Journal Editorial Board

ISSN 1937-6871 (Print) ISSN 1937-688X (Online)
http://www.scirp.org/journal/jbise

Editor-in-Chief

Prof. Kuo-Chen Chou Gordon Life Science Institute, San Diego, California, USA

Editorial Board

Prof. Christopher J. Branford-White London Metropolitan University, UK
Prof. Thomas Casavant University of Iowa, USA
Dr. Feng Cheng University of South Florida, USA
Prof. Senshi Fukashiro The University of Tokyo, Japan
Prof. Dayong Gao University of Washington, USA
Dr. Ernesto Goldman Ohio State University Wexner Medical Center, USA
Prof. Reba Goodman Columbia University, USA
Prof. Ridha Hambli Orleans University, France
Dr. Zeng-Jian Hu Howard University, USA
Prof. Takeshi Kikuchi Ritsumeikan University, Japan
Prof. Rob Krams Imperial College London, UK
Dr. Lukasz Kurgan University of Alberta, Canada
Prof. Juan Liu Wuhan University, China
Dr. Girdhar K. Pandey University of Delhi South Campus, India
Prof. Panagote (Panos) M. Pardalos University of Florida, USA
Prof. Kota V. Ramana University of Texas Medical Branch, USA
Dr. Yanmei Tie Harvard Medical School, USA
Prof. Giuseppe Vairo University of Rome “Tor Vergata”, Italy
Prof. Zhizhou Zhang Harbin Institute of Technology, China
Journal of Biomedical Science and Engineering (JBiSE)

Journal Information

SUBSCRIPTIONS

Subscription rates:
Print: $89 per issue.
To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements
Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)
E-mail: sub@scirp.org

COPYRIGHT

COPYRIGHT AND REUSE RIGHTS FOR THE FRONT MATTER OF THE JOURNAL:
Copyright © 2015 by Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

COPYRIGHT FOR INDIVIDUAL PAPERS OF THE JOURNAL:
Copyright © 2015 by author(s) and Scientific Research Publishing Inc.

REUSE RIGHTS FOR INDIVIDUAL PAPERS:
Note: At SCIRP authors can choose between CC BY and CC BY-NC. Please consult each paper for its reuse rights.

DISCLAIMER OF LIABILITY

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements and opinion of Scientific Research Publishing, Inc. We assume no responsibility or liability for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:
E-mail: jbise@scirp.org
Table of Contents

Volume 8 Number 10 October 2015

Development of Three Dimensional Automatic Body Fat Measurement Software from CT, and Its Validation and Evaluation
Y. J. Kim, J. Y. Jeong, S. Y. Nam, M. J. Kim, J. H. Oh, K. Gi Kim, D. K. Sohn

Comparative Study of Imaging Characteristics of I-125 Imaging Using the Siemens Inveon Scanner and Siemens Symbia TruePoint
Y. J. Kim, I. Lim, A. R. Yu, B. I. Kim, C. W. Choi, S. M. Lim, J. S. Kim

Sequence Motif-Based One-Class Classifiers Can Achieve Comparable Accuracy to Two-Class Learners for Plant microRNA Detection
M. Yousef, J. Allmer, W. Khalifa

CT and MR Imaging Findings in the Joubert Syndrome, a “Ciliopathy”
K. Akbari, C. M. Fellner, D. Flöry, F. A. Fellner

Pupil Size Measurement and Sucrose Ingestion for Quantifying and Decreasing Burden of Women during Mammography
Y. Lee, M. Uchiyama, T. Sumiyoshi

Modelling and Simulation of Pressure Controlled Mechanical Ventilation System
N. Q. Al-Naggar

Large Deformation Characterization of Porcine Thoracic Aortas: Inverse Modeling Fitting of Uniaxial and Biaxial Tests
J. O. V. Delgadillo, S. Delorme, F. Thibault, R. DiRaddo, S. G. Hatzikiriakos

Healing Mechanism and Osteogenic Capacity of Bovine Bone Mineral—Human Amniotic Mesenchymal Stem Cell and Autogenous Bone Graft in Critical Size Mandibular Defect
D. B. Kamadjaja, Purwati, F. A. Rantam, Ferdiansyah, D. C. Pramono

The figure on the front cover is from the article published in J. Biomedical Science and Engineering, 2015, Vol. 8, No. 10, pp. 733-746 by David B. Kamadjaja, et al.
Journal of Biomedical Science and Engineering (JBiSE)

http://www.scirp.org/journal/jbise

JBiSE, an international journal, publishes research and review articles in all important aspects of biology, medicine, engineering, and their intersection. Both experimental and theoretical papers are acceptable provided they report important findings, novel insights, or useful techniques in these areas. All manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online followed by printed in hard copy.

Subject Coverage
- Applied Biomaterials
- Bioelectrical and Neural Engineering
- Bioinformatics and Computational Biology
- Biomechanics and Biotransport
- Biomedical and Environmental Sciences
- Biomedical Chemistry
- Biomedical Chromatography
- Biomedical Devices, Sensors, Artificial Organs and Nano Technologies
- Biomedical Engineering
- Biomedical Imaging, Processing and Visualization
- Biomedical Informatics
- Biomedical Materials
- Biomedical Microdevices
- Biomedical Modeling
- Biomedical Sciences and Applications
- Biomedical Semantics
- Biomedical Signal Processing and Control
- Biomedicine and Biotechnology
- Biomedicine and Pharmacotherapy
- Clinical Engineering, Wearable and Real-Time Health Monitoring Systems
- Computer Methods and Programs in Biomedicine
- Genetic Engineering
- Genomics
- History and Philosophy of Biomedical Sciences
- Mechanical Behavior of Biomedical Materials
- Medical Biochemistry
- Medical Cell Biology
- Molecular and Genetic Medicine
- Nano-Bio-Analysis
- Negative Results in Biomedicine
- NMR in Biomedicine
- NMR/CT/ECG Technologies and Electromagnetic Field Simulation
- Nonlinear Biomedical Physics
- Numerical Methods in Biomedical Engineering
- Pharmaceutical and Biomedical Analysis
- Physiological Signal Processing
- Proteomics
- Software, Tools and Application in Medical Engineering
- Structure-Based Drug Design

Notes for Intending Authors
Submitted papers should not have been previously published nor be currently under consideration for publication elsewhere. Paper submission will be handled electronically through the website. All papers are refereed through a peer review process. For more details about the submissions, please access the website.

Website and E-Mail
http://www.scirp.org/journal/jbise
Email: jbise@scirp.org

Editor-in-Chief
Prof. Kuo-Chen Chou
Gordon Life Science Institute, San Diego, California, USA

Editorial Board
- Prof. Christopher J. Branford-White, London Metropolitan University, UK
- Prof. Thomas Cassavant, University of Iowa, USA
- Prof. Sashi Fukashiro, University of South Florida, USA
- Prof. Dayong Gao, The University of Tokyo, Japan
- Prof. Ernesto Goldman, University of Washington, USA
- Prof. Reba Goodman, Ohio State University Wexner Medical Center, USA
- Prof. Richard Hambli, Columbia University, USA
- Prof. Dr. Zeng-Jian Hu, Orleans University, France
- Prof. Takashi Kikuchi, Howard University, USA
- Prof. Rob Krama, Ritsumeikan University, Japan
- Dr. Lukasz Kurgan, Imperial College London, UK
- Prof. Juan Liu, University of Alberta, Canada
- Dr. Srinivasan Pandey, Wuhan University, China
- Prof. Panagiotis (Panos) M. Pardalos, University of Delhi South Campus, India
- Prof. Kotra V. Ramana, University of Florida, USA
- Dr. Yanmei Tie, University of Texas Medical Branch, USA
- Prof. Giuseppe Vaire, Harvard Medical School, USA
- Prof. Zhizhong Zhang, University of Rome "Tor Vergata", Italy
- Harbin Institute of Technology, China

ISSN 1937-6871 (Print), 1937-688X (Online)
What is SCIRP?
Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is currently publishing more than 200 open access, online, peer-reviewed journals covering a wide range of academic disciplines. SCIRP serves the worldwide academic communities and contributes to the progress and application of science with its publication.

What is Open Access?
All original research papers published by SCIRP are made freely and permanently accessible online immediately upon publication. To be able to provide open access journals, SCIRP defrays operation costs from authors and subscription charges only for its printed version. Open access publishing allows an immediate, worldwide, barrier-free, open access to the full text of research papers, which is in the best interests of the scientific community.

- High visibility for maximum global exposure with open access publishing model
- Rigorous peer review of research papers
- Prompt faster publication with less cost
- Guaranteed targeted, multidisciplinary audience

Website: http://www.scirp.org
Subscription: sub@scirp.org
Advertisement: service@scirp.org
Healing Mechanism and Osteogenic Capacity of Bovine Bone Mineral—Human Amniotic Mesenchymal Stem Cell and Autogenous Bone Graft in Critical Size Mandibular Defect

David B. Kamadjaja1,2, Purwati2,3,4, Fedik A. Rantam2,3, Ferdiansyah3,5, D. Coen Pramono1

1Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
2Laboratory of Stem Cell, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
3Regenerative Medicine & Stem Cell Centre, Airlangga University & Dr. Soetomo General Hospital, Surabaya, Indonesia
4Department of Internal Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
5Department of Orthopaedic & Traumatology, Dr. Soetomo General Hospital, Surabaya, Indonesia
Email: davidbk65@gmail.com

Received 21 September 2015; accepted 24 October 2015; published 27 October 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY).

Abstract

Experiments on maxillofacial bone tissue engineering showed the promising result; however, its healing mechanisms and effectiveness had not been fully understood. The aim of this study is to compare the bone healing mechanism and osteogenic capacity between bovine bone mineral loaded with hAMSC and autogenous bone graft in the reconstruction of critical size mandibular bone defect. Critical size defects were made at the mandible of 45 New Zealand white rabbits reconstructed with BBM-hAMSC, BBM alone, and ABG, respectively. At the end of first, second, and twelfth weeks, five rabbits from each experimental week were sacrificed for histology and immunohistochemistry staining. Expressions of vascular endothelial growth factor (VEGF), bone morphogenic proteins-2 (BMP2), Runx2 and the amount of angiogenesis were analyzed in the first and second week groups, while expressions of Runx2, osteocalcin, collagen type-I fibres, trabecular area and bone incorporation were analyzed in the twelfth week groups. The result showed that expressions of VEGF, BMP2 and Runx2 as well as the amount of angiogenesis were higher in ABG compared with BBM-hAMSC group in the first and second weeks of healing. The result of twelfth week of healing showed that expressions of Runx2 and osteocalcin as well as the thickness of collagen type-I fibres were significantly higher in BBM-hAMSC compared to ABG group, while there was no statistically difference in trabecular area and bone incorporation between BBM-hAMSC and ABG group. This study concluded that early healing activities were higher in auto-
ogenous bone graft than in BBM-hAMSC, while osteogenic activities in the late stage of healing were higher in BBM-hAMSC compared to autogenous bone graft. It was also concluded that the osteogenic capacity of BBM-hAMSC was comparable to autogenous bone graft in the reconstruction of critical size defect in the mandible.

Keywords
Bone Healing Mechanism, Osteogenic Capacity, Human Amniotic Mesenchymal Stem Cell, Bovine Bone Mineral, Autogenous Bone Graft, Critical Size Mandibular Bone Defect

1. Introduction
Surgical reconstruction of critical size mandibular defect has been a great challenge in oral and maxillofacial surgery. Gold standard for mandibular reconstruction is autogenous bone graft. However, autogenous bone graft has limitation in shape, size, and its availability; furthermore, it has been attributed to donor site morbidity [1] [2]. Bone tissue engineering using mesenchymal stem cell (MSC) is a potential alternative to autogenous bone graft. Experimental studies proved that tissue engineering used to reconstruct segmental defects in long bones [3]-[7] and mandibles [8] [9] showed promising result. However, the healing mechanisms of composite MSC-scaffold and their osteogenic capacity in the reconstruction of critical size mandibular defects, have not been fully understood until today. The study of healing mechanism of mandibular defects reconstructed with composite MSC-scaffold can be performed by analyzing the amount of angiogenic and osteogenic differentiation processes observed in the scaffolds, while the osteogenic capacity of this approach may be evaluated by the amount of new bone trabeculae formed in the scaffold and the incorporation between newly formed bone and the recipient bone.

Mesenchymal stem cell-based bone tissue engineering generally uses autologous bone marrow-derived mesenchymal stem cell (BM-MSC) due to its highest osteogenic capacity among other type of MSC [10]. However, it has limitations as it requires invasive procedure to collect bone marrow aspirates which is a potential morbidity to the patients; the quality of MSC largely depends on the patient general health condition and age. Allogeneic MSC, therefore, is now being studied as an alternative to autologous BM-MSC. Human amniotic membrane mesenchymal stem cell (hAMSC), as one of the sources of allogeneic MSC, has recently been explored because of its pluripotential [11] [12] and low immunogenic properties [13] [14]. Application of hAMSC in bone tissue engineering, however, has not been reported in the literature.

The aim of this study is to compare the early and late phase of healing mechanism and osteogenic capacity between composite bovine bone mineral scaffold loaded with hAMSC and autogenous bone graft, the gold standard of bone graft material, in the reconstruction of critical size mandibular defect.

2. Material and Methods
2.1. In Vitro Procedure
2.1.1. Isolation of Human Amniotic Membrane
The procurement of human amniotic membrane was harvested from Cesarean section performed at Dr. Soetomo General Hospital, Surabaya which was legally and ethically approved by Committee for Ethics on Health Researches, Dr. Soetomo General Hospital, Surabaya. The procedure for isolation and culture of hAMSC were performed at Laboratory of Stem Cell, Institute of Tropical Disease, Airlangga University, Surabaya using modified Alviano’s protocol as described in our previous paper [15].

2.1.2. Cell Culture
The cells collected were cultured on dishes using Dulbecco’s DMEM/F12 (1:1) (Gibco BRL, Gaithersburg, MD, USA), supplemented with human leukemia inhibitory factor (10 ng/mL) and fetal bovine serum (Gibco BRL). The cell adherence to the dish was evident at day 3 and on the seventh day when the culture reached 80% confluence (Figure 1), cell splittings were done, half to two thirds of the cells were subsequently replated using the same medium.
2.1.3. Phenotypic Characterization
The MSC phenotypic characterization was performed with immunostaining as follows. Cultured cells were plated onto coverslips, incubated at 37°C for 1 - 2 hours, fixed with formaldehyde 10% for 15 minutes, and then rinsed four times with PBS. The cells were blocked with PBS and FBS 1% for 15 - 30 minutes. FITC-labelled mouse monoclonal antibody anti-human CD 105 and CD 45 was applied to the culture and incubated for 60 minutes. Thereafter, the cells were rinsed with PBS twice and analyzed using fluorescence microscope. The positive MSC marker, CD 105, was showed by green staining expressed by the cells (Figure 1) as opposed to dark, negative haematopoetic marker when stained with anti-CD 45.

2.2. In Vivo Procedure
Forty five New Zealand white rabbits were divided into 3 groups based on the time of observation, which were first, second, and twelfth week. Each group was subsequently divided into three experimental groups which were BBM-hAMSC, BBM alone (BBM), and autogenous bone graft (ABG), consisting of 5 rabbits per group. Critical size defects were surgically created in the rabbits’ mandibles which were reconstructed with BBM-hAMSC, BBM alone, and ABG, respectively. Fifteen rabbits from each experimental week were sacrificed for histology and immunohistochemistry staining. Expression of vascular endothelial growth factor (VEGF), bone morphogenic proteins -2 (BMP2), Runx2 and amount of angiogenesis were analyzed in the first and second week groups, while expression of Runx2, osteocalcin, collagen type-I fibres, trabecular area and bone incorporation were analyzed in the twelfth week groups.

2.2.1. Surgical Procedure
The surgical procedure was done at operating room at Laboratory of Stem Cell, Institute of Tropical Disease, Airlangga University which had been approved by Animal Care and Use Committee (ACUC) Faculty of Veterinary Medicine, Airlangga University. Forty-five male, New Zealand white rabbits, aged 6 months, weighing 3.0 - 3.5 kg, were used in this study. They were divided into 3 groups based on the time of observation which are one, two, and twelve weeks, in each of the group they are further subdivided into 3 experimental groups based on methods of defect reconstruction i.e. scaffold bovine bone mineral and hAMSC (BBM-hAMSC), scaffold BBM alone (BBM), and autogenous bone graft (ABG), making a total of 9 groups consisting of 5 rabbits per group.

Rabbits were anaesthetized with intramuscular injection of ketamine HCl at a dose of 20 mg per kg body weight. A critical size defect measuring 5 × 10 × 4 mm was made at the inferior border of right side of the mandible using straight-end drill under copious saline irrigation. The defects in the first experimental group were reconstructed with BBM-hAMSC, while in the second and third group the defects were filled with BBM alone.
and autogenous bone graft harvested from iliac crestal bone of the same rabbit, respectively. Fixation of the implanted material was achieved by suturing the overlying muscle under slight tension. Soft tissue and skin suturing was done with absorbable suturing material.

2.2.2. Specimen Preparation
Fifteen rabbits were sacrificed after first, second and twelve weeks to collect the specimens for histology and immunohistochemistry staining. The specimens collection was done by removing the scaffold or bone graft including the surrounding host bone of 2 - 3 mm wide using sharp straight-end drill. They were fixed in 10% buffered formaldehyde solution for 3 days and then decalcified with 10% ethylenediaminetetraacetic acid until 30 days before embedding in paraffin. Sections, 5 µm thick, were deparaffinized with xylene, rehydrated in 100% alcohol, and washed in distilled water and then stained with hematoxylin-eosin.

2.2.3. Immunohistochemical Staining
Sections for immunohistochemical staining were incubated in 3% peroxide for 30 minutes acid to block endogenous peroxidase, soaked in 0.025% trypsin-phosphate buffer saline for 6 minutes and finally washed with 3 times for 2 minutes. Sections were stained with anti VEGF-A antibody (*anti-rabbit VEGF polyclonal antibody*, USCN, USA; followed by *anti-human VEGF monoclonal antibody*, LifeSpan BioSciences, Inc. USA), anti BMP2 antibody (*anti-rabbit BMP-2 polyclonal antibody*, ABIN, USA; followed by *anti-human BMP-2 monoclonal antibody*, LifeSpan BioSciences, Inc. USA), *anti-rabbit Runx2 monoclonal antibody* (Santa Cruz Biotech., USA), *anti-rabbit osteocalcin monoclonal antibody* (Novus Biological, USA), and *anti-rabbit collagen I monoclonal antibody* (Novus Biological, USA).

2.2.4. Data and Statistical Analysis
The data of VEGF, BMP-2, Runx2 and Osteocalcin expressions were counted as the number of cells positively stained with the respective antibodies, while Collagen type-I thickness was represented by the thickness (in µm) of bone matrix positively stained with collagen type-I antibody. The histology sections were used for evaluation of the number of vascular tissues (angiogenesis), the area of bone trabeculae, and bone incorporation between the newly formed bone and the recipient bone. The evaluation of bone incorporation used modified Lane-Shandu scoring system (0 = non-union, 1 = fibrous union, 2 = fibro-osseous union, 3 = osseous union, 4 = mature and complete osseous union).

Statistical analysis was performed using software package SPSS version 16 (IBM corp). Data from each experiment group were statistically analyzed with the assumption of homogeneity of variances and normal distribution of errors being tested for the variables examined. One-way analysis of variance followed by multiple comparison test (Tukey HSD) and Kruskal Wallis followed by Mann-Whitney test were used to show the significance among the groups (*p* < 0.05).

3. Result

3.1. Microscopic Healing of Critical Size Mandibular Bone Defects
The results of evaluation at the first and second week post implantation were as follows. The microscopy of histology staining of the first week evaluation showed obvious amorphous structures in the centre of the scaffold in both BBM-hAMSC and BBM group as opposed to mature trabecular bone in ABG group. However, it was evident that at this stage more advanced tissue healing was found in BBM-hAMSC and ABG group compared to delayed healing in BBM group, characterized by lack of mesenchymal tissue and the cells populating the scaffolds being predominantly of polymorphonuclear cells, mononuclear cells and erythrocytes indicating prolonged tissue inflammation. Histology findings at second week of implantation showed comparable tissue healing in BBM-hAMSC and BBM group, however osteoid matrices were found in the former group. The ABG group showed mesenchymal and osteoid tissue blended with mature trabecular bone indicating activities of bone absorption and formation. Findings at twelfth week showed that islands of bony trabeculae being in maturation processes were predominant in BBM-hAMSC group which were blended with mesenchymal and osteoid tissues compared to predominant mesenchymal and osteoid tissue with scarce, streaky bony trabeculae in BBM group. The ABG group showed relatively mature bony trabeculae incorporating with more mature surrounding bone, areas of mesenchymal and osteoid tissue were also seen in between those trabecular bones (**Figure 2**).
Figure 2. Microscopic view of scaffolds and grafts healing after 1, 2, and 12 weeks. Healing in BBM-hAMSC group showing mesenchymal and loose connective tissue at the periphery of scaffold (a); lack of mesenchymal and connective tissue noted in the periphery of scaffold in BBM group with the central zone dominated by PMN and mononuclear cells (b); mature trabecular and cortical bone with interstitial mesenchymal tissue and inflammatory cells in ABG group (c) (one week post implantation). Note: black arrow pointing to scaffold/graft peripheral zone, white arrow to central zone; Osteoid matrix with osteoblastic rimming seen in the central zone of scaffold in BBM-hAMSC group (d); islands of mesenchymal tissue blended with amorphous structure seen in the central zone of scaffold in BBM group (e); mature and immature bone were seen in ABG group (f) (2 weeks post implantation); Islands of trabeculae undergoing maturation contiguous with fibrous and mesenchymal tissue seen in the central zone of BBM-hAMSC (g); mesenchymal tissue contiguous with strands of bone trabeculae and amorphous structure were evident in BBM group (h); bone trabecula incorporating with resipient bone and interstitial mesenchymal tissue were seen in ABG group (i) (12 weeks post implantation). Note: black arrow pointing to mesenchymal tissue, yellow arrow to osteoid tissue, blue arrow to bony trabeculae.

3.2. Examination of Early Phase of Bone Healing

The mean of VEGF expression of BBM-hAMSC, BBM and ABG group in the first week were 0.76 ± 0.43, 0.92 ± 0.19 and 1.22 ± 0.88, respectively, which were found not to be statistically different. However, the mean of VEGF expression in the second week in BBM group (2.04 ± 0.35) were significantly higher compared to that in BBM-hAMSC and ABG group which were 0.50 ± 0.51 and 0.83 ± 0.81, respectively. The histogram pattern of VEGF expression within the first two weeks in BBM group was upward trend as opposed to downward in the BBM-hAMSC and ABG group (Figure 3).

The mean of angiogenesis in the first week in ABG group (7.18 ± 0.83) was found to be significantly higher compared to that in BBM-hAMSC (4.06 ± 4.25) and BBM group (2.04 ± 1.09). However, the mean of angioge-
Figure 3. Result of immunohistochemistry for VEGF expression at early phase of bone healing. The mean of VEGF expression in all groups at one week were not statistically different, however, it was significantly higher in BBM group compared to BBM-hAMSC and ABG group; pattern of VEGF expression within the first two weeks in BBM group was upward trend as opposed to downward in the BBM-hAMSC and ABG group (top). (a) BBM-hAMSC group at 1 week; (b) BBM-hAMSC group at 2 weeks; (c) BBM group at 1 week; (d) BBM group at 2 week; (e) ABG group at 1 week; (f) ABG group at 2 week (note: red arrow pointing to positive cells, black arrow pointing to negative cells, 400×).
nesis in the second week were not significantly different among all of the groups. The histogram pattern of angiogenesis demonstrated upward trend in BBM group as opposed to downward trend in BBM-hAMSC and ABG group (Figure 4).

The mean of BMP2 expression in the first week in ABG group (1.06 ± 0.13) and BBM group (0.74 ± 0.22) were significantly higher than that in BBM-hAMSC (0.48 ± 0.20), however, in the second week the mean of BMP2 expression in BBM-hAMSC group (1.00 ± 0.18) and BBM group (0.88 ± 0.28) were significantly higher than that in ABG group (0.51 ± 0.25). The patterns of BMP2 expression in ABG group was downward compared to upward slope in tissue engineering groups (Figure 5).

The mean of Runx2 expression in the first week in ABG group (11.06 ± 1.33) was significantly higher than BBM-hAMSC and BBM group which were 1.78 ± 0.70 and 3.78 ± 1.09, respectively. The mean of Runx2 expression in the second week in BBM-hAMSC, BBM and ABG group were 9.63 ± 3.67, 6.10 ± 0.39 and 5.94 ± 1.00, respectively, which were found not to be statistically different. The histogram pattern of Runx2 expression in ABG group was downward compared to upward slope in BBM-hAMSC and BBM group (Figure 6).

3.3. Examination of Late Phase of Bone Healing

The result showed that the mean of Runx2 expression in twelfth week of healing in BBM-hAMSC, BBM and ABG group were 8.95 ± 3.02, 3.30 ± 0.17, and 6.83 ± 1.00, respectively (Figure 6). Statistical analysis showed that Runx2 expression in BBM-hAMSC and ABG group was not significantly different while both of them were significantly higher than that of BBM group. The histogram showed that Runx2 expression in twelfth week followed a downward trend in BBM-hAMSC and BBM group compared to stable pattern in ABG group.

The mean thickness of collagen type-I fibers in BBM-hAMSC, BBM and ABG group were 7.31 ± 1.81 µm, 6.83 ± 0.72 µm and 3.75 ± 0.46 µm, respectively (Figure 7). Statistical analysis indicated that the the collagen-I fibers thickness in BBM-hAMSC and BBM group were not significantly different, however, both significantly higher than that of ABG group. The mean of osteocalcin expression in BBM-hAMSC group (6.96 ± 0.79) was significantly higher than that in BBM group (2.13 ± 0.15) and ABG group (2.75 ± 0.54) (Figure 7).

The result showed that the mean bony trabecula area in BBM-hAMSC (204,090.25 ± 103,187.16 µm²) and ABG group (149,472.50 ± 76,478.17 µm²) were not significantly different, but they were relatively higher than that in BBM group (86,256.67 ± 62,903.83 µm²). The median of bone incorporation scoring between BBM-hAMSC and ABG group were found to be not significantly different, but they were relatively higher than that in BBM group (Figure 8).

4. Discussion

This experimental study attempted to reveal the healing process and bone forming capacity of BBM scaffold loaded with hAMSC compared to autogenous bone graft in the reconstruction of a critical size mandibular bone defect. The healing mechanism was categorized into early phase, the tissue healing in the first and second weeks, and late phase which was the osteogenesis process at twelfth week observation. Few molecular events in the early tissue healing were evaluated. Expression of VEGF, the most potent angiogenic factor, amount of angiogenesis, expression of BMP2, the most important osteoinductive factor, and expression of Runx2, the specific marker of osteogenic differentiation, were evaluated in the early tissue healing phase. Few osteogenic parameters were evaluated in the late healing stage such as expression of Runx2, thickness of collagen type-I fibres, one of the indicators of matrix maturation, and osteocalcin, a specific marker of mature osteoblast, all of which were collectively referred to as osteogenic process. The evaluation of trabecular bone area and bone incorporation score were used to represent bone forming capacity or osteogenic capacity.

The histology findings at first week after implantation clearly showed somewhat prolonged inflammation and delayed tissue healing in the scaffold of BBM group. This could be strongly associated with the absence of MSC inside the scaffold of BBM as opposed to BBM-hAMSC group. It was likely that hAMSC loaded in the scaffold might have posed anti-inflammatory effects on the surrounding tissues. Result of few studies revealed that hAMSC possess an immunoprivileged status, which is in part due to the expression of low to moderate levels of surface MHC-I, and the presence of low levels or even absence of MHC II and costimulatory molecules [16] [17].

The VEGF expression in the first week of healing which was comparable among all groups but followed by downward trend in BBM-hAMSC and ABG group compared to upward trend in BBM group was interesting to
Figure 4. Result of histology evaluation for Angiogenesis. Mean of angiogenesis (number of arteriole, venoule, and capillary) at one week showed significantly higher number of vessels in ABG group compared to tissue engineering groups, while at two week they were somewhat comparable (top). Note: (a), (c), (e) are photos of angiogenesis in BBM-hAMSC, BBM and ABG group, respectively, at 1 week; (b), (d), (f) are photos of angiogenesis in BBM-hAMSC, BBM and ABG group, respectively, at 2 weeks (black arrow pointing to arteriole, HE staining, ×100).
Figure 5. Result of immunohistochemistry evaluation for BMP2 expression at early phase of bone healing. The mean of BMP2 expression at one week in ABG and BBM group were significantly higher than BBM-hAMSC, while at two week they were significantly higher in BBM-hAMSC and BBM compared with ABG group. The pattern of BMP2 expression in ABG group was downward compared to upward slope in tissue engineering groups (top). (a) BBM-hAMSC group at 1 week; (b) BBM-hAMSC group at 2 weeks; (c) BBM group at 1 week; (d) BBM group at 2 week; (e) ABG group at 1 week (f) ABG group at 2 week (note: red arrow pointing to positive cells, black arrow pointing to negative cells, ×400).
Figure 6. Result of immunohistochemistry evaluation for Runx2 expression at early and late phase of bone healing. The mean of Runx2 expression in the first week in ABG group was significantly higher than BBM-hAMSC and BBM group, in the second week they were not statistically different among all groups, while in the twelfth week they were as high in BBM-hAMSC and ABG group which were significantly higher than BBM group (top). Photos (a), (b), (c) were BBM-hAMSC group at 1, 2, 12 week; (d), (e), (f) were BBM group at 1, 2, 12 week; (g), (h), (i) were ABG group at 1, 2, 12 week (note: red arrow pointing to positive cells, black arrow pointing to negative cells, ×400).
Figure 7. Result of immunohistochemistry evaluation for thickness of collagen type-I fibers and osteocalcin expression at 12 week. Thickness of collagen type-I fibers was significantly higher in tissue engineering groups compared to ABG group (top left), expression of osteocalcin was significantly higher in BBM-hAMSC group compared to BBM and ABG group (top right). Photos (a), (b) and (c) showing collagen type-I fibers in BBM-hAMSC, BBM and ABG group, respectively (red arrow pointing to collagen type-I fibers, ×400); photos (d), (e) and (f) showing osteocalcin expression in BBM-hAMSC, BBM and ABG group, respectively (red arrow pointing to positive cells, black arrow pointing to negative cells, ×400).

Note. This finding indicated that VEGF expression in BBM-hAMSC and ABG group might have reached their peaks in the first few days after implantation compared to that in BBM group which started at later stage. This phenomenon was likely to be associated with the presence of living cells inside the scaffold of BBM-hAMSC group and the grafted bone in ABG group. As the BBM scaffold and the non-vascularized bone graft were avascular and hence hypoxic, overexpression of VEGF by the pre-existing cells in those groups was expected to occur in the first few post-implantation days. This presumption was supported by result of the study which demonstrated that exposure of stem cells to hypoxia resulted in up-regulation of VEGF [18]. Further study evaluating VEGF expression in implanted scaffold earlier than 7 days would be required to prove this presumption.

The expression of BMP2 and Runx2 in ABG group which were significantly higher than the tissue engineering groups in the first week after implantation and the decline of those parameters in ABG group as opposed to the increase of the same parameters in tissue engineering groups in the second week (Figure 4 and Figure 5) suggested that osteogenic activities was initiated earlier and stronger in ABG compared to tissue engineering
groups. The similar pattern of BMP2 and Runx2 expressions in all experimental groups (Figure 4 and Figure 5) suggested that their expressions might be strongly correlated. This findings also confirmed that BMP2 was the most important osteoinductive factor involved in the process of bone healing as suggested by some authors [19] [20].

It was interesting to note that expression of BMP2 in BBM-hAMSC group in the first week of healing was lower compared to that in BBM group which actually was unexpected as the presence of hAMSC in the former group should have resulted in higher BMP2 expression. This phenomenon could be associated with the high expression of VEGF by hAMSC in the first week of healing inhibiting BMP2 expression. This presumption was supported by the result of in vitro studies which demonstrated that VEGF was a potent inhibitor of BMP, and overexpression of VEGF suppressed the in vitro differentiation and osteogenesis of MSC [21] [22]. The overall results discussed above indicated that angiogenesis and osteogenic differentiation started earlier in ABG group in the first week of healing but became comparable with BBM-hAMSC in the following week.

Expression of Runx2, thickness of collagen type-I fibres, and expression of osteocalcin in the twelfth week represented the amount of mesenchymal tissue differentiating towards osteoblastic lineage, osteoid matrix formation, and matrix undergoing mineralization forming bone trabecula, respectively. The more mature the osteogenic tissue in one specific compartment the more tissue shifting to the right and vice versa. The result of evaluation of Runx2 expression, thickness of collagen type-I fibres, and expression of osteocalcin indicated that...
osteogenic process were still ensuing in all of the three groups at the end of twelfth week. The result also indicated that although the level of osteogenic maturation was histologically higher in ABG group compared to BBM-hAMSC, the magnitude of osteogenic process in ABG group was significantly lower than BBM-hAMSC group. It was likely because the magnitude of osteogenic process in ABG group was dependent on that of resorption process of the graft by osteoclast activity which was not evaluated in this study. This assumption was supported by “remodelling cycle” theory [23] which suggested that resorption of autogenous bone graft might last until several months after implantation. The result of evaluation of trabecular area and bone incorporation at twelfth weeks after implantation indicated that the bone forming capacity or osteogenic capacity of BBM-hAMSC group was comparable to that of ABG group.

5. Conclusion

This study concluded that early healing activities of critical size mandibular defect were higher in autogenous bone graft than in BBM-hAMSC, while osteogenic activities in the late stage of healing were, on the other hand, higher in BBM-hAMSC compared to autogenous bone graft. It was also concluded that bone forming capacity, or osteogenic capacity, of BBM-hAMSC was comparable to autogenous bone graft in the reconstruction of critical size defect in the mandible.

Acknowledgements

This work was supported by grants from DIPA BOPTN, Ministry of Education, Republic of Indonesia, Fiscal Year 2014. This study was made possible by collaboration of Faculty of Dental Medicine Airlangga University, Laboratory of Stem Cell Institute of Tropical Disease Airlangga University, and Installation of Biomaterial Tissue Bank and Stem Cell Dr. Soetomo General Hospital Surabaya.

References

http://dx.doi.org/10.1182/blood-2003-12-4452

