International Journal of
Drug Delivery Technology
ISSN: 0975-4415
Peer Review Journal

Volume 9, Issue 1: January - March 2019

1. Gastroretentive Microspheres: An Innovative Approach for Prolonging Gastric Residence
Sudipti Panda, K Priyanka, R Vanspaisad, Srijitha Pattnaik
Abstract

Indu Bhat, Sunjol Verma, Anuradha Haque, Bhupinder Singh
Abstract

3. Technological Advancements in Oral Films
D Pandey, A B Khan
Abstract

4. Glibenclamide-Nicotinamide Cocrystals Synthesized by The Solvent Evaporation Method to Enhance Solubility and Dissolution Rate of Glibenclamide
Arif Buksh, Sandra Meganthe, Aya Aprilien, Tarzina Gorish
Abstract

5. Pharmaceutical Polymers – A Review
Naveen Kumar, Sonia Pahuja, Rajni Sharma
Abstract

6. An Epidemiological and Diagnostic Study of Anaplasma ovis Parasite In Native Goats In Babylon Province - Iraq
Saud Shafiq Shuhate
Abstract

7. An Epidemiological, Diagnostic and Therapeutic Study of Giemsa lamblia In Babylon Province - Iraq
Saud Shafiq Shuhate
Abstract

8. Identification Pseudomonas aeruginosa by OprD Gene for Differentiation from Other Pseudomonas Species that Isolated from Clinical Samples
Ashraf B Al Hashimi, Khalid B Majid, Akeel K Albagli, Huda S Akeel
Abstract

9. Formulation and Evaluation of Tenofovir Disoproxil Fumarate
Rodhil Priyanka Raju, Satish V Shirokar
Abstract
10. Anticancer Nano Formulation of Imatinib with Chitosan Polymer
Senthilwathi B, Vivekanandam K, Bhuvya E, Chosetla Stecia C, Billy Graham R
Abstract

11. Optimization of Sumatriptan Succinate Transdermal Emulsion For Treatment of Migraine
Jaydeé Swaji, Mageraalgel Phojinak
Abstract

12. The Effectiveness of Chloramphenicol In-Situ Ophthalmic Gel with Base Poloxamer 407 and HPMC Against Staphylococcus Aureus Atcc 29213 And Pseudomonas Aeruginosa Atcc 27853
Innas Simon Kumawasopee, Niricca Aliza Putriana, Sri Agung Fitri Kusuma, Tan Mei Lee
Abstract

Prakash Patel, Naiven Patel, Kinkal Parmar
Abstract

14. Development of Carrageenan Polymer for Encapsulation of Ciprofloxacin HCL: In Vitro Characterization
Harjipali D M, Hendrodi E, Sharan N
Abstract

15. Characteristics and Stability of Nanoparticle Lipid Carrier (NLC) Aloe Vera Seed Oil [ANs oil] Using Various Combinations of Beeswax and Oleum Cacao Tristano Erwadi M, Dewi Asta Putri, Anum Selvarathan, Noorma Rani, Wadi Soreb
Abstract

16. A Review on Status of Nanotechnology in Pharmaceutical Sciences
Ashish Sutte, Gurval Singh, Nishita Yadav, Ravi Pratap Barnwal, Neha, Singh, Kiril S, Prabhoo, Vilay Mishra
Abstract

17. Formulation of Topical Gel from Extract of Berberis aristata DC for Acne
Shyam Baboo Prasad, Darshmeet Kaur, Vishwani
Abstract

18. Biomedical Potential of Graphene oxide based Nanoformulations: An Overview
Vilay Mishra, Gurval Singh, Nishita Yadav, Ravi Pratap Barnwal, Neha Singh, Kiril S, Prabhoo, Ashish Sutte
Abstract

Impact Factor: 1.529
This journal is present in UGC approved List of Journals for the purpose of Career Advancement Scheme (CAS) and Direct Recruitment of Teachers and other academic staff as required under the UGC (Minimum Qualifications for Appointment of Teachers and other Academic Staff in Universities and Colleges)

Other Journals published by International Society for Science and Nature

WWW.UPQA.COM
International Journal of Pharmaceutical Quality Assurance

WWW.UPCR.COM
International Journal of Pharmaceutical and Clinical Research

WWW.UPPR.COM
International Journal of Pharmacognosy and Phytochemical Research

WWW.UPPR.COM
International Journal of Current Pharmaceutical Review and Research

WWW.UJPR.COM
International Journal of Toxicological and Pharmacological Research

The publication is licensed under Creative Commons 4.0. View Legal Notice by Dr. Yashwant Research Labs Pvt. Ltd. on behalf of International Society for Sci
Development of Carrageenan Polymer for Encapsulation of Ciprofloxacin HCl: In Vitro Characterization

Hariyadi D M*, Hendradi E, Sharon N

Pharmaceutics Department, Faculty of Pharmacy, Universitas Airlangga, Dharmawangsa Dalam, 60286, Surabaya, Indonesia

Received: 7th Jan, 19; Revised and Accepted: 4th Mar, 19; Available Online: 25th Mar, 2019

ABSTRACT
This study reported the properties of microspheres based carrageenan polymers with Ciprofloxacin HCl antibiotic as a model for dry powder inhalation (DPI). Microspheres Ciprofloxacin-Carrageenan was prepared through ionic gelation process which is a widely used microencapsulation technique in the pharmaceutical industry. Microspheres formula consists of formula using 0.5 and 1% carragenan polymer and 0.2 and 0.6% KCl crosslinker which was named as F1, F2, F3 and F4. Microspheres were characterized for their yield, morphology, entrapment efficiency, drug loading and particle size. Results revealed that ionic gelation technique was a suitable technique for preparation of microspheres as most of the formulations were small in size, spherical in shape with a good yield of 46% to 89%. Based on the data of various evaluations such as drug entrapment efficiency, drug loading and particle size, formula F3 was found as the best DPI formula. Microspheres were successfully prepared and this study can be concluded that the developed microspheres of ciprofloxacin HCl-Carrageenan can be used for pulmonary system to improve the release mechanism and drug bioavailability.

Keywords: Microspheres, Ciprofloxacin HCl, Carrageenan, Characteristics.

INTRODUCTION
Ciprofloxacin HCl is a wide spectrum antibacterial agent for positive and negative gram bacteria. Ciprofloxacin HCl is especially active for Gram negative germ including salmonella, shigella, campylobacter, neisseria, and pseudomonas. Ciprofloxacin HCl has moderate activity against Gram positive bacteria such as Streptococcus pneumonia and Enterococcus. The use of Ciprofloxacin HCl has been used for airway infections (but not pneumococcal pneumonia), urinary tract, digestive system (including typhoid fever), gonorrhea and septicemia by sensitive organisms.

In oral route, Ciprofloxacin HCl was absorbed in body by 70% after administration. Ciprofloxacin was then metabolized in the liver about 15% then excreted 40-50% from oral dose therefore suggested an alternative route. The other route is pulmonary route. The pulmonary route needs small dosage and small particle size of <5 µm therefore microspheres were as an alternative for delivery system. Microspheres were chosen because the use of fewer dosages, small size and can be used for prolonged therapeutic effects. Carrageenan polymer was selected in this research because it is a natural polymer that is biodegradable, economical and widely used for encapsulation. Carrageenan is one of carragenan type which has many advantages. To form microspheres gel for carrageenan, monovalent crosslinker was needed, such as K+, Na+ and Li+. The most crosslinker used for carrageenan is potassium chloride (KCl). KCl was used because it can form a gel that was stable, elastic, cohesive and transparent. This study used ionotropic gelation method with aerosolization technique because of simple and easy. Aerosolization techniques were used because they can produce small and uniform particle sizes.

In this research, development of optimized microspheres preparations will be done by study the physical characteristics of ciprofloxacin HCl-carrageenan microspheres at different concentration of carrageenan polymer and KCl crosslinker. Physical characteristics included morphology, yield, particle size, drug loading and entrapment efficiency.

MATERIALS AND METHODS
Materials
Ciprofloxacin HCl (Zinjlang Ltd), Kappa-Carrageenan (KCN), KCl (Merck), Maltodextrin (Zhuceng Ltd), Aquadestillata (Bratachem). All composition and reagent

Table 1: Microspheres formula of Ciprofloxacin HCl-Carrageenan.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Ciprofloxacin HCl (%)</th>
<th>Carrageenan (%)</th>
<th>KCl (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1%</td>
<td>0.5%</td>
<td>0.2%</td>
</tr>
<tr>
<td>F2</td>
<td>1%</td>
<td>0.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>F3</td>
<td>1%</td>
<td>1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>F4</td>
<td>1%</td>
<td>1%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Author for Correspondence: dewi-m-h@ff.unair.ac.id
use pharmaceutical grade.

Methods
Preparation of microspheres by ionic gelation method
Ciprofloxacin HCl, Carrageenan and KCl were firstly each dissolved in water. Ciprofloxacin and KCl were then mixed and the solutions were sprayed into Carrageenan solution. Mixture of solution was stirred for 2 hours using a magnetic stirrer at 1000 rpm. Formed solution was separated using centrifuge, then it was filtered to collect microspheres. Wet microspheres obtained were put into freeze dryer for 48 hours at -50°C.

Physical characterization of microspheres
Morphology
Surface morphology of microspheres was examined using Scanning Electron Microscope (SEM). The sample was mounted on an aluminum SEM sample holder, coated with a thin layer of gold for 120 seconds and then observed with a SEM microscope at 10 kV⁹.

Particle size
Microspheres were put on object glass and 300 particles were measured using optical microscope. Particle were then grouped, determined smallest and largest particle size of all samples, and grouping into several intervals and classes. Average diameter was determined and calculated using below equation:

\[
\text{Diameter average} = \frac{\sum d}{n}
\]

\[n = \text{number of microparticles observed} \]
\[d = \text{size of the microparticles}^{10}\]

Yield
Yield was determined by comparing total weight of microspheres with weight of microparticles forming material. Yields close to 100% indicated that the method used in preparation is efficient to produce microspheres. Yield was calculated using below equation:

\[
\% \text{ yield} = \frac{\text{Weight of dry microspheres}}{\text{Total weight material}} \times 100\%
\]

Drug loading
Weighed of microspheres (50 mg) and microspheres were put in a 50 ml of PBS solution pH 7.4, then it was left for

---

Table 2: Characteristic physics of microspheres ciprofloxacin-carrageenan.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Particle size (µm)</th>
<th>Yield (%)</th>
<th>Drug loading (%)</th>
<th>Entrapment efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1.41</td>
<td>34.62</td>
<td>13.49</td>
<td>10.54</td>
</tr>
<tr>
<td>F2</td>
<td>1.59</td>
<td>46.11</td>
<td>13.81</td>
<td>11.09</td>
</tr>
<tr>
<td>F3</td>
<td>1.62</td>
<td>67.05</td>
<td>15.97</td>
<td>24.71</td>
</tr>
<tr>
<td>F4</td>
<td>1.67</td>
<td>89.33</td>
<td>18.90</td>
<td>28.69</td>
</tr>
</tbody>
</table>

Figure 1: Scanning Electron Microscope of Microspheres F1, F2, F3 and F4 (at 5000x) For particle size distribution, figure 2 to 5 illustrated that small sizes of range between 0.6 to 4 µm were resulted.
24 hours by continued stirring for 2 hours. The solution
was filtered and then measured the absorbance in a UV-
Vis spectrophotometer at wavelength of 268 nm using a
regression from the standard curve. Drug loading was
calculated using below equation:
\[
\text{Drug loading} = \frac{\text{Weight of drug}}{\text{Weight of microspheres}} \times 100\%^{12}
\]

**Entrapment efficiency**

Entrapment efficiency was calculated using below
equation:

\[
\text{Entrapment efficiency} = \frac{\text{Drug content in microspheres}}{\text{Theoretical drug content in formula}} \times 100\%^{13}
\]

---

**Figure 2:** Histogram of particle size distribution F1.

**Figure 3:** Histogram of particle size distribution F2.

**Figure 4:** Histogram of particle size distribution F3.
RESULT
Result of characteristics of microspheres produced form aerosolization technique can be seen in their morphology in Figure 1. In terms of average of particle size, yield, drug loading and entrapment efficiency, ciprofloxacin HCl-carrageenan microspheres of all formulas were shown at Table 2.

DISCUSSION
Microspheres were made by ionic gelation using non-organic solvents which was distilled water. Ciprofloxacin HCl is easily soluble in water, stable at room temperature 25°C and at pH 4-7. Ionotropic gelation methods were used because they are very simple and easy process to design a carrier as controlled release 11,12. The results of examination of particle morphology using Scanning Electron Microscope (SEM) of F1 to F4 were had round spherical shape and smooth surface. Measurement of particles of F1 to F4 was less than 4μm with average of about 1.4 to 1.6μm. The particle size of smaller than 5 μm was desirable to be deposited in the alveoli. Particles of more than 10 μm will quickly disappear in the upper airways due to swallowing or coughing13. Yield value showed the smallest value that was for F1 of 34.62 % and the highest was F4 of 89.33%, which means this method was an efficient method to produce ciprofloxacin HCl-carrageenan microspheres. Entrapment efficiency had the lowest value of 10.54 % and the highest at 28.69%. Drug loading had values ranging from 13% to 18%. These results showed that the higher concentration of the polymer and crosslinker showed entrapment efficiency and drug loading was also increased. This was because an increase concentration of the polymer increased the degree of crosslink in the microspheres to bind the drug into helical forms of the carrageenan microspheres. In addition, increase of polymer also increased the drug encapsulation. Thus, drug loading and entrapment efficiency of F4 were the highest14.

CONCLUSION
This study can be concluded that the Ciprofloxacin HCl-Carrageenan microspheres resulted round spherical shape with smooth surface. Increasing concentration of carrageenan polymers (0.5 to 1.0%) and KCl crosslinker (0.2 to 0.6%) increased particle size, yield, entrapment efficiency and drug loading. The further study of in vitro release was recommended to complete study of in vitro microspheres characterization.

ACKNOWLEDGMENT
Authors would like thank Directorate of Higher Education and Universitas Airlangga for the all supports for this research.

REFERENCES


EDITOR IN CHIEF

Prof. Dina Nath Mishra
Professor and Head of Pharmaceutics, Department of Pharmaceutical Sciences,
Guru Jambheshwar University of Science and Technology, INDIA

Board Members

Dr. Somnath Singh
Creighton University, Omaha, USA

Dr. Tathagata Dutta
University of Queensland, Brisbane, AUSTRALIA

Dr. Ashish Suttee
Lovely Professional University, Phagwara, INDIA

Dr. Kalpesh Gaur
Geetanjali College of Pharmaceutical Studies, Udaipur, INDIA

Dr. Vishal Gupta
Director, Research & Development, Covidien, USA

Dr. Chandan M. Thomas
Department of Pharmaceutical Sciences, Lake Erie College of Osteopathic Medicine and School of Pharmacy, 5000 Lakewood Ranch Blvd, Bradenton, Florida-34211

Prof. Kamla Pathak
Rajiv Academy of Pharmacy, Mathura, INDIA

Prof. V. R. Sinha
Panjab University, Chandigarh, INDIA

Prof. Pramil Tiwari
National Institute of Pharmaceautical Education and Research (NIPER), Mohali, INDIA

Prof. Arun Nanda
Faculty of Pharm. Sciences, Maharshi Dayanand University, Rohtak, INDIA

Prof. O.P. Katre
Panjab University, Chandigarh, INDIA

Dr. Amit Bhatia
Lovely Professional University, Punjab, INDIA

Dr. Anil Philip
Rajiv Academy Academy of Pharmarcy, Mathura, INDIA

Dr. Dinesh Kaushik
Hindu College of Pharmacy, Sonepat, INDIA

Dr. Munish Ahuja
Dept. of Pharm. Sciences, Guru Jambheshwar University of Science and Technology, Hisar, INDIA
Dr. Sanju Nanda  
Dept. of Pharm. Sciences, M.D. University, Rohtak, INDIA

Dr. Rakesh P. Patel  
S.K. Patel College of Pharm. Edu. & Res., Ganpat University, Gujarat, INDIA.

Dr. Bhaskar Mazumder  
Dept. of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, INDIA.

Dr. Kalpana Nappal  
Apeejay Satya University, Sohna, Gurgaon, Haryana, INDIA

Submit Manuscript | Contact IJDDT | Join Editorial | Accepted Manuscripts | Home

Impact Factor: 1.529

This journal is present in UGC approved List of Journals for the purpose of Career Advancement Scheme (CAS) and Direct Recruitment of Teachers and other academic staff as required under the UGC (Minimum Qualifications for Appointment of Teachers and other Academic Staff in Universities and Colleges)

Other Journals published by International Society for Science and Nature
International Journal of Drug Delivery Technology

Country: Australia - SIR Ranking of Australia

Subject Area and Category: Pharmacology, Toxicology and Pharmaceutics, Pharmaceutical Science

Publisher: International Journal of Drug Delivery Technology

Publication type: Journals

ISSN: 0975-4415

Coverage: 2011-ongoing

Quartiles:
- Pharmaceutical Science 2012 Q4
- Pharmaceutical Science 2013 Q4
- Pharmaceutical Science 2014 Q3
- Pharmaceutical Science 2015 Q3
- Pharmaceutical Science 2016 Q3
- Pharmaceutical Science 2017 Q3
- Pharmaceutical Science 2018 Q3

SJR:
Scientific journal ranking is an average article score of the journal.

Year | SJR
---|---
2012 | 0.112
2013 | 0.132
2014 | 0.159
2015 | 0.220
2016 | 0.144
2017 | 0.123
2018 | 0.213

Total Cites | Self-Cites
---|---

Citations per document

https://www.scimagojr.com/journalrank.php?q=20500195212&source=0
Dr. Zainab Al-Sharifi  5 days ago

hi sir,
I would like to publish my paper in your journal, my name is dr. Zainab Al-Sharifi am from Iraq, Collage of medicine / University of Baghdad

reply
The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.