-inflammatory [30], antiinociceptive, antioxidant [31], and immunosuppressive [32] effects, quercetin can be an active marker compound in this research.

The effects of the EF-KP on IFN-α, IL-6, and tissue structure of the joint
The EF-KP was tested in experimental lupus mice for 21 days, with placebo and cyclophosphamide as the negative and positive control. The parameters that reveal the inhibition of the active compounds of the EF-KP on the lupus arthritis pathogenesis were IFN-α and IL-6. Finally, the outcome was observed by observing the tissue structure of the joint.

The first tested biomarker was IFN-α, expressed by dendritic cells as CD123+FcRn+ dendritic cells.
CD123+IFN-α dendritic cells
IFN-α has the central role in lupus development because it leads the dendritic cells to increase the activity of CD4+ T-helper 1, so the T helper increases the cell-cell communication to the B cells to increase the production of autoantibodies [4]. Besides, IFN-α acts directly to the B cells to induce the high level of lupus-specific antibodies. IFN-α is mainly secreted by dendritic cells [33]. Surface markers of dendritic cells are CD11c and CD123. Therefore, the parameter used in this case was the CD123+IFN-α+ dendritic cell. The results are shown in Fig. 1.

This result shows that the EF-KP reduces the relative percentage of CD123+IFN-α+ dendritic cells. The decrease is comparable to the cyclophosphamide effect. The low expression of IFN-α inhibits the feedback loop mechanism in producing the excessive amount of lupus autoantibodies by B cells. It will reduce the frequency and severity of the lupus manifestations. It is also predicted to inhibit the other biomarkers which have the main role in lupus inflammation process.

CD68+IL-6+ macrophages
The pro-inflammatory cytokine that has the high correlation to lupus arthritis is IL-6 [4]. In this experiment, the inflammatory parameter chosen was the surface marker of CD68+IL-6+ macrophages in all mice used. The results are shown in Fig. 2.

The mean of the relative percentage of CD68+IL-6+ macrophages of the EF-KP group seems lower than the negative control, but in fact, the decrease is not significantly (p<0.05) under statistic calculation. It can be explained by performing further IL-6 calculation using the IL-6 secreted by T-cells. It has been known that macrophages mainly used in the innate immune response, whether the T-cells act in adaptive immune response [34]. The macrophage autophagy in lupus is one cause that might be considered as the leading caution of the insignificant IL-6 decrease [27,35]. It seems logical since the passive lupus manifestation still reveals the organ disorder, without severe inflammations occur.

The EF-KP effects on the structural changes of joint tissue
The results of the HE staining were shown in Fig. 3. The results show that the three experimental groups have serious erosions on its hyaline layer. The erosions mainly occur in the middle of the fibrous layer and chondrogenic layer. This area is a part of ligament cruciature posterioris. Besides, the synovial membrane was thickened as a sign of inflammation process. Nucleus pulposus seemed more than normal mice. All of the abnormalities are not reach the compacta bone, so the joint can freely move as usual.

Fig. 3 shows that there is no significant difference of the joints in three experimental groups. The erosions still present and not being repaired after the EF-KP administration and also after cyclophosphamide administration. The number of its nucleus pulposus did not seem to decrease too. Moreover, if joint space narrowing (JSN) can be considered as a representative parameter, the JSN in both EF-KP and positive control cyclophosphamide groups is narrower than the negative control as a sign of the inhibition of inflammation processes in the joint.

The grade of joint damage severity was calculated semi-quantitatively according to Pritzker method [25]. The results are shown in Table 2.

Table 1: Calculation of the quercetin concentration in the EF-KP sample obtained using analyzer instrument control and data processing software AB Sciex (y=2.41e+0.04x+(-2.92)e+0.04 and R=0.9993)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Replication</th>
<th>Quercetin concentration calculated (μg/g)</th>
<th>Dilution factor</th>
<th>Concentration calculated (μg/g)</th>
<th>Mean (μg/kg)±SD</th>
<th>Result (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF-KP</td>
<td>1</td>
<td>2.53</td>
<td>100,000</td>
<td>253,000</td>
<td>252,500±0.707</td>
<td>253±0.707</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EF: Ethyl acetate fraction, **KP:** Kalanchoe pinnata

Fig. 1: The mean ± standard deviation of the relative percentage of CD123+ interferon-α dendritic cells analyzed flow cytometer from the bone-marrow sample of the control negative group (n=10) (a), ethyl acetate fraction of Kalanchoe pinnata (Lmk) Pers group (n=9) (b), and positive control group (n=10) (c).

Significantly different (p<0.05) to the negative control group and analyzed by one-way ANOVA.

Fig. 2: The mean ± standard deviation of the relative percentage of CD68+ interleukin 6 macrophages analyzed using flow cytometer from the spleen sample of the negative control group (n=10) (a), ethyl acetate fraction of Kalanchoe pinnata (Lmk) Pers group (n=9) (b), and positive control group (n=10) (c). The results are not significantly different (p>0.05) to the negative control group and analyzed by one-way ANOVA.

The grade of joint damage in the EF-KP group and the positive control group is decreased. It means that the active compounds of EF-KP could inhibit the progress of the joint erosion or repair the structure of hyaline layer. The further research to know more about this effect is necessary. The data are homogeneity according to the Levene test (p>0.05). However, the decrease of the grade of joint damage is not statistically significant (p>0.05). Then, the JSN measurement was performed to assess the joint disorder. The JSN measurement results can support the hyaline layer damage grade data and represent the anti-inflammatory effect. The EF-KP cannot cure the severe damage in the joint of lupus mice, but it can be a drug candidate to inhibit lupus arthritis manifestation.

DISCUSSION

K. pinnata (Lmk) Pers has major flavonoid compounds which have anti-inflammatory, antinociceptive [13], immunosuppressive [12], antioxidant, and anti-depressive effects [36,37]. It is needed in the lupus condition. The aqueous extract of *K. pinnata* (Lmk) Pers leaves has a strong effect in lupus nephritis model induced by TMPD in our previous study. The flavonoids can be separated into ethyl acetate fraction (unpublished data).
In this research, based on Table 1, the EF-KP dose was equal to 0.042 mg of quercetin as its active marker. The EF-KP reduces the relative percentage of the CD123/IFN-α+ dendritic cell. The dendritic cells lead to an excessive amount of IFN-α which has the central role in lupus pathogenesis [38,39]. Its decrease (Fig. 1) leads to the low lupus arthritis manifestation. IL-6 is also the most important pro-inflammatory cytokine in lupus arthritis [40,41]. The pro-inflammatory cytokines IL-6 expressed by macrophages (CD68/IL-6+ macrophages) are lower than the negative control group (Fig. 2) and reveal the inhibition of inflammation in the joint so that the lowering sign of arthritis inflammation occurs (Fig. 3) and can be observed in the JSN parameter (Table 2). The EF-KP antioxidant and anti-inflammatory [12,42,43] effects could inhibit but not repair the damage of hyaline layer erosion as well since the severity of the joints was at the severe level when the mice were treated.

Lupus treatments using the medicinal plants are traditionally used in CHM, Ayurveda, and Kampo in particular herbal prescriptions based on generation to generation experiences [8,9]. Most of them are applied without sufficient scientific data but giving satisfying outcomes in lupus patients [8]. Some of the herbal treatments for lupus which has studied are Huo-luo-Xiao-Ling Dan herbal formula, Celastrol alessiae Merr., and green tea. The active compounds regulate a lot of cytokines in lupus model and result in anti-arthritic activity [7]. There are no data that state the risk of those three herbal medicines when used in a long lupus treatment. Many individual lupus manifestations can be diagnosed well in traditional Chinese medicine using latent class model, so the individual CHM treatment can be done. The efficacy and toxicity data of herbal prescription in many CHM lupus treatments are also incomplete [8]. Moreover, taking traditional medicine in a long-term treatment might lead to liver enzyme abnormalities [10].

In other cases, dietary factors also regulate cytokines in lupus and have the beneficial impacts on reducing lupus manifestations. Calorie restriction, vitamin A, vitamin D, vitamin E, phytoestrogens, and herbal medicine are used to maintain the cytokine normal in lupus patients. It can be a beneficial material to maintain the immune regulation stability in lupus [44-46]. To find the safe and effective herbal medicine for lupus, K. pinnata (Lmk) Pers in the form of its EF-KP has beneficial effects as mentioned before. It also has hepatoprotective compounds which can minimize the side effects of the liver injury. This data supported by another study by Ozolins [17] which states no toxic effect of K. pinnata (Lmk) Pers in a subchronic toxicity test. The advantages support the efficacy of the EF-KP and then increase its value to be a safe lupus drug candidate which is ready for the next step of clinical study.

CONCLUSION
The active compounds of the EF-KP with the dose that comparable to 400 mg/kg BW extract and contains 0.042 mg of quercetin reduce the IFN-α produced by dendritic cells and the IL-6 produced by macrophages, so the arthritis manifestations in the joints are decreased. Therefore, the active compounds in the EF-KP inhibit the severity of lupus arthritis progressions and manifestations.

ACKNOWLEDGMENTS
This research was funded by DIPA PNBP 2015 Faculty of Pharmacy Universitas Mulawarman (Grant number: 1787/UN17.12/HK/2015); Hibah Penelitian Disertasi Doktor 2017 from Ministry of Higher Education, Indonesia (Grant number: 025/El.3.4/2017), and DIPA-PNBP FF Unum funding for 2017 (Grant number 0734/UN17.12/LT/2017).

REFERENCES

Editorial Board

Editorial Board

AJPCR is committed to have dynamic and potential advisory-editorial board. Those established in the field can directly send their resume. New people are first needed to serve as referee before being considered member of advisory-editorial board. Email your resume to editor@ajpcr.com

Editor-in-Chief

Dr. Anurekha Jain
Dept. of Pharmaceutical Sciences, Jyoti Mahila Vidyapeeth University, Jaipur, Rajasthan
Email: editor@ajpcr.com

Associate Editor

Dr. Neeraj Upmanyu
Peoples Institute of Pharmacy & Research Center, Bhopal, MP, India
Email: dneerajupmanyu@gmail.com

Dr. Vikas Sharma
Shri Rawatpura Sarkar Institute of Pharmacy, Datiya, MP, India
Email: vikassharma15@gmail.com

Assistant Editor

Dr. Vimal Kumar Jain
Institute of Pharmacy, Nirmal University, Ahmedabad, Gujarat, India
Email: cognosy@gmail.com

Dr. Rupesh Kumar Gautam
ADINA Institute of Pharmaceutical Sciences, Sagar, MP, India
Email: drrupeshgautam@gmail.com
Editorial Board Members

- Dr. Debasish Maiti
 Suryamaninagar, Tripura West, Agartala, Tripura, India
- Dr. Rashad Mohammed Musleh
 University of Thamar, Yemen
- Dr. Shubhamoy Ghosh
 Dept. of Pathology & Microbiology, Mahesh Bhattacharyya Homeopathic Medical College & Hospital, Govt. of West Bengal, India
- Mohd Abdul Hadi
 Bhaskar Pharmacy College Affiliated To Jawaharlal Nehru Technological University, Hyderabad, India
- Dr. Amer A. Taqa
 Department of Dental Basic Science, College of Dentistry, Mosul University, Iraq
- Mr. Atul Kabra
 Department of Pharmacy, Manav Bharti University, Solan (H.P.), India
- Mr. Siddharth Kaushal Tripathi
 Doctoral Research Associate National Center For Natural Products Research, School of Pharmacy, University of Mississippi, India
- Dr. Brajesh Kumar
 Escuela Politécnica Del Ejército, Sangolqui, Ecuador, Latin America
- Dr. Farhan Ahmed Siddiqui
 Faculty of Pharmacy, Federal Urdu University Arts, Science And Technology Karachi, Sindh, Pakistan
- Dr. Deepak Kumar Mittal
 Iasca Department of Itm-University, Gwalior, India
- Dr. Jesse Joel Thathapudi
 Karunya University (Deemed To Be University), Coimbatore, Tamil Nadu, India
- Dr. Kumar Shanmugam
 Analytical Chemistry, Academic Faculty, (Senior Scale) & International Co-Ordinator, Department of Biotechnology, Periyar Maniammai University, Vallam, Thanjavur-613 403, India
- Dr. Javad Sharifi Rad
 Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, P.O. Box 61615-585 Zabol, Iran
- Dr. Rajesh Mohanraj
 Dept. of Pharmacology, CMHS, UAE
- Dr. P. Thillai Arasu
 Department of Chemistry, Kalasalingam University, Srivilliputhur 626190, India
- Ms Vasundhra Saxena
 Gautam Buddha Technical University Lucknow, India
- Ms Vinit Dattatray Chavhan
 Sinhgad Technical Education Society'S Smt. Kashibai Navale College of Pharmacy, Kondhwa-Saswad Road, Kondhwa (BK), India
- Dr. Sami Saqf El Hait
 Junior Executive - Quality Control At Jamjoom Pharmaceuticals Company Limitedjeddah, Saudi Arabia
- Md. Moklesur Rahman Sarker
 Faculty of Medicine, University of Malaya, Malaysia
- Dr. Ahmed Hashim Mohaisen Al-Yasari
 Department of Physics, College of Education For Pure Science, University of Babylon, Hilla, Iraq

https://innovareaacademics.in/journals/index.php/ajpcr/editorial-board
• Dr. Arun Kumar
Director & Dean, Faculty of Marine Sciences
Faculty of Marine Sciences
Cas In Marine Biology
Cas In Marine Biology, Parangipettai- 608502
Parangipettai- 608502
Tamil Nadu, India
• Dr. Ashraf Ahmed
Dept. of Chemistry, Aligarh Muslim University, Uttar Pradesh 202001, India
• Dr. S. Bala Murugan
Dept. of Biotechnology, Bharathiar University, Coimbatore-641046, Tamil Nadu, India
• Dr. Sukhen Som
Department of Pharmaceutical Chemistry, M.M.U College of Pharmacy, K.K.Doddi, Ramadevara Betta Road, Ramanagara- 562159State- Karnataka India
• Dr. Sheikh Shoib
Department of Psychiatry, Institute of Mental Health And Neurosciences Kashmir (Imhans K), Srinagar, India
• Dr. Hao Wu
Postdoctoral Fellow At Ngm Biopharmaceuticals, Inc, South San Francisco, CA 94080, USA
• Dr. Payal Bhaskar Joshi
Assistant Professor Department of Chemical Engineering, Mukesh Patel School of Technology Management & Engineering (Mumbai Campus), Svkm’S Nmims (Deemed-To-Be-University), India
• Dr. Nagarajan Kayalvizhi
Assistant Professor Department of Zoology, Periyar University, Salem, Tamilnadu, India
• Dr. Madhu Bala
Scientist ‘F’ And Joint Director, Institute of Nuclear Medicine And Allied Sciences (INMAS), India
• Prof. Dr. Mamdouh Moawad Ali
Biochemistry Department, Genetic Engineering And Biotechnology, India
• Dr. Mohanraj Rathinavelu
Department of Pharmacy Practice, Raghavendra Institute of Pharmaceutical Education & Research, Riper, India
• Dr. (Mrs.) Neeru Nathani
Dept. of Swasthavritta And Yoga, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, India
• Dr. Rohini Karunakaran
Unit of Biochemistry, Faculty of Medicine, A illicit University Batu 3 1/2, Bukit Air Nasi, Jalan Semeling, 08100 Bedong Kedah Darul Aman, Malaysia
• Dr. Imran Ahmad Khan
Royal Institute of Medical Sciences Multan, Pakistan
• Dr. Jitendra Gupta
Sper Timer (Publication Committee) Regional Head U.P. State, India
• Dr. Kamal A. Badr
Lecturer of Pharmaceutics And Industrial Pharmacy & Member of Quality Assurance Unit- Faculty of Pharmacy- Delta University For Science And Technology, India
• Mr. Gurpreet Singh
Department of Pharmaceutical Sciences Guru Nanak Dev University, Amritsar, Punjab (India) 143005
• Dr. Pranav Kumar Prabhakar
Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road
• Dr. Raj Mohan Raja Muthiah
Research Fellow (Harvard Medical School) 172 Hosmer Street, Apt 7, Marlborough, Ma 01752
• Dr. Sandip Narayan Chakraborty
Research Asst Ii, Translational Molecular Pathology, Ut Md Anderson Cancer Center, Life Sciences Plaza, Houston, TX 77030
• Dr. Anup Naha
 Dept. of Pharmaceutics “Swarna Kutir “, Ramnagar Road No.4, Mcops, Manipal-576 104, Karnataka, India
• Dr. Tushar Treembak Shelke
 Vice Principal , Head of Department of Pharmacology And Research Scholar, In Jspms Charak College of Pharmacy & Research, Gat No. - 720(1&2), Pune, India
• Anindya Banerjee
 Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare Govt of India
• Dr. Vijay Mishra
 Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
• Dr. Praveen Kumar Sharma
 Department of Chemistry, Lovely Professional University, Punjab (India)-144411
• Deepansh Sharma
 School of Bioengineering & Biosciences Lovely Professional University, Phagwara Punjab, India
• Sai Prachetan Balguri
 ORISE Research Fellow at U.S. FDA
• Dr. Mohd Abdul Hadi
 Department of Pharmaceutics, Bhaskar Pharmacy college, Yenkapally (V), Moinabad (M), R.R (Dt), Hyderabad-500 075, Telangana, India
• Tanay Pramanik
 Department of Chemistry in Lovely Professional University, Punjab, India
• Dr. D. Nagsamy Venkatesh
 Department of Pharmaceutics, JSS College of Pharmacy, Ooty, TN India

Editorial office

Asian Journal of Pharmaceutical and Clinical Research
B-11, In front of Beema Hospital, Nayi Awadi, Mandasaur 458001, MP, India
E-mail: editor@ajprr.com

Online ISSN: 2455-3891
Print ISSN: 0974-2441