Unity in Diversity and the Standardisation of Clinical Pharmacy Services

Editors: Elida Zairina, Junaidi Khotib, Chrismawan Ardianto, Syed Azhar Syed Sulaiman, Charles D. Sands III and Timothy E. Welty
Unity in Diversity and the Standardisation of Clinical Pharmacy Services

Editors
Elida Zairina
Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

Junaidi Khotib & Chrismawan Ardianto
Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

Syed Azhar Syed Sulaiman
Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia

Charles D. Sands III
(Formerly) McWhorter School of Pharmacy, College of Health Sciences, Samford University, Birmingham, Alabama, USA

Timothy E. Welty
Department of Clinical Sciences, College of Pharmacy and Health Sciences, Drake University, Iowa, USA
Organizing committee

ADVISORS
Mohammad Nasih, Rector of Universitas Airlangga, Indonesia
Nurul Falah Eddy Pariang, President of Indonesian Pharmacist Association, Indonesia

INTERNATIONAL ADVISORY BOARD
Suharjono, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Junaidi Khotib, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Yunita Nita, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Aris Widayati, Faculty of Pharmacy, Universitas Sanata Dharma, Indonesia
Dyah Aryani Perwitasari, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia
Surakit Nathisuwan, Faculty of Pharmacy, Mahidol University, Thailand
Suphat Subongkot, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand
Roger D. Lander, McWorther School of Pharmacy, Samford University, USA
Timothy E. Welty, College of Pharmacy and Health Sciences, Drake University, USA
Charles D. Sands III, Former Dean and Professor (retired), McWorther School of Pharmacy, Samford University, USA
Alexandre Chan, Department of Pharmacy, National University of Singapore, Singapore
Priscilla Hong, Department of Pharmacy, National University of Singapore, Singapore
Syed Azhar Syed Sulaiman, School of Pharmaceutical Sciences, Universiti Sains Malaysia
Hiroyuki Kamei, Faculty of Pharmacy, Meijo University, Japan
Kwang-il Kwon, College of Pharmacy, Chungnam National University, Korea
Robert Sindelar, Faculty of Pharmaceutical Sciences, The University of British Columbia, Canada

STEERING COMMITTEE
Umi Athiyah, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Riesta Primaharinastiti, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Dwi Setiawan, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Dewi Melani Haryadi, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Wahyu Utami, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Budi Suprapti, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Agung Endro Nugroho, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
Pinus Jumaryatno, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia
Sabtanti Harimurti, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Indonesia
Chao Zhang, Peking University Third Hospital, China
Helen Zhang, United Family Health Care, China
Zhu Zhu, Peking Union Medical College Hospital, China
Suo-Zhong Yuan, Chinese Pharmaceutical Association, China
Franco Cheng, School of Pharmacy, The Chinese University of Hongkong, Hong Kong
Vivian Lee Wing-Yan, School of Pharmacy, The Chinese University of Hongkong, Hong Kong
Wan Gyoon Shin, College of Pharmacy, Seoul National University, Korea
Kyung Eob Choi, College of Pharmacy, CHA University, Korea
Jung Mi Oh, College of Pharmacy, Seoul National University, Korea
Hyun-Take (Thomas) Shin, College of Pharmacy, Sookmyung Women's University, Korea
Ramesh Adepu, JSS College of Pharmacy, JSS University, India
Farshad Hashemian, Pharmaceutical Sciences Branch, Islamic Azad University, Iran
Mehdi Rajabi, Pharmaceutical Sciences Branch, Islamic Azad University, Iran
Takao Shimazoe, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
Yolanda R. Robles, College of Pharmacy, University of the Philippines, Philippines
Hazel Faye Ricaforte-Docuyanan, Philippine Society of Hospital Pharmacists, Philippines
Ng Hong Yen, Pharmaceutical Society of Singapore, Singapore
Vivianne Shih Lee Chuen, Pharmaceutical Society of Singapore, Singapore
Sutthiporn Pattarachayakul, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Thailand
Aporanee Chaiyakum, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand
Nguyen Van Hung, Faculty of Pharmacy, Haiphong University Medicine and Pharmacy, Vietnam
Pham Minh Hung, Faculty of Pharmacy, Haiphong University Medicine and Pharmacy, Vietnam
Marshall E. Cates, McWorther School of Pharmacy, Samford University, USA
Michael Hogue, McWorther School of Pharmacy, Samford University, USA
James E. Tisdale, College of Pharmacy, Purdue University, USA
Alan Lau, College of Pharmacy, University of Illinois at Chicago, USA
Amrizal Marzuki, Indonesian Society of Hospital Pharmacists, Indonesia
Saleh Rustandi, Indonesian Society of Community Pharmacy, Indonesia

SCIENTIFIC COMMITTEE

Elida Zairina, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Chrismanwan Ardianto, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Arie Sulistyarini, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Mufarrirah, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Rita Suhadi, Faculty of Pharmacy, Universitas Sanata Dharma, Indonesia
Suci Hanifah, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
Fita Rahmawati, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
M. Saiful Bachri, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia
Alwi Wirawan Sani, Indonesian Pharmacist Association, Indonesia
Riza Andalusia, Indonesian Society of Hospital Pharmacists, Indonesia
Widyati, Indonesian Society of Hospital Pharmacists, Indonesia

CONFERENCE CHAIRMAN

Suharjono, Faculty of Pharmacy, Universitas Airlangga, Indonesia

CONFERENCE VICE-CHAIRMAN 1

Junaidi Khotib, Faculty of Pharmacy, Universitas Airlangga, Indonesia

CONFERENCE VICE-CHAIRMAN 2

Yunita Nita, Faculty of Pharmacy, Universitas Airlangga, Indonesia

SECRETARY

Anila Impian Sukorini, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Ana Hidayati, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia
FOOD AND BEVERAGE

Dewi Wara Shinta, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Yosi Febrianti, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
Pinasti Utami, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Indonesia

FACILITIES AND EQUIPMENT

Catur Dian Setiawan, Faculty of Pharmacy, Universitas Airlangga, Indonesia
Christianus Heru Setiawan, Faculty of Pharmacy, Universitas Sanata Dharma, Indonesia
Yulianto, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia

ACCOMMODATION AND TRANSPORTATION

Mutiara Herawati, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
Dita Maria Virginia, Faculty of Pharmacy, Universitas Sanata Dharma, Indonesia
Mawardi Ihsan, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
# Table of contents

Preface ix  
Organizing committee xi  
Keynote speakers xv  
Plenary speakers xvii  
List of symposium speakers xix  

Medication management system in several care homes in Surabaya 1  

Effectiveness of decision aid on knowledge, decision conflict, and outcome in diabetic patients 7  
*L. Aditana & F. Yulia*  

Self-esteem scale: Translation and validation in Malaysian adults living with asthma 13  
*S. Ahmad, M. Qamar, F.A. Shaikh, N.E. Ismail, A.I. Ismail & M.A.M. Zim*  

Factors affecting mortality among patients undergoing hemodialysis in Sudan 19  
*O. Amir, A. Sarriff, A.H. Khan, M.B. Abdelraheem & B. Norsa’adah*  

Evaluating the effectiveness of filgrastim in patients with solid cancer 27  
*E.N. Anggraeny, F. Rahmawati & K.W. Toroeno-Hariadi*  

Building care of hypertensive patients in reducing sodium intake in Banjarmasin 33  
*H. Ariyani, Akrom & R. Alfiyan*  

Effect of glibenclamide on glycemic control in the presence of sodium diolefocenac 41  
*T. Aryani, M.N. Zamzamah, Z. Izzah & M. Rahmadi*  

A drug utilization study of antibiotics in patients with osteomyelitis 45  
*A.S. Budiatin, K.D. Kurdiana, B.S. Zulkarnain, H. Suroto & R. Diniya*  

Factors influencing trastuzumab cardiotoxicity in breast cancer: A case–control study 51  
*C. Cherachat, C. Sukkasem, C. Somsangprasert, S. Pornbunjerd, N. Purinianitikul & K. Tewihamon*  

Transdermal patch loading diolefocenac sodium for anti-inflammation therapy using a rat paw oedema model 55  
*P. Christanto, Isnaeni, A. Miutmoko & E. Hendradi*  

Ethambutol-induced optic neuropathy in diabetic patients with tuberculosis 61  
*M. Djunaedi, U. Athiyah, Y. Priyandani & S.A.S. Sulaiman*  

Identification of clinical specimens isolated from neonates 65  
*M. Djunaedi, S.A.S. Sulaiman, A. Sarriff, N.B.A. Aziz & Habsah*  

Effect of coenzyme Q10 on the malondialdehyde level and exercise performance of male runners in Jakarta 73  
*S. Gunawan, Purwantyastuti, F.D. Suyatna & E.I. Ilyas*  

Compatibility of selected inotropic drugs in a syringe 81  
*S. Hanifah, R.A. Kennedy & P.A. Ball*
Ward pharmacist workload analysis in an Indonesian class A hospital
A.L. Hariadini, W. Utami & A. Rahem

Effect of LD50 of ethanolic leaf extract from Ipomoea reptans Poir. in rats
E. Hayati, R. Istikharah, S. Arifah & D. Nurhasanah

Oral indomethacin versus oral paracetamol for patent ductus arteriosus closure in neonates

Clinical trial of Jamu X on blood glucoza and HbA1C in patients with type 2 diabetes mellitus
Z. Ikawati, M. Eko Cahyantoro, N.R. Sholehah & N. Atikah

Management of carbamate or organophosphate intoxication at a high care unit
Z. Izzah, T. Aryani, R. Rodhika & Lestiona

Development of an antidepressant e-learning tool for pharmacology education
A. Karaksha, M. Dharmesti, A.K. Davey, G. Grant, S.A. Dukie, H. Budianto,
E.V. Mutiara, V. Marina, I. Puspitaningrum & A. Shollina

Effectiveness of nimodipine on non-traumatic subarachnoid hemorrhage based on computed tomography angiography
J. Khotih, S.S. Ganesen & A.F. Sani

Study of pediatric compounded drug prescriptions in a health care facility in Bandung
F. Lestari, Y. Aryanti & U. Yuniarni

Efficacy of honey vinegar in hyperlipidemic rats (Rattus norvegicus)
E.W. Lucia, K. Lidya & T. Amisa

Improving the competence of pharmacist students through international lecturers
O.R. Mafruhah, S. Hanifah, C.P. Sari, P.A. Ball & H. Morrisse

The effectiveness evaluation of antiretroviral therapy in Mangusada Hospital Bali
H. Meriyan, N. W. Udayani & K.A. Adrianta

Drug therapy problems in pediatric and geriatric patients at Farmasi Airlangga Pharmacy
Mufarirah, D.M. Machfud, V.D.A. Purworo, A. Yuda, Y. Priyandani & Y. Nita

PCR primer design for detection of SNPs in SLC22A1 rs683369 encoding OCT1
as the main transporter of metformin
A.A. Mukminatin, V.D.A. Ningrum & R. Istikharah

Pharmacist–patient communication: An observational study of characteristic information
I. Mulyono, S. Irwati, A. Pratidina & M. Claramita

Multidrug resistance-1 gene variants in pediatric leukemia in Bali

Medication adherence in the elderly with chronic diseases using the Adherence to Refill and Medication Scale (ARMS)
Y. Nita, F.M. Saputra, S. Damayanti, P.I. Pratiti, R. Zuhairah, A. Sulistyarini & Y. Priyandani

Direct non-medical costs of patients with cervical cancer who underwent chemotherapy

Factors influencing correct measurements of liquid medicines by consumers
G. Nugraheni & G.N.V. Achmad

The correlation of service quality and complaint handling with patient satisfaction
R.A. Oetari, M.E. Sariatin, H. Basir & C. Wiedyaningsih

Assessment of medication safety among Filipino pharmacists
R.C. Onggoy Jr., P.P. David, R.C. Onggoy, M. D. U. Dean & A.D. Atienza

Effect of the combination of Typhonium flagelliforme Lodd. (Blume) and Phyllanthus niruri Linn. on the immune system
S.S. Pangestika, A.P. Gani, A. Yuswanto & R. Murwanti
Organophosphate toxicity in red chili farmers, Ciamis, Indonesia
D.A. Perwitasari, D. Prasasti, I.W. Arsanti & I.A. Wiraguni 207

Factors affecting the rational use of NSAIDs in self-medication
L. Priianty, G.N.V. Achmad & A. Faturrohhimah 213

The influence of adverse reactions of antituberculosis drugs to non-adherence in drug use
Y. Priyandani, C.D. Setiawan, A. Yuda, Y. Nita, U. Athiyah, M.B. Qomaruddin & Kuntoro 217

(-)-Epigallocatechin gallate from green tea increases the level of a DNA repair enzyme
D.A. Purwanto 223

Perceptions and practices of self-medication among healthcare students
M. Qamar, S. Norhazimah, F.A. Shaikh & S. Ahmad 227

Smoking cessation counseling: Perceptions and barriers among community pharmacists
M. Qamar, S. Ahmad, K. Poobalan, F.A. Shaikh & M.A. Hammad 233

Factors affecting medication noncompliance in patients with chronic diseases
A. Rahem 241

The development and evaluation of a clinical pharmacy course at a pharmacy school in Indonesia
F. Rahmawati, D. Wahyono & M. Ihsan 245

Relationship ejection fraction and segment ST-resolution in STEMI patients with streptokinase therapy
D.M.N. Ratri, S. Sjamsiah, H.P. Jaya & M. Aminuddin 251

Management of hyponatremia in patients with heart failure: A retrospective study
S. Saeudin, P.A. Ball & H. Morrissey 255

Continuous infusion versus intermittent bolus furosemide in heart failure NYHA III-IV
S. Sjamsiah & M. Yogiarto 261

The effectiveness of empirical and definitive antimicrobial therapy
I.P. Sari, R.H. Asdie, T. Nuryastuti, Sugiyono & Sumaryana 265

In vivo analgesic effect of Ethanolic extracts of exocarp, mesocarp, and seeds of Carica papyscus
H. Sasonko & Sugiyarto 271

Evaluation of knowledge, attitude and perceived barriers towards adverse drug reaction reporting
F.A. Shaikh, S. Ahmad, E. Intra, M. Qamar & T.M. Khan 275

Hydroxylethyl starch or gelatin, which is safer for the kidneys?
D.W. Shinta, J. Hotib, M. Rahmadi, B. Suprapti, E. Rahardjo & J.K. Wijoyo 281

In silico QSAR of 1-benzoyl-3-benzylurea lead and its analogue compounds as anticancer
F. Suhud, C. Effendi & Siswando 287

A study on antiemics for postoperative nausea and vomiting at Dr. Soetomo Hospital
Suharjono, M.E.B.M.A. Nazim, B.P. Semedi & R. Diniya 293

Ethanol extract of Annona squamosa L. improves the lipid profile in hyperlipidemia rats
R. Sumary, Y. Sumiyati & D. Maulina 297

The effect of Telmisartan on lipid levels and proinflammatory cytokines in ESRD patients undergoing hemodialysis
B. Suprapti, W.P. Nilamars, Z. Izah, Z. Dhrik & B. Dharma 303

Risk assessment of ADEs: Patient safety incident reports at Ari Canti Hospital in 2016
D.A. Swastini, N.W.S. Wahyun & K. Widiantara 307

Medication-induced Adverse Drug Reaction (ADR) in the Malaysian elderly population
H.M. Taib, Z.A. Zainal, N.M. Ali & R. Hashim 311
Cost-effectiveness analysis of patients with schizophrenia in Madani Hospital
M.R. Tandah, A. Mukaddas & W. Handayani

Tacrolimus-induced symptomatic hyponatremia after kidney transplantation: A case study
T. Verayachankul & J. Tantivit

Postoperative pain management in elderly patients: Evaluating the use of analgesics
A. Vonna, A. Apriani & Sadli

Antimalarial activity and toxicological test of Andrographis paniculata tablets (AS202-01)

Socioeconomic status and obesity in an adult rural population in Indonesia
A. Widayati, Fenty, D.M. Virginia & P. Hendra

A strategic approach to increase the compliance of patients with type 2 diabetes mellitus
N. Wulandari, D. Viviandhari & Nurhayati

Disposal practices of unused medication among the public in Meradong, Sarawak, Malaysia
N.L.C. Yaacob, L.P. Wei, S. Ahmad, F. Naimat & A. Ahmad

Drug use and potential drug interaction in the elderly
A. Yuda, E.C. Dewi, D.M. Fami, L. Jamila, M. Rakhmawati, K.P.P. Sari, K.P. Ningrum,
G.N.V. Achmad & Y. Nita

Effects of audiovisual education on the knowledge and adherence of patients with DMT1
L.Y. Yusan, N. Rochmah, A. Rahem & A. Purnamayanti

Root extract of Imperata cylindrica L. improves serum nitric oxide levels in diabetic mice
A. Zada, J.B. Dewanto, A. Dahlam, D. Dhanawaty, M.R.A.A. Syamsunarno,
G.R. Mukarromah & N. Anggraeni

Medication use during pregnancy in Surabaya: A cross-sectional study
E. Zairina, G. Nugraheni, G.N. Veronika Ahmad, A. Yuda, Y. Nita,
M.P. Wardhana & K.E. Gumilar

Eyedrops use perception during fasting
B.S. Zulkarnain, Sumarno, Y. Nita & R. Loebis

Author index
Transdermal patch loading diclofenac sodium for anti-inflammation therapy using a rat paw oedema model

P. Christanto, Isnaeni, A. Miatmoko & E. Hendradi

Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

ABSTRACT: The anti-inflammatory effect of transdermal delivery of a diclofenac sodium patch was evaluated. The patch matrix consists of ethyl cellulose N-20 and polyvinyl pyrrolidone K-30 to control the drug release. In this study, the patches were prepared with ethyl cellulose N-20 (EC-N20) and polyvinylpyrrolidone K-30 (PVP K-30) at weight ratio of 6:4 and 7:3 for EC/PVP-6/4 and EC/PVP-7/3 patches, respectively. The anti-inflammatory effect was determined by evaluating the swelling of rat’s paw oedema that was induced with 1% carrageenan suspension. The results showed that the high concentration of PVP K-30 resulted in less rigid patch with pore structures. In addition, it improved the anti-inflammatory effect of diclofenac sodium resulted in higher efficacy of EC/PVP-6/4 than that of EC/PVP-7/3. There were no significant differences on drug stability observed for both formulations. It can be concluded that controlling diclofenac sodium released from patch using PVP K-30 could give benefits for anti-inflammation therapy.

1 INTRODUCTION

Diclofenac sodium is a Non-Steroidal Anti-Inflammatory Drug (NSAID) that is widely used to relieve pain and inflammation. Diclofenac sodium has fast absorption by oral administration, but only about 60% of the total drug amount reaches the systemic circulation. This phenomenon is caused by the first-pass metabolism that occurs in the liver (Chuasuwan et al. 2008). The half-life of diclofenac sodium is very short, which is approximately two hours. Moreover, it produces severe side effects on the gastrointestinal tract i.e. stomach ulcers. Transdermal delivery may provide an alternative solution to overcome this problem.

Recently, commercial transdermal products of diclofenac sodium available on the market are mostly in topical liquids, gels or creams that are applied directly to the skin. However, these products provide only short-term pharmacological effects. The use of transdermal patch can provide many advantages for delivery of diclofenac sodium. The patch can control the drug release, so it can be used for long-term drug administration to achieve systemic dosing (Rathbone et al. 2002). The use of patch can also avoid gastrointestinal irritation, minimize pain, and bypass the hepatic first-pass metabolism. Moreover, due to its ability to control the release of drugs for extended and safe use, it reduces the occurrence of fluctuations and being beneficial for drugs that have very short half-life times and narrow therapeutic ranges. Thereby, it can increase the patient compliance (Kumar & Philip 2007).

It has been known that diclofenac sodium has low molecular weight, which is less 500 daltons, and partition coefficient or Log P of 1.1–1.3 (Kweon et al. 2004, Chuasuwan et al. 2008). These properties have been reported to be ideal for drug delivery using transdermal patch (Rathbone et al. 2002).

Polymer has an important role in regulating the release of the drug in the matrix-patch type. Modification of polymer properties using combination of hydrophilic and lipophilic polymers, such as polyvinyl-pyrrolidone (PVP) and ethyl cellulose (EC) is useful for achieving good drug release rate (Kandavilli et al. 2002, Rathbone et al. 2002). To improve drug penetrated into the skin, the addition of penetration enhancers, such as menthol, can be considered.

In this study, we evaluated the anti-inflammatory effects of diclofenac sodium patch at a dose of 14.13 mg/7.065 cm². The patch was prepared with combination of EC N-20 and PVP K-30 at weight ratio of 6:4 and 7:3. These formulations also contain menthol and polyethylene glycol (PEG)-400 as they were previously reported as important components to prepare patch using the controlled matrix method (Hendradi et al. 2011). The anti-inflammatory effect was then evaluated by determine the thickness of oedema on hind paw of Wistar rats that was induced by injecting carrageenan suspension. Moreover, stability of patch was also determined as they likely affect the therapeutic effects of the preparation.
2 METHODS

2.1 Materials
Diclofenac sodium was purchased from Aarti Drug Ltd. (Tarapur, India). Ethyl cellulose (EC) N-20 was bought from Dow Chemical Company (Midland, USA). Polyvinylpyrrolidone (PVP) K-30 was a product of ISP Pte. Ltd. (Singapore). All other chemicals are the finest grade available.

2.2 Preparation of diclofenac sodium patch
Diclofenac sodium patch was prepared by using the controlled matrix method as previously reported (Hendradi et al. 2011). The patch composed of polymeric matrix, plasticizer, and penetration enhancer as shown in Table 1. The patches had surface area of 7.065 cm². The formulation was generated in triplicates.

2.3 Evaluation of physical characteristics of diclofenac sodium patch

2.3.1 Organoleptic properties
The organoleptic properties of diclofenac sodium patch were evaluated by visual observation of physical appearances and colour of patch, and smelling of its odour.

2.3.2 Moisture content
The Moisture Content was determined by weigh measurement of patch before and after desiccation. The patch was put in a safety cabinet and its mass was weighed. Then, this patch was put in a silica gel desiccator and allowed to stand for 24 hours. After 24 hours, the patch was removed from desiccator and measured for its weight. The moisture content (%) of patch was calculated as follows:

\[
\text{%Moisture Content} = \frac{w_1 - w_2}{w_2} \times 100\%
\]

Table 1. The formulation of diclofenac sodium patch.

<table>
<thead>
<tr>
<th>Component</th>
<th>Use</th>
<th>Formulation</th>
<th>EC/PVP-6/4</th>
<th>EC/PVP-7/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac sodium</td>
<td>Active drug</td>
<td>14 mg</td>
<td>14 mg</td>
<td></td>
</tr>
<tr>
<td>EC N-20</td>
<td>Polymeric matrix</td>
<td>169 mg</td>
<td>197 mg</td>
<td></td>
</tr>
<tr>
<td>PVP K-30</td>
<td>Polymeric matrix</td>
<td>113 mg</td>
<td>85 mg</td>
<td></td>
</tr>
<tr>
<td>PEG-400</td>
<td>Plasticizer</td>
<td>73 mg</td>
<td>73 mg</td>
<td></td>
</tr>
<tr>
<td>Menthol</td>
<td>Penetration enhancer</td>
<td>4 mg</td>
<td>4 mg</td>
<td></td>
</tr>
</tbody>
</table>

which \( w_1 \) is diclofenac sodium patch’s weight before being put in the desiccator, and \( w_2 \) is diclofenac sodium patch weight after being put in a desiccator for 24 hours (Patel et al. 2009, Hendradi et al. 2011).

2.4 Surface morphology and homogeneity of diclofenac sodium concentration of patch
Determination of surface homogeneity test of patch was evaluated using scanning electron microscopy. The homogeneity of diclofenac sodium concentration in patch was carried out by dividing the patch into four equal parts. Each part was then measured for its level of diclofenac sodium in phosphate buffer saline (PBS) pH 7.4 using UV spectrophotometer at \( \lambda \) of 276 nm. The measurement was in triplicates.

2.5 Evaluation of anti-inflammatory effects in rats
All animal experiments were performed through approval of ethical clearance committee of Universitas Airlangga, Indonesia. The Wistar rats with age of two months old were used as the experimental animals. They were divided into four groups, which each group consists of 4 animals. The negative control groups were treated with placebo patches prepared with the combination of EC N-20 and PVP K-30 at weight ratio of 7:3 and 6:4 for EC/PVP-6/4 and EC/PVP-7/3 groups, respectively, and do not contain diclofenac sodium. The treatments groups received diclofenac sodium patches with a dose of 14.13 mg/7.065 cm²/rat
and prepared with combination of EC N-20 and PVP K-30 in the weight ratio of 7:3 and 6:4 for EC/
PVP-6/4 and EC/PVP-7/3 groups, respectively.

The anti-inflammatory effect of diclofenac sodium patches were evaluated using rat’s paw oedema model as previously reported (Hendradi et al. 2003). The patches were applied onto the abdominal skin of the rats. At one hour later, the left rear foot plantar tissue of Wistar rat (two months old) was injected with suspension of carrageenan for oedema induction. The anti-inflammatory effect was determined by measuring the thickness of rat hind paw with the long sliding every 0.5 hours.

2.6 Stability of diclofenac sodium patch

Physical stability test of diclofenac sodium patch was conducted for three months, which were at day 7, 21, 54 and 84, by visual observation of consistency, physical appearances, and odour. In addition, the chemical stability tests were also carried out by determining the diclofenac sodium concentration.
of patch during the same interval periods using spectrophotometric method at 276 nm. The measurements were in triplicates.

2.7 Data analysis

The anti-inflammatory effect of patch on reduction of inflammation was calculated using the following formula:

\[
\% \text{ anti-inflammatory effect} = \left( \frac{H_t - H_0}{H_0} \right) \times 100\%
\]

which \( H_t \) is the thickness of swollen rat hind paw after carrageenan injection at determined measurement time, and \( H_0 \) is the thickness of swollen rat hind paw before rats were injected with carrageenan (Hendradi et al. 2003). The significance of differences on reduction of inflammation was statistically analyzed using one-way analysis of variance. A \( p \) value of 0.05 or less was considered significant.

3 RESULTS AND DISCUSSIONS

In this study, we prepared diclofenac sodium patch prepared with different weight ratio of PVP K-30 and EC N-20 to control the release of drug. Reducing the concentration of PVP K-30 showed enhanced anti-inflammatory effects on rat’s hind paw oedema.

The organoleptic evaluation shows that diclofenac sodium patch EC/PVP-6/4 that was prepared with EC N-20 and PVP K-30 at weight ratio of 6:4, respectively, had more flexible consistency (Table 1). It may because of the low amount of PVP K-30. Since PVP K-30 is a hygroscopic and hydrophilic polymer, it may cause the patch absorbing water molecules from the air, thus becoming more flexible than EC/PVP-7/3.

Moreover, EC/PVP-6/4 had more transparent appearance than EC/PVP-7/3, as shown in Fig. 1 A,B. It is because the use of less amount of EC, which is a water insoluble hydrophobic polymer, than that of EC/PVP-6/4. Both formulations have the minty fresh smell (Table 1) due to the addition of menthol as penetration enhancer in patch.

Table 2. Organoleptic properties of diclofenac sodium patch at day 0.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Consistency</th>
<th>Appearance</th>
<th>Odour</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC/PVP-6/4</td>
<td>Less rigid</td>
<td>Transparent</td>
<td>Minty fresh</td>
</tr>
<tr>
<td>EC/PVP-7/3</td>
<td>Rigid</td>
<td>Less transparent</td>
<td>Minty fresh</td>
</tr>
</tbody>
</table>

By using scanning electron microscopy (SEM), it can be seen that EC/PVP-6/4 patch have more pores and larger pore size than EC/PVP-7/3 patch as shown in Fig. 2. Since EC N-20 is a hydrophobic polymer, the low amount of this polymer in EC/PVP-6/4 resulted in hydrophilic patch with extensive pore structures (Fig. 2 A,B). On the other hand, the high amount of EC N-20 in EC/ PVP-7/3 produced tightened structures, thus having small amount of pore with relative small pore size (Fig. 2C,D). The addition of diclofenac sodium had no effect on the physical structures of patches.

The moisture content analysis indicates that EC/PVP-6/4 patch had slightly higher moisture content than EC/PVP-7/3 (Table 3). It is due to the PVP K-30 content, which is a hygroscopic polymer. However, the difference between these two patch formulations was negligible.
Figure 1. Physical appearances of diclofenac sodium patch prepared with EC N-20 and PVP K-30 at weight ratio of 6:4 and 7:3 for EC/PVP-6/4 (A), and EC/PVP-6/4 (B), respectively.

Figure 2. Scanning electron microscope (SEM) pictures of matrix type patch prepared with EC N-20 and PVP K-30 at weight ratio of 6:4 for EC/PVP-6/4 placebo patch (A), EC/PVP-6/4 loading diclofenac sodium (B), and 7:3 for EC/PVP-7/3 placebo patch (C), and EC/PVP-6/4 containing diclofenac sodium (D). Scale bar is 50 μm.

Table 3. Moisture content (%) and drug homogeneity of diclofenac sodium patches at day 0 (n = 3).

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Moisture content (%)</th>
<th>Drug homogeneity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC/PVP-6/4</td>
<td>12.81 ± 0.65</td>
<td>100.22 ± 0.61</td>
</tr>
<tr>
<td>EC/PVP-7/3</td>
<td>10.95 ± 0.11</td>
<td>98.56 ± 0.83</td>
</tr>
</tbody>
</table>
Moreover, drug homogeneities of the two patch formulations were 98.56 ± 0.83 and 100.22 ± 0.61%; these results show that both formulations produced homogeneous diclofenac sodium patches and meet product homogeneity requirements with percent of variation coefficient less than 2% (Departemen Kesehatan 2014).

In the in vivo study, there were significant differences on oedema reduction between diclofenac sodium-contained patch applications and placebo patches. Moreover, a significant higher increase in the anti-inflammatory effects was observed in the EC/PVP-6/4 treatment group than that of EC/PVP-7/3 (Fig. 3). It is possibly due to the large pores present in EC/PVP-6/4 patch enable drug to be dissolved, released, and readily penetrate into the skin, thus causing reduction of the inflammation. On the other hand, the tightened patch pore structure of EC/PVP-7/3 limits this process producing weaker anti-inflammatory effects than that of EC/PVP-6/4, although the concentration of diclofenac sodium released from this patch formulation was still able to cure the inflammation. In addition, according to the calculation of area under curve (AUC) of swelling thickness of rat’s hind paw, it can be seen that administration of EC/PVP-6/4 patch into abdominal skin of rats produced the largest decrease on the paw oedema as shown in Fig. 4. Beside the pores, the use of menthol as penetration enhancer also plays important roles in enhancing anti-inflammatory effects of diclofenac sodium patch. It has been known that menthol affects the integrity of stratum cor-neum layers, thus improving the penetration of diclofenac sodium.

After storage at room temperature, the stability was evaluated at day 7, 21, 56 and 84. There were no changes observed in the organoleptic properties between patches determined at observation day and those of day 0 (Table 2). The consistency, physical appearances and odour of EC/PVP-6/4 and EC/PVP-7/3 patches were similar. Moreover, the moisture contents of patches, either EC/PVP-6/4 or EC/PVP-7/3, during observation periods had no significant differences from that of the day 0, as shown in Fig. 5. The moisture contents were about 11% and 13% for EC/PVP-6/4 and EC/PVP-7/3, respectively.
Figure 4. The areas under curve (AUC) of hind paw thickness of carrageenan suspension-induced rat oedema after topical administration of the placebo and diclofenac sodium-loaded patches onto abdominal skin (n = 4).

Figure 5. The stability evaluation for moisture content (%) of diclofenac sodium-loaded patches i.e. EC/PVP-6/4 and EC/PVP-7/3 stored at room temperature (25°C) for 84 days (n = 3).
Figure 6. The concentration of diclofenac sodium loaded in EC/PVP-6/4 and EC/PVP-7/3 patches during the storage at room temperature (25°C, n = 3).
In addition, it can be seen that the concentration of diclofenac sodium in the patches were stable until 84 days stored at room temperature, which were still within the range of 95–105% (Figure 6). This result suggests that the use of different ratio of EC N-20 and PVP K-30 in patch formulation have no different effects on chemical stability of the drug and both of them could maintain the stability of diclofenac sodium loaded in the patches.

The use of EC N-20 and PVP K-30 as polymeric matrix with menthol addition in patch could improve transdermal delivery of diclofenac sodium. It produced transdermal patch with good organoleptic properties, physically and chemically stable during storage at room temperature, and importantly, improved anti-inflammatory effects of diclofenac sodium on rat’s paw edema by topical administration. Mostly, drug penetration into the skin is very limited, thus being the great problem for achieving good drug therapy. It is important to design a carrier for controlling drug release and enhancing skin drug penetration in an appropriate manner for achieving high drug efficacy. However, further investigation is still required to evaluate physicochemical interaction of EC N-20 and PVP K-30 for enhancing the therapeutic outcomes of patch loading diclofenac sodium.

4 CONCLUSIONS

In this study, to deliver diclofenac sodium for anti-inflammation therapy, we prepared patches using combination of EC N-20 and PVP K-30 as polymeric matrix and evaluated their anti-inflammatory effects using rat paw oedema model. High reduction on paw swelling was achieved in EC/PVP-6/4 patch that was prepared with the high amount of PVP K-30. This finding suggested that EC N-20 and PVP K-30 at weight ratio of 6:4, respectively, can act as an excellent polymeric matrix for transdermal patch.

ACKNOWLEDGEMENTS

We would like to thank Ministry of Research, Science, Technology and Higher Education (KEMENRISTEK-DIKTI) of Indonesia for providing funding for this research work.

REFERENCES


