Original articles

Various In Vitro Bioactivities of Secondary Metabolites Isolated from the Sponge Hyrtios aff. Erectus from the Red Sea Coast of Egypt
Asmaa NABIL-ADAM, Mohamed A. SHREADAH, Nehad M Abd EL MONEM, Samy A EL-ASSAR ... 127

In Vivo Antioxidant Activity of Different Fractions of Indigofera Barberi Against Paracetamol-induced Toxicity in Rats
Shaik AMINABEE, Aimbakuri Lakshmana RAO, Maram China ESWARIAH .. 136

Development and Validation of a Stability Indicating RP-HPLC Method for Simultaneous Estimation of Teneligliptin and Metformin
Rajani VETAPALEM, Rajendra Prasad YEJELLA, Lakshmana Rao ATMAKURI .. 141

A High Performance Thin Layer Chromatographic Method Using a Design of Experiment Approach for Estimation of Phytochemicals in Extracts of Moringa Oleifera Leaves
Asha THOMAS, Abhilash KANAKODAR, Adinath SHIRSAT, Sanjeevani DESHKAR, Lata KOTHAPALLI .. 148

Floating Microspheres of Enalapril Maleate as a Developed Controlled Release Dosage Form: Investigation of the Effect of an Ionotropic Gelation Technique
Ali Khider ABBAS, Ansa Tanik ALHAMDANY ... 159

Comparison of Lipid and Lipoprotein Values of Wrestlers and Soccer Players
Serra ÇETIN, Cuma ECE, Meltem PAKSOY, Hasan Nedim ÇETIN .. 172

Theoretical Study on Ionization of Boric Acid in Aqueous Solution by Ab Initio and DFT Methods at T=298.15 K
Hoodad GHAZIPADEH, Farhoush KIANI, Fardad KOOHYAR, Bahareh KHANLZADEH .. 177

Cleaning Method Validation for Estimation of Dipyriramole Residue on the Surface of Drug Product Manufacturing Equipment Using Swab Sampling and by High Performance Liquid Chromatographic Technique
Sriram VALAVALA, Nareshvarma SEALAM, Subbala TONDEPU, Vivekanandan SUNDARAMURTHY 182

Inhibitory Effect of Roselle Aqueous Extracts-HPMC 6000 Gel on the Growth of Staphylococcus Aureus ATCC 25923
Isaeveni ISNABEI, Eset HENDRADI, Natalia Zara ZETTIRA .. 190

Evaluation of the Antioxidant Potency of Seseli L. Species (Apliaceae)
Alev ÖNDER, Ahsen Sevde ÇINAR, Sezen YILMAZ SARILTIN, Mehmet Necat IZGI, Tülay COBAN ... 197

Comparative In Vitro and In Vivo Evaluation of Fenofibric Acid as an Antihyperlipidemic Drug
Yulias Nink WINDIYATI, Yeyet Cahyati SUMIRTAPURA, Jessie Sofia PAMUDJI .. 203

Ethnobotanical Study of Medicinal Plants in Aziziyeh District (Erzurum, Turkey)
Sorgül KARAKAYA, Ahmet POLAT, Özkan AKSAYAL, Yusuf Ziya SÜMBÜLLÜ, Umit INCEKARA ... 211

Statistical Design and Optimization of Sustained Release Formulations of Pravastatin
Raghavendra Kumar VUNDA, Prasada Rao MANCHINENI .. 221

Extended Hildebrand Solubility Approach: Prediction and Correlation of the Solubility of Itraconazole in Triacetin: Water Mixtures at 298.15°C
Sachin JAGDALE, Rajesh B NAWALE ... 228

Review

Psychoactive Bath Salts and Neurotoxicity Risk
Benil ALTUN, Ismet ÇOK ... 235
Inhibitory Effect of Roselle Aqueous Extracts-HPMC 6000 Gel on the Growth of Staphylococcus Aureus ATCC 25923

Hibiscus Sabdariffa L Sulu Ekstrelerini İçeren HPMC 6000 Jel Formülasyonunun Staphylococcus Aureus ATCC 25923 Büyümesi Üzerine İnhibitör Etkisi

Isnaeni ISNAENI1*, Esti HENDRADI2, Natalia Zara ZETTIRA2

1Airlangga University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Surabaya, Indonesia
2Airlangga University, Faculty of Pharmacy, Department of Pharmaceutics, Surabaya, Indonesia

ABSTRACT

Objectives: Roselle (Hibiscus sabdariffa L.) is a medicinal plant commonly used as a beverage and herbal medicine. Complex compounds in the aqueous extracts have provided good antibacterial activity by which the growth of gram-negative and -positive bacteria is inhibited. The aim of this research was to formulate hydroxyproyl methylcellulose (HPMC) 6000 gel containing the extract and investigate the inhibitory activity of the extract and its gel formula against Staphylococcus aureus ATCC 25923.

Materials and Methods: Thin layer chromatography (TLC) on silica gel GF254 was used for analyzing flavonoids and polyphenols using butanol-acetic acid:water (4:1:5) and chloroform:ethyl acetate:formic acid (0.5:9:0.5) as eluents, respectively. A serial dilution of aqueous extract powder in citrate buffer was made to obtain 0.50, 0.25, 0.10, 0.05, and 0.02 mg/mL solution. The roselle aqueous extract (3%) was formulated as a component of gel containing HPMC 6000 in various concentrations (2%, 3%, and 4%). A diffusion agar method on two layers of nutrient agar media was applied using Staphylococcus aureus ATCC 25923 and gentamicin 25 ppm as bacterial test and standard, respectively. After incubation for 24 h at 37°C, the inhibitory effect was denoted by a clear zone around the hole and the inhibitory activity was measured as minimum inhibitory concentration (MIC).

Results: The aqueous extract of Hibiscus sabdariffa L. contained flavonoid and polyphenol compounds based on the TLC chromatogram profile. It was found that the gel formula containing 3% HPMC 6000 and 3% aqueous extract gave a good physical characteristic and the lowest MIC (6.0 mg/mL), equivalent to 7.58 ppm of gentamicin standard at 12.0 mg/mL concentration.

Conclusion: The HPMC 6000 at 3% (w/w) concentration in roselle aqueous extract gel preparation gave good physical characteristics. The gel preparation exhibited inhibitory activity against Staphylococcus aureus ATCC 25923 shown by MIC 6.0 mg/mL. Formula 2 is recommended and should be further investigated for implementation in topical preparations.

Key words: Inhibitory effect, Hibiscus sabdariffa, HPMC 6000, Staphylococcus aureus

ÖZ

Amaç: Hibiscus sabdariffa L. yaygın olarak içecek ve bitkisel ilaç olarak kullanılan tibbi bir bitkiidir. Sulu ekstrelerindeki kompleks bileşikler, gram negatif ve pozitif bakterilerin büyümesini inhibe ederek antibakteriyal aktivite göstermiştir. Bu araştırmanın amacı, ekstre içeren hidroksiproyl metilceluloz (HPMC) 6000 jeli formülü etmek, ekstenin inhibe edici etkinisi ve jelenin inhibe etkinliğini Staphylococcus aureus ATCC 25923' e karşı gösterdiğini inhibitory etkiyi arastırmaktır.

Gereç ve Yöntemler: Elünt olarak butanol-asetik asit: su (4:1:5) ve kloroform:etil asetat: formik asit (0,5:9:0,5) kullanılarak sarımsı flavonoidleri ve polifenoller analiz etmek amacıyla silika gel GF254 üzerinde ince tabaka kromatografi gerçekleştirildi. 0,50, 0,25, 0,10, 0,05 ve 0,02 mg/mL

*Correspondence: E-mail: isna.yutd@gmail.com, Phone: +6281331071303 ORCID-ID: orcid.org/0000-0001-4502-2433
Received: 26.05.2018, Accepted: 24.01.2019

190
Inhibitory Effect of Roselle Aqueous Extracts on the Growth of Staphylococcus Aureus ATCC 29213

HPC 6000 Gel on the Growth of Staphylococcus Aureus ATCC 29213

Inhibitor Concentration (mg/mL) Response (%) Inhibitor Concentration (mg/mL) Response (%)

0.00 87.5 0.50 99.9 0.10 85.6 0.60 99.8

Concentration range: 0.00 - 10.00 mg/mL

Results indicate significant inhibition at higher concentrations.
konsantrasyonda çözütle elde etmek için sitrat tamponu içinde sulu ekstrenin seri seyretmesi yapıldı. Hibiscus sabdariffa'nın sulu ekstresinin (%3), çeşitli konsantrasyonlarında (%2, ve %4) HPMC 6000 içeren jelleri formülde edildi. Bakteriyel test ve standart olarak sırasıyla Staphylococcus aureus ATCC 25923 ve gentamisinin 25 ppm kullanarak agar ortamına difüzyon agar yöntemi uygulandı. 37°C'de 24 saat inkubasyondan sonra, inhibitory aktivite, minimum inhibitory konsantrasyon (MIC) olarak ölçülüyor.

Bulgular: Hibiscus sabdariffa L'nin sulu ekstremin, flavonoid ve polifenol bileşikleri içerdiği için tabaka kromatografisi-kromatogramı ile belirlendi. %3 HPMC 6000 ve %3 sulu ekstre içinde jel formülünün, 12.0 mg/ml konsantrasyonda 7.5 ppm gentamisinin standardına eşdeğer olarak şekilde en düşük MIC değeri (6.0 mg/ml) sapılı olduğu ve fiziksel özelliklerinin iyi olduğu bulunmuştur.

Sonuç: Hibiscus sabdariffa sulu ekstresinin %3/4 içeren Jel formülünde içeriği fiziksel özellikler gösterdiği tespit edildi. Jel formülü, Staphylococcus aureus ATCC 25923' e karşı MIC 6.0 mg/ml degeri ile inhibitory aktivite gösterdi. En iyisi formül olarak belirlenen formül 2'nin toplam preparatında kullanılabileceğini için araştırılmasına ihtiyaç vardır.

Anahtar Kelimeler: Inhibitory etki, Hibiscus sabdariffa, HPMC 6000, Staphylococcus aureus

INTRODUCTION

Roselle (Hibiscus sabdariffa L.) is a medicinal plant commonly produced as a beverage and herbal medicine. It has multiple activities, one of which is antibacterial activity. The aqueous extracts of roselle calyces contain saponins, alkaloids, tannins, polyphenols, flavonoids, and their glycosides. The saponins and flavonoids make up the largest content. These compounds indicate synergistic effects. Complex compounds in the extracts have provided good antibacterial activity. A polyphenolic compound found in roselle calyces. It inhibited the bacterial growth of methicillin resistant Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii at 5 mg/ml.

In terms of antimicrobial activity, roselle aqueous extract was used at a concentration above its minimum inhibitory concentration (MIC) 3%. The low pH values of roselle aqueous extract (2.42±0.01) led to hydroxypropyl methylcellulose (HPMC) 6000 being chosen as a gelling agent at concentrations of 2%, 3%, and 4%, because this matrix is stable and indicates good swelling ability in acidic conditions. An effort to discover a new topical dosage form containing roselle extract as active ingredient against infectious diseases was the main target of the present research.

MATERIALS AND METHODS

Chemicals

The materials were pharmaceutical grade. Dried aqueous extract of roselle was purchased from PT ASIMAS; HPMC 6000, citric acid monohydrate, sodium citrate dihydrate, propylene glycol, sodium benzoate, gentamicin sulfate, and nutrient agar from Oxoid; sodium chloride from Merck; and distilled water from PD Surabaya Air Suiling. Staphylococcus aureus ATCC 25923 was obtained from the Department of Microbiology, Faculty of Medicine, Airlangga University.

Qualitative analysis of roselle aqueous extracts

Analysis of the extract included an organoleptic examination (shape, odor, and color) and pH, while the chromatogram pattern of flavonoids and polyphenols was analyzed by thin layer chromatography (TLC) on Kiesel Gel GF254 plates. The chromatographic profile of the flavonoids was evaluated by shaking 1 g of the extract with n-hexane repeatedly until it was colorless and the residue was dissolved in 5 mL of ethanol. Then the solution was spotted and developed in butanol: acetic acid: water (4:1.5, v/v). The presence of flavonoids was denoted by intensive yellow spots on the plate after contact with ammonia fumes. The polyphenols' chromatogram pattern of the extracts was obtained by mixing 1 g of extract and 10 mL of hot distilled water at room temperature. The solution was spotted on a TLC plate after filtering and developed in chloroforms-ethyl acetate: formic acid (0.5:9:0.5, v/v) and sprayed with FeCl3 solution for indicating the presence of polyphenols by the appearance of black spots.

Qualitative analysis of HPMC 6000

The qualitative examination of HPMC 6000 including pH value and viscosity was analyzed using a pH-meter and Brookfield viscometer, respectively.

Viscosity was measured according to the Brookfield viscometer manual. The spindle was lowered and centered in the test material (600 mL in beaker) to meet the "meniscus" of the fluid at the center position of the immersion groove. The viscosity measurement was performed by turning of the switch "ON". Time was allowed for the indicated reading to stabilize. The reading was noted and multiplied by the factor appropriate to the viscometer model/spindle/speed combination being used. The available table or the FACTOR FINDER was referred to for calculating viscosity. Readings below 10.0% torque (dial reading) should be avoided.

Determining the MIC of roselle aqueous extracts

The MIC of roselle aqueous extracts was determined by agar diffusion method and molding hole against Staphylococcus aureus ATCC 25923. The bacterial test was cultured on nutrient agar medium slants in glass tubes and incubated for 24 h at 37°C. The inoculum suspension was prepared by adding sterile 0.9% NaCl solution to fresh culture, shaking, and measuring the optical density at 580 nm adjusted until 25% transmittance of inoculum was obtained. The extracts weighed 100 mg and were dissolved in citrate buffer until 10 mL. The solution was diluted to 0.50, 0.25, 0.10, 0.05, and 0.02 mg/mL to obtain a concentration higher than the MIC. Two layers of test media were prepared and applied. The agar was perforated with 6 sterile holders. Samples and a positive control (gentamicin 25 ppm) were put into each of the holes, incubated at 37°C for 24 h, and observed. The growth inhibitory zone diameter was measured and the smallest concentration that still inhibited the growth of the test bacterium (MIC) was determined.
Formulation of roselle aqueous extracts gel

Based on the MIC of the roselle extract, the gel formula was examined using the extract at higher concentration than the MIC. Some 7.5 g of the extracts and 250 mg of sodium benzoate were dissolved in warmed citrate buffer (70-80°C) and then poured into HPMC 6000 dispersion with 10 g of propylene glycol. The solution was stirred until gel mass formed and stopped at 35°C. The composition of the gel formulation is shown in Table 1.

Physical examination of the gel preparation

Physical examination of the gel preparation included viscosity, pH, and dispersive analysis. The analysis of the dispersive power was carried out using two calibration slides. Approximately 1 g of gel was put in the middle of the slide and covered with the other slide. Weights were ordered added starting from 5 g on the upper slide. The weight was continuously added until the preparation no longer spread (approximately 5 min) and the diameter was recorded. Afterwards, a curve of the relationship between the dispersion diameter (cm) and the weight (g) was observed. The dispersion ability was determined from the slope of the regression equation of the dispersion diameter and the weight.

Determining the MIC of the selected formula

Gel solution of 12.0 mg/mL was diluted to obtain solution at 6.0, 3.0, 1.5, 0.8, 0.4, 0.2, 0.1, and 0.05 mg/mL concentrations. The determination of MIC was carried out the same as for the extract. The agar was perforated with 19 sterile holders. Approximately 50 µL of the positive control (gentamicin), negative control (gel base), and sample were put into each hole. The disk was incubated at 37°C for 24 h and the growth inhibitory zone and its diameter (mm) were observed and measured. Gentamicin solution at 100 ppm was made and diluted to obtain solution at 25, 20, 15, 10, and 5 ppm concentrations. A logarithmic test of gentamicin concentration vs. the inhibitory zone diameter (mm) curve was performed and the regression equation obtained was used to calculate the inhibitory activity of the sample solution equally to the gentamicin standard by plotting inhibitory diameter.

Statistical analysis

The significant difference of inhibitory activity among roselle aqueous extract formulas was determined by one-way variance analysis (ANOVA). Furthermore, the significant differences were determined by the honestly significant difference test with the reliability value of 0.95 (α=0.05). If the value is >0.05 then there is no significant difference between the tested formulas. This study does not require ethics committee approval or patient informed consent.

RESULTS

Screening of the extract contents was carried out according to Mariana et al. and Villani et al. Based on the profile of the TLC chromatogram, roselle aqueous extracts contained polyphenols and flavonoids as reported in previous research. The pH value of the extract was 2.54±0.004, close to the literature (2.42±0.01). Regardless of HPMC qualification, its viscosity was >100 cPss at 2% concentration. The viscosity criterion was accepted if the measured result was not less than 75.0% and not more than 140.0%.

The MIC of the roselle aqueous extracts was 0.1 mg/mL against Staphylococcus aureus ATCC 25923 (Table 2, Figures 1 and 2). This value is higher than that in previous research; the MIC of the aqueous extracts of roselle calyces against Staphylococcus aureus and Streptococcus faecalis was reported as 0.5 mg/mL. Furthermore, Escherichia coli, Klebsiella pneumoniae, and Salmonella typhi were inhibited by the MIC value of 1.0 mg/mL. Despite these effects, roselle extracts have a therapeutic effect for gastrointestinal infection, diarrhea, and skin diseases.

The viscosity and pH values of the gel base and its preparation are depicted in Figures 3 and 4. It was found that viscosity of

Table 1. Gel formula of roselle aqueous extracts

<table>
<thead>
<tr>
<th>Materials</th>
<th>Formula</th>
<th>Preparation (%)</th>
<th>Base (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HPMC 6000</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Roselle aqueous extracts</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sodium benzoate</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Citrate buffer (pH 4.505)</td>
<td></td>
<td>89.9</td>
<td>88.9</td>
</tr>
</tbody>
</table>

HPMC: Hydroxypropyl methylcellulose

Figure 1. The result of MIC determination of roselle aqueous extracts (I, 2, 3-triple replication; I=0.50 mg/mL; II=0.25 mg/mL; III=0.12 mg/mL; IV=0.10 mg/mL; V=0.05 mg/mL; VI=0.02 mg/mL; G=gentamicin 25 ppm)

Figure 2. Graph of inhibitory activity of roselle aqueous extracts
the gel preparation containing aqueous roselle extracts was higher than that of the gel base (without the roselle extract). On the other hand, the pH value of the gel preparation was lower than that of the gel base.

The dispersive power analysis of the gel base and gel preparation depicted in Figure 5 showed that both the gel base and preparations of 1st and 2nd formulas reached the maximum dispersion capacity at 10 g and 35 g loading load (the weight of the load placed on the gel base and gel preparation), respectively, while the 3rd formula reached maximum dispersion capacity at 65 g loading load.

The bacterial inhibitory activity of the gel preparations indicated that the greater concentration of HPMC, the lower inhibition activity was obtained (Figure 6 and Table 3). The greater the viscosity of the gel preparation, the lower capacity of active material to be released.2-11

Based on the physical evaluation, formula 2 was chosen, because its viscosity was close to the specification (30,000 cPs). The result of the MIC determination of formula 2 (Figure 7), the inhibitory diameter (Table 4), and the inhibitory graph of formula 2 (Figure 8) were analyzed statistically. Gentamicin 25 ppm was chosen as the positive control to ensure that the bacterial test used in this research was sensitive against the antibiotic. A serial concentration of gentamicin was used as the standard curve for evaluation of the extract potency relative to the standard.

Based on one-way ANOVA, there was a significant difference between the inhibitory activity of 12.0 and 6.0 mg/mL, and there was no significant difference between 3.0, 1.5, and 0.8 mg/mL of the gel preparation. In conclusion, formula 2 exhibited MIC at 6.0 mg/mL against Staphylococcus aureus ATCC 25923.

The inhibitory activity of gentamicin at serial dilution against the test bacterium was evaluated by a regression equation, where Y and X were the diameter of the inhibitory zone (mm) and log of concentrations (ppm), respectively. The log concentration of formula 2 with diameter of inhibitory zone 9.75 mm was calculated by the regression equation. Equivalent to this growth inhibitory diameter (x), 7.58 ppm of gentamicin concentration was obtained. Furthermore, the inhibitory potency of the roselle aqueous extracts gel at 12.0 mg/mL (roselle concentration in gel 3% w/w) against Staphylococcus aureus ATCC 25923 was equal to 7.58 ppm of the gentamicin sulfate standard solution.
DISCUSSION

Identification of polyphenols and flavonoids in the chromatogram pattern showed that they play an important role in antibacterial activity. The pH of 1% solution of Roselle aqueous extracts was highly acidic due to high organic acid contents, such as malic acid and ascorbic acid. The acidity of Roselle also plays an important role in its antibacterial activity. The qualification of the HPMC 6000 indicated that the matrix had viscosity satisfactory for a gelling agent. The pH value of 2% w/w solution of HPMC 6000 in water was 4.44±0.053 stabilized by the acidic properties of the extract. The pH value was different from the literature (5.0-8.0) possibly because of the different producers, the quality, and the storage condition of the raw materials.

It was found that the MIC of the Roselle aqueous extracts against Staphylococcus aureus ATCC 25923 was 0.1 mg/mL. This value was used as the concentration of the formula, to which 3% w/w

Figure 7. The result of the MIC determination of formula 2 Ι, ΙΙ, ΙΙΙ=replication 3; 1:12.0 mg/mL; 2:6.0 mg/mL; 3:3.0 mg/mL; 4:1.5 mg/mL; 5:0.8 mg/mL; 6:0.4 mg/mL; 7:0.2 mg/mL; 8:0.1 mg/mL; 9:0.05 mg/mL; K1=dilution base 1; K2=dilution base 2; K3=dilution base 3; K4=dilution base 4; K5=dilution base 5; K6=dilution base 6; K7=dilution base 7; K8=dilution base 8; K9=dilution base 9; G=gentamicin at 25 ppm), MIC: Minimum inhibitory concentration

Figure 8. Inhibitory activity of the formula 2 gel preparation of Roselle aqueous extracts

<table>
<thead>
<tr>
<th>Replication</th>
<th>Inhibitory diameter (mm)</th>
<th>Inhibitory diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formula</td>
<td>Formula base</td>
</tr>
<tr>
<td>1</td>
<td>10.70</td>
<td>10.10</td>
</tr>
<tr>
<td>2</td>
<td>11.00</td>
<td>9.80</td>
</tr>
<tr>
<td>3</td>
<td>10.70</td>
<td>9.50</td>
</tr>
<tr>
<td>Average</td>
<td>10.80±0.17</td>
<td>9.80±0.30</td>
</tr>
</tbody>
</table>

Diameter of reservoir: 6.00 mm

<table>
<thead>
<tr>
<th>Rep Conc. (mg/mL)</th>
<th>Inhibitory diameter (mm)</th>
<th>Inhibitory diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparation</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12.00</td>
<td>910</td>
<td>990</td>
</tr>
<tr>
<td>6.00</td>
<td>8.60</td>
<td>8.70</td>
</tr>
<tr>
<td>3.00</td>
<td>8.35</td>
<td>8.35</td>
</tr>
<tr>
<td>1.50</td>
<td>8.30</td>
<td>8.25</td>
</tr>
<tr>
<td>0.80</td>
<td>8.10</td>
<td>8.00</td>
</tr>
<tr>
<td>0.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Diameter of reservoir: 6.00 mm, MIC: Minimum inhibitory concentration
was set as the extract concentration based on the preliminary optimization.

The gel formula was tested using three concentrations of HPMC 6000 (2%, 3%, and 4%, w/w). The ingredients of the preparation formula were propylene glycol as a humectant, roselle aqueous extracts as an active material, sodium benzoate as a preservative, and citric acid and sodium citrate as buffer. The gel base preparation without the extracts was formulated to identify the effect of roselle aqueous extracts on the physical characteristics of the gel preparation. The gel preparation was made of 250 g with citrate buffer dissolved with pH of 4.505 and each formula was made for one dosage. Replication was not performed due to the limited number of roselle aqueous extracts. It was found that the viscosity of formulas 1, 2, and 3 was 7600, 69.200 and 277.200 cPs, respectively. On the other hand, the viscosity of the gel base of formulas 1, 2, and 3 was 7080, 63.800 and 261.600 cPs, respectively. The presence of roselle aqueous extracts 3% w/w increased the viscosity.

The pH value of formulas 1, 2, and 3 was 3.199±0.003, 3.165±0.002, and 3.153±0.006, respectively. The pH value of the base gel formulas 1, 2, and 3 was 4.556±0.006, 4.564±0.006, and 4.570±0.006, respectively. It can be concluded that the pH of the preparation was much lower than the pH of the gel base even though they were treated by citrate with 0.02 of buffer capacity. This occurred because the buffer capacity failed to hold the pH of the preparation containing 3% (w/w) quite acidic extract of roselle aqueous extracts. The statistical test using one-way ANOVA (p=0.05) showed that there was a significant difference among the pH of formulas 1, 2, and 3, as well as the pH of the gel base formulas 1, 2, and 3.

The slope calculation of the regression equation of the dispersion diameter vs. weight of loads to evaluate the dispersal ability of the gel preparation and the base gel of formulas 1, 2, and 3 as depicted in Figure 5 was performed statistically by one-way ANOVA (p=0.05). It was found that there was no significant difference in the slope between formulas 1 and 2, but a significant difference was found between formulas 1 and 3 and between formulas 2 and 3. The significant difference in the slope no found between formula 1 and formula gel base; formula 2 and gel base 2, but no significant difference between formula 3 and gel base 3. The capacity of dispersion was denoted by the diameter of maximum dispersion on the adding of certain loads, by which the gel preparation was not dispersed anymore.

According to the slope value and the loads to reach maximum dispersion capacity, it can be concluded that the gel preparation formula dispersed more easily than the gel base, because the viscosity of the gel base is lower than that of the preparation. Since the pH value of the gel preparation was close to 3 and the analysis of the dispersive power was conducted 30 days after the preparation was made, this might have caused the gel preparation to become unstable. The viscosity of the HPMC solution was stable at pH 3-11, but the stability might be disturbed if there is an active material that possesses strong acidity. In the present research, the active material was acid solution of the roselle aqueous extracts.

The inhibitory activity test of the gel base was performed to minimize the effects of the gel component. The activity test aimed to ensure that the growth inhibitory responses were derived from the gel preparation. The bioassay indicated that the gel preparation exhibited higher inhibitory activity than the gel base. The gel preparation of formulas 1, 2, and 3 exhibited growth inhibitory diameter of 10.80±0.17 mm, 9.80±0.30 mm, and 9.38±0.36 mm, respectively. The one-way ANOVA (p=0.05) showed that there was a significant difference between formulas 1 and 2, as well as between formulas 1 and 3. There was no significant difference between formulas 2 and 3. The viscosity of the gel preparation might affect the release of the active materials. The higher the viscosity, the more difficult the active materials are released, because of the difficult mobility of the active materials.

Based on the physical characterization, the selected gel preparation was formula 2, the one containing HPMC 6000 concentration of 3% (w/w) with specification of acid gel preparation with viscosity of 30,000 cPs. The three formulas had pH values that did not meet the specification. Therefore, the formula was selected in accordance with the viscosity value that was close to the specification, namely formula 2. Then the MIC of formula 2 was determined. The preparation was diluted until it reached a concentration of 0.05 mg/mL. The growth inhibitory activity appeared at a dilution of 12.0–0.8 mg/mL. However, the zone was higher than that of the gel base. The statistical test using one-way ANOVA indicated that there was a significant difference between the activity of the gel preparation at 12.0 and 6.0 mg/mL and the gel base. In addition, a significant difference was not found between the inhibitory activity of the gel preparation with concentration of 3.0, 1.5, and 0.8 mg/mL and the gel base. The nonsignificant difference between the gel preparation and the gel base indicated that the inhibitory activity was not caused by the roselle aqueous extracts, but was affected by other components in the formula, such as propylene glycol and sodium benzoate. The smallest concentration showed the existence of a significant difference between the inhibitory activity of the preparation and the gel base at 6.0 mg/mL. In conclusion, the concentration of the roselle aqueous extracts of formula 2 might be recommended for its antibacterial activity toward Staphylococcus aureus ATCC 25923. The MIC of the gel preparation was higher than that of the roselle aqueous extracts, because the gelling agent/polymer of the gel preparation might have affected the release of the roselle aqueous extracts from the three preparation formulas. The potential ratio of formula 2 that inhibited the test bacterium was determined using gentamicin sulfate standard. Correlation between the growth inhibitory diameter of the gentamicin solution at 5–25 ppm against Staphylococcus aureus ATCC 25923 and the concentration log of the gentamicin standard was used to determine the potency of the gel preparation through the regression equation: y=10.2584x+0.5479 with r=0.9837. Formula 2 exhibited growth inhibitory activity against Staphylococcus aureus ATCC 25923 equal to gentamicin sulfate standard solution of 7.58 ppm.
CONCLUSION
The HPMC 6000 at 3% (w/w) concentration in roselle aqueous extracts gel preparation gave good physical characteristics. The gel preparation exhibited inhibitory activity against *Staphylococcus aureus* ATCC 25923 depicted by MIC 6.0 mg/mL. Formula 2 is recommended and should be further investigated for implementation in topical preparations.

ACKNOWLEDGMENTS
The authors thank the Faculty of Pharmacy, Airlangga University for supporting facilities and materials.

Conflicts of interest: No conflict of interest was declared by the authors. The authors alone are responsible for the content and writing of the paper.

REFERENCES
8. Brookfield Engineering Laboratories, Inc..11 Commerce Boulevard, Middleboro, MA 02346-1031 USA.
TURKISH JOURNAL OF PHARMACEUTICAL SCIENCES

Baş Editör
Terken BAYDAR, E.R.T., Prof. Dr.
ordc.id/0000-0002-5497-9600
Hacettepe Üniversitesi, Eczacilik Fakültesi,
Toksikoloji Bölümü, Ankara, TÜRKİYE
tbaydar@hacettepe.edu.tr

Yardımcı Editörler
Samiye YABANOĞLU ÇIFTCİ, Prof. Dr.
ordc.id/0000-0001-5467-0497
Hacettepe Üniversitesi, Eczacilik Fakültesi,
Biyokimya Bölümü, Ankara, TÜRKİYE
samiye@hacettepe.edu.tr

Pınar ERKEKOĞLU, Doç. Dr.
ordc.id/0000-0003-7577-0752
Hacettepe Üniversitesi, Eczacilik Fakültesi,
Toksikoloji Bölümü, Ankara, TÜRKİYE
erkeko@hacettepe.edu.tr

Editörler Kurulu

Fernanda BORGES, Prof. Dr.
ordc.id/0000-0003-1050-2402
Porto Üniversitesi, Fen Fakültesi, Kimya ve
Biyokimya Anabilim Dalı, Porto, PORTUGAL
fborges@fc.up.pt

Bezhan CHANKVETADZE, Prof. Dr.
ordc.id/0000-0003-2379-9815
Ivan Josifovskih Universitet, Stilistik ve
Fiziksel ve Analitik Kimya Enstitüsü, Tiflis,
GURÇIStan
jpba_bezhan@yahoo.com

Dietmar FUCHS, Prof. Dr.
ordc.id/0000-0003-1677-9563
Innsbruck Tip Üniversitesi, Kimya ve Biyotıp Merkezi,
Biyoloji Kimya Enstitüsü, Biocenter, Innsbruck,
AVUSTURYA
dietmar.fuchs@i-med.ac.at

Sاتyajit D. SARKER, Prof. Dr.
ordc.id/0000-0003-4038-0514
Liverpool John Moores Üniversitesi, Liverpool,
BİRLİŞEK KRALİK
S.Sarker@ljmu.ac.uk

Luciano SASO, Prof. Dr.
ordc.id/0000-0003-4530-8706
Sapienza Üniversitesi, Eczacilik ve Tip Fakültesi,
Fizyoloji ve Farmakoloji Anabilim Dalı “Vittorio
Ersamer”, Roma, İTALYA
luciano.sasso@uniroma1.it

Rob VERPOORTE, Prof. Dr.
ordc.id/0000-0001-6180-1424
Leiden Üniversitesi, Doğal Ürünler Laboratuvarı,
Leiden, HOLLANDA
verpoort@chem.leidenuniv.nl

Danışma Kurulu

Nurettin ABACIOĞLU, Prof. Dr.
Girne Üniversitesi, Eczacilik Fakültesi, Farmakoloji
Anabilim Dalı, Girne, TRNC, KIBRIS

Kadiye BENKLİ, Prof. Dr.
Girne Amerikan Üniversitesi, Eczacilik Fakültesi,
Farmasötik Kimya Bölümü, Girne, TRNC, KIBRIS

Arzu BEŞİKÇİ, Prof. Dr.
Ankara Üniversitesi, Eczacilik Fakültesi,
Farmasötik Anabilim Dalı, Ankara, TÜRKİYE

Erem BİLENSOY, Prof. Dr.
Hacettepe Üniversitesi, Eczacilik Fakültesi,
Farmasötik Teknoloji Bölümü, Ankara, TÜRKİYE

Hermann BOLT, Prof. Dr.
Dortmund Üniversitesi, Leibniz Araştırma Merkezi,
Mesleki Fizyoloji Enstitüsü, Dortmund,
ALMANYA

Erdal ÇEVHER, Prof. Dr.
İstanbul Üniversitesi Eczacilik Fakültesi,
Farmasötik Teknoloji Bölümü, İstanbul, TÜRKİYE

Nevin ERK, Prof. Dr.
Ankara Üniversitesi, Eczacilik Fakültesi,
Department of Analytical Chemistry, Ankara,
TÜRKİYE

Jean-Alain FEHRENTZ, Prof. Dr.
Montpellier Universitesi, Eczacilik Fakültesi,
Biyomoleküler Enstitüsü Max Mousseron,
Montpellier, FRANSA

Joerg KREUTER, Prof. Dr.
Johann Wolfgang Goethe Üniversitesi, Eczacilik
Fakültesi, Farmasötik Teknoloji Enstitüsü,
Frankfurt, ALMANYA

Christine LAFFORGUE, Prof. Dr.
Paris-Sud Üniversitesi, Eczacilik Fakültesi,
Dermofarmacoloji ve Kozmetoloji Bölümü, Paris,
FRANSA

Şule AΠIKOĞLU RABUS, Prof. Dr.
Marmara Üniversitesi, Eczacilik Fakültesi, Klinik
Eczacilik Bölümü, İstanbul, TÜRKİYE

Robert RAPOPORT, Prof. Dr.
Cincinnati Üniversitesi, Eczacilik Fakültesi,
Farmakoloji ve Hücres Biyofizik Bölümü, Cincinnati,
ABD

Wolfgang SADEE, Prof. Dr.
Ohio Eylet Üniversitesi, Farmakogenomik
Merkezi, Ohio, ABD

Hildebert WAGNER, Prof. Dr.
Ludwig-Maximilians Üniversitesi, Farmasötik
 Araştırma Merkezi, Eczacilik Enstitüsü, München,
ALMANYA

Hande SiPAHLI, Doç. Dr.
Yeditepe Üniversitesi, Eczacilik Fakültesi,
Toksikoloji Anabilim Dalı, İstanbul, TÜRKİYE

İpek SÜNȚAR, Doç. Dr.
Gazi Üniversitesi, Eczacilik Fakültesi,
Farmakognosi Anabilim Dalı, Ankara, TÜRKİYE
TURKISH JOURNAL OF PHARMACEUTICAL SCIENCES

AIMS AND SCOPE

The Turkish Journal of Pharmaceutical Sciences is the only scientific periodical publication of the Turkish Pharmacists' Association and has been published since April 2004. Turkish Journal of Pharmaceutical Sciences journal is regularly published 6 times in a year (February, April, June, August, October, December). The issuing body of the journal is Galenos Yayınevi/Publishing House level. The aim of Turkish Journal of Pharmaceutical Sciences is to publish original research papers of the highest scientific and clinical value at an international level. The target audience includes specialists and professionals in all fields of pharmaceutical sciences. The editorial policies are based on the “Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals (ICMJE Recommendations)” by the International Committee of Medical Journal Editors (2013, archived at http://www.icmje.org/) rules.

Editorial Independence
Turkish Journal of Pharmaceutical Sciences is an independent journal with independent editors and principles and has no commercial relationship with the commercial product, drug or pharmaceutical company regarding decisions and review processes upon articles.

ABSTRACTED/INDEXED IN
Web of Science—Emerging Sources Citation Index (ESCI)
SCOPUS SJR
TÜBİTAK/ULAKBİM TR Dizin
Directory of Open Access Journals (DOAJ)
ProQuest
Chemical Abstracts Service (CAS)
EBSCO
EMBASE
GALE
Index Copernicus
Analytical Abstracts
International Pharmaceutical Abstracts (IPA)
Medicinal & Aromatic Plants Abstracts (MAPA)
British Library
CSIRO INDIA
GOALI
Hinari
OARE
ARDI
AGORA
Türkiye Atif Dizin
Türk Medline
UDL-EDGE
J-Gate
IdealoLine
ROOTINDEXING

OPEN ACCESS POLICY
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Open Access Policy is based on the rules of the Budapest Open Access Initiative (BOAI) http://www.budapestopenaccessinitiative.org/. By “open access” to peer-reviewed research literature, we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited.

CORRESPONDENCE ADDRESS
All correspondence should be directed to the Turkish Journal of Pharmaceutical Sciences editorial board;
Post Address: Turkish Pharmacists Association, Mustafa Kemal Mah 2147. Sok No:3 06510 Çankaya/Ankara, TURKEY
Phone: +90 (312) 409 81 00
Fax: +90 (312) 409 81 09
Web Page: http://turkfps.org
E-mail: teb@teb.org.tr

PERMISSIONS
Requests for permission to reproduce published material should be sent to the publisher.
Publisher: Erkan Mor
Address: Molla Gürani Mah. Kaçakmaz Sok. 21/1 Findikzade, Fatih, Istanbul, Turkey
Telephone: +90 212 621 99 25
Fax: +90 212 621 99 27
E-mail: info@galenos.com.tr

ISSUING BODY CORRESPONDING ADDRESS
Issuing Body: Galenos Yayınevi
Address: Molla Gürani Mah. Kaçakmaz Sk. No: 21/1, 34093 Istanbul, Turkey
Phone: +90 212 621 99 25 Fax: +90 212 621 99 27
E-mail: info@galenos.com.tr

MATERIAL DISCLAIMER
The author(s) is (are) responsible for the articles published in the JOURNAL. The editor, editorial board and publisher do not accept any responsibility for the articles. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
INSTRUCTIONS TO AUTHORS

Turkish Journal of Pharmaceutical Sciences journal is published 6 times (February, April, June, August, October, December) per year and publishes the following articles:

- Research articles
- Reviews (only upon the request or consent of the Editorial Board)
- Preliminary results/Short communications/Technical notes/Letters to
 the Editor in every field of pharmaceutical sciences.

The publication language of the journal is English.

The Turkish Journal of Pharmaceutical Sciences does not charge any article submission or processing charges.

A manuscript will be considered only with the understanding that it is an original contribution that has not been published elsewhere.

The Journal should be abbreviated as "Turk J Pharm Sci" when referenced.

The scientific and ethical liability of the manuscripts belongs to the authors and the copyright of the manuscripts belongs to the Journal. Authors are responsible for the contents of the manuscript and accuracy of the references. All manuscripts submitted for publication must be accompanied by the Copyright Transfer Form. If this form is signed, an assigned number is given to the authors. Authors declare the statement of scientific contributions and responsibilities of all authors.

Experimental, clinical and drug studies requiring approval by an ethics committee must be submitted to the JOURNAL with an ethics committee approval report including approval number confirming that the study was conducted in accordance with international agreements

and the Declaration of Helsinki (revised 2013) (http://www.wma.net/en/30publications/10policies/b3/). The approval of the ethics committee and the fact that informed consent was given by the patients should be indicated in the Materials and Methods section. In experimental animal studies, the authors should indicate that the procedures followed were in accordance with animal rights as per the Guide for the Care and Use of Laboratory Animals (http://oauco.od.nih.gov/regs/guide/guide.pdf) and they should obtain animal ethics committee approval.

Authors must provide disclosure/acknowledgment of financial or material support, if any was received, for the current study.

If the article includes any direct or indirect commercial links or if any institution provided material support to the study, authors must state in the cover letter that they have no relationship with the commercial product, drug, pharmaceutical company, etc. concerned; or specify the type of relationship (consultant, other agreements), if any.

Authors must provide a statement on the absence of conflicts of interest among the authors and provide authorship contributions.

All manuscripts submitted to the journal are screened for plagiarism using the 'iThenticate' software. Results indicating plagiarism may result in manuscripts being returned or rejected.

The Review Process

This is an independent international journal based on double-blind peer-review principles. The manuscript is assigned to the Editor-in-Chief, who reviews the manuscript and makes an initial decision based on manuscript quality and editorial priorities. Manuscripts that pass initial evaluation are sent for external peer review, and the Editor-in-Chief assigns an Associate Editor. The Associate Editor sends the manuscript to at least two reviewers (internal or external reviewers). The Associate Editor recommends a decision based on the reviewers' recommendations and returns the manuscript to the Editor-in-Chief. The Editor-in-Chief makes a final decision based on editorial priorities, manuscript quality, and reviewer recommendations. If there are any conflicting recommendations from reviewers, the Editor-in-Chief can assign a new reviewer.

The scientific board guiding the selection of the papers to be published in the Journal consists of selected experts of the Journal and if necessary, selected from national and international authorities. The Editor-in-Chief, Associate Editors may make minor corrections to accepted manuscripts that do not change the main text of the paper.

In case of any suspicion or claim regarding scientific shortcomings or ethical infringement, the Journal reserves the right to submit the manuscript to the supporting institutions or other authorities for investigation. The Journal accepts the responsibility of initiating action but does not undertake any responsibility for an actual investigation or any power of decision.

The Editorial Policies and General Guidelines for manuscript preparation specified below are based on "Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals (ICMJE Recommendations)" by the International Committee of Medical Journal Editors (2013; archived at http://www.icmje.org/).

Preparation of research articles, systematic reviews and meta-analyses must comply with study design guidelines:

- STROBE statement, a checklist of items that should be included in reports of observational studies (http://www.strobe-statement.org/);

GENERAL GUIDELINES

Manuscripts can only be submitted electronically through the Journal Agent website (http://journalagent.com/jips/) after creating an account. This system allows online submission and review.
Instructions to Authors

Format: Manuscripts should be prepared using Microsoft Word, size A4 with 2.5 cm margins on all sides, 12 pt Arial font and 1.5 line spacing.

Abbreviations: Abbreviations should be defined at first mention and used consistently thereafter. Internationally accepted abbreviations should be used; refer to scientific writing guides as necessary.

Cover Letter: The cover letter should include statements about manuscript type, single-Journal submission affirmation, conflict of interest statement, sources of outside funding, equipment (if applicable), for original research articles.

Ethics Committee Approval

The editorial board and our reviewers systematically ask for ethics committee approval from every research manuscript submitted to the Turkish Journal of Pharmaceutical Sciences. If a submitted manuscript does not have ethical approval, which is necessary for every human or animal experiment as stated in international ethical guidelines, it must be rejected on the first evaluation.

Research involving animals should be conducted with the same rigor as research in humans; the Turkish Journal of Pharmaceutical Sciences asks original approval document to show implements the 3Rs principles. If a study does not have ethics committee approval or authors claim that their study does not need approval, the study is consulted to and evaluated by the editorial board for approval.

Similarity

The Turkish Journal of Pharmaceutical Sciences is routinely looking for similarity index score from every manuscript submitted before evaluation by the editorial board and reviewers. The journal uses iThenticate plagiarism checker software to verify the originality of written work. There is no acceptable similarity index; but, exceptions are made for similarities less than 15%.

References

Authors are solely responsible for the accuracy of all references.

In-text citations: References should be indicated as a superscript immediately after the period/full stop of the relevant sentence. If the author(s) of a reference is/are indicated at the beginning of the sentence, this reference should be written as a superscript immediately after the author’s name. If relevant research has been conducted in Turkey or by Turkish investigators, these studies should be given priority while citing the literature.

Presentations presented in congresses, unpublished manuscripts, theses, Internet addresses, and personal interviews or experiences should not be indicated as references. If such references are used, they should be indicated in parentheses at the end of the relevant sentence in the text, without reference number and written in full, in order to clarify their nature.

References section: References should be listed consecutively in the order in which they are first mentioned in the text. All authors should be listed regardless of number. The titles of Journals should be abbreviated according to the style used in the Index Medicus.

Reference Format

Journal: Last name(s) of the author(s) and initials, article title, publication title and its original abbreviation, publication date, volume, the inclusive page numbers. Example: Collin JR, Rathbun JE. Involutional entropion: a review with evaluation of a procedure. Arch Ophthalmol. 1978;96:1058-1064.
4. Name, address, e-mail, phone and fax number of the corresponding author.

5. The place and date of scientific meeting in which the manuscript was presented and its abstract published in the abstract book, if applicable.

Abstract: A summary of the manuscript should be written in both Turkish and English. References should not be cited in the abstract. Use of abbreviations should be avoided as much as possible; if any abbreviations are used, they must be taken into consideration independently of the abbreviations used in the text. For original articles, the structured abstract should include the following sub-headings:

Objectives: The aim of the study should be clearly stated.

Materials and Methods: The study and standard criteria used should be defined; it should also be indicated whether the study is randomized or not, whether it is retrospective or prospective, and the statistical methods applied should be indicated, if applicable.

Results: The detailed results of the study should be given and the statistical significance level should be indicated.

Conclusion: Should summarize the results of the study, the clinical applicability of the results should be defined, and the favorable and unfavorable aspects should be declared.

Keywords: A list of minimum 3, but no more than 5 key words must follow the abstract. Key words in English should be consistent with "Medical Subject Headings (MeSH)" (www.nlm.nih.gov/mesh/MBrowser.html). Turkish key words should be direct translations of the terms in MeSH.

Original research articles should have the following sections:

Introduction: Should consist of a brief explanation of the topic and indicate the objective of the study, supported by information from the literature.

Materials and Methods: The study plan should be clearly described, indicating whether the study is randomized or not, whether it is retrospective or prospective, the number of trials, the characteristics, and the statistical methods used.

Results: The results of the study should be stated, with tables/figures given in numerical order; the results should be evaluated according to the statistical analysis methods applied. See General Guidelines for details about the preparation of visual material.

Discussion: The study results should be discussed in terms of their favorable and unfavorable aspects and they should be compared with the literature. The conclusion of the study should be highlighted.

Study Limitations: Limitations of the study should be discussed. In addition, an evaluation of the implications of the obtained findings/results for future research should be outlined.

Conclusion: The conclusion of the study should be highlighted.

Acknowledgements: Any technical or financial support or editorial contributions (statistical analysis, English/Turkish evaluation) towards the study should appear at the end of the article.

References: Authors are responsible for the accuracy of the references. See General Guidelines for details about the usage and formatting required.

Review Articles

Review articles can address any aspect of clinical or laboratory pharmaceuticals. Review articles must provide critical analyses of contemporary evidence and provide directions of or future research. Most review articles are commissioned, but other review submissions are also welcome. Before sending a review, discussion with the editor is recommended.

Reviews articles analyze topics in depth, independently and objectively. The first chapter should include the title in Turkish and English, an unstructured summary and key words. Source of all citations should be indicated. The entire text should not exceed 25 pages (A4, formatted as specified above).
127 Various In Vitro Bioactivities of Secondary Metabolites Isolated from the Sponge Hyrtios aff. Erectus from the Red Sea Coast of Egypt

136 In Vivo Antioxidant Activity of Different Fractions of Indigofera Barberi Against Paracetamol-induced Toxicity in Rats

141 Development and Validation of a Stability Indicating RP-HPLC Method for Simultaneous Estimation of Teneligliptin and Metformin

148 A High Performance Thin Layer Chromatographic Method Using a Design of Experiment Approach for Estimation of Phytochemicals in Extracts of Moringa Oleifera Leaves

159 Floating Microspheres of Enalapril Maleate as a Developed Controlled Release Dosage Form: Investigation of the Effect of an Ionotropic Gelation Technique

172 Comparison of Lipid and Lipoprotein Values of Wrestlers and Soccer Players

177 Theoretical Study on Ionization of Boric Acid in Aqueous Solution by Ab Initio and DFT Methods at T=298.15 K

182 Cleaning Method Validation for Estimation of Diprydamole Residue on the Surface of Drug Product Manufacturing Equipment Using Swab Sampling and by High Performance Liquid Chromatographic Technique

190 Inhibitory Effect of Roselle Aqueous Extracts-HPMC 6000 Gel on the Growth of Staphylococcus Aureus ATCC 25923

197 Evaluation of the Antioxidant Potency of Seseli L. Species (Apiaceae)

203 Comparative In Vitro and In Vivo Evaluation of Fenofibric Acid as an Antihyperlipidemic Drug

TURKISH
JOURNAL OF PHARMACEUTICAL SCIENCES

CONTENTS
211 Ethnobotanical Study of Medicinal Plants in Aziziye District (Erzurum, Turkey)
Aziziye (Erzurum, Türkiye) İlçesindeki Tıbbi Bitkilerin Etnobotanik Çalışması
Songül KARAKAYA, Ahmet PÇLAT, Özkan AKSAKAL, Yusuf Ziya SÜMBÜLLÜ, Ümit İNCEKARA

221 Statistical Design and Optimization of Sustained Release Formulations of Pravastatin
Pravastatinin Uzatılmış Salm Formülaşyonlarının İstatistiksel Tasarım Kullanılarak Geliştirilmesi ve Optimizasyonu
Raghavendra Kumar GUNDA, Prasada Rao MANCHINENI

228 Extended Hildebrand Solubility Approach: Prediction and Correlation of the Solubility of Itraconazole in Triacetin: Water Mixtures at 298.15 K
Genişletilmiş Hildebrand Çözünürlük Yaklaşımı: 298,15 K’da Itraconazolun Triacetin: Su Karışımlarında Çözünürlüğünün Belirlenmesi ve Korelasyonu
Sachin JAGDALE, Rajesh B NAWALE

235 Psychoactive Bath Salts and Neurotoxicity Risk
Psikoaktif Banyo Tuzları ve Nörotoksisite Riski
Beril ALTUN, Ismet ÇOK
Turkish Journal of Pharmaceutical Sciences

Country: Turkey - SJR Ranking of Turkey

Subject Area and Category:
- Biochemistry, Genetics and Molecular Biology
- Molecular Medicine
- Pharmacology, Toxicology and Pharmacuetics
- Pharmaceutical Science

Publisher: Turkish Pharmacists Association

Publication type: Journals

ISSN: 1304530X

Coverage: 2006-2020

Scope: The Turkish Journal of Pharmaceutical Sciences is the only scientific periodical publication of the Turkish Pharmacists' Association and has been published since April 2004. Turkish Journal of Pharmaceutical Sciences journal is regularly published 6 times in a year (February, April, June, August, October, December). The issuing body of the journal is Galenos Yayinevi/Publishing House level. The aim of Turkish Journal of Pharmaceutical Sciences is to publish original research papers of the highest scientific and clinical value at an international level. The target audience includes specialists and professionals in all fields of pharmaceutical sciences.

- Homepage
- How to publish in this journal
- Contact
- Join the conversation about this journal

Free English Writing Tool
Grammarly makes sure everything you type is effective and mistake-free. Try now
Amina 3 months ago

Dear sir
Is this journal Q3 rank?

reply

Melanie Ortiz 3 months ago

Dear Amina, thank you for contacting us. For every journal, the annual value of the SJR is integrated into the distribution of SJR values of all the thematic categories to which the journal belongs. There are more than 300 thematic categories. The position of each journal is different in any category and depends on the performance of the category, in general, and the journal, in particular. We also inform you that the next SCImago’s update will be made in June 2020. Best Regards, SCImago Team

Kosasih kosasih 7 months ago

Dear TJPS,

I want to know the APC of your journal.
Thanks in advance.

Best regards,
Kosasih
Universitas Pancasila
Jakarta-Indonesia

reply

Melanie Ortiz 7 months ago

Dear Kosasih,

thank you for contacting us.

We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request, we suggest you to visit the journal’s homepage or contact the journal’s editorial staff, so they could inform you more deeply.

Best Regards, SCImago Team