IMRM

PROCEEDINGS OF INTERNATIONAL MEETING
ON REGENERATIVE MEDICINE
Surabaya, August 15th-16th 2017

From Foundational Bioncience
to Human Functioning

Editors
Sri Mardjati Mei Wulan, Hiroaki Kimura, Koja Postoma, Delran Desand, and Apichana Kovindha
Universitas Airlangga

Organized by
Faculty of Medicine, Universitas Airlangga
Proceedings of the International Meeting on Regenerative Medicine
August 15-16, 2017, in Surabaya, Indonesia

Editors: Sri Mardjiati Mei Wulan ¹; Hiroaki Kimura ²; Klaas Postema ³; Delvac Oceandy ⁴ and Apichana Kovindha ⁵

Affiliations: ¹ Airlangga University, Indonesia; ² Hiroshima University Hospital, Japan; ³ University of Groningen, Netherlands; ⁴ University of Manchester, United Kingdom; ⁵ University of Chiang Mai, Thailand

Conference Link: http://conference.unair.ac.id/index.php/IMR/imurmua2017

Foreword: As the world evolves rapidly, the field of science generally also has grown tremendously. This international scientific meeting is one of the real actions of Faculty of Medicine Universitas Airlangga to improve the quality and quantity of basic research and applied science and to develop institutional quality oriented to be able to compete at international level. Regenerative Medicine is an interesting-new field of medicine. This field holds the promise of engineering damaged tissues and organs by stimulating the body's own repair mechanisms to functionally heal previously irreparable tissues or organs. The International Meeting on Regenerative Medicine (IMRM) is held as collaboration among departments (PM&R, cardiology, orthopaedic, neurosurgery, plastic surgery & reconstruction and regenerative medicine). This event is attended by students, academicians, researchers, undergraduate students, magister students, doctoral students and practitioners. We
Rehabilitation Programs for Total Hip Arthroplasty in Patients with Enclosed Hip Bilateral: A Case Report
Yuli Indah Kurnia and I Putu Pawan
DOI:10.5220/0007314400050008

Pyruvat Dehydrogenase Deficiency – Physical Medicine and Rehabilitation Approach: A Case Report
Yuli Indah Kurnia and S.M Mei Wulan
DOI:10.5220/0007314500090012

The Role of EMG Biofeedback and Comprehensive Rehabilitation in Brachial Plexus Injury after FFMT: A Case Report
Firri Azizah Noor and Patricia Maria K
DOI:10.5220/0007314600130017

Rehabilitation Management in Late-Findings of Ankylosing Spondylitis Patient: A Case Report
Adesti Permanasari and Reni Hendrarati Masduchi
DOI:10.5220/0007314700180022

Rehabilitation of Patients with Foville’s Syndrome after the First ICH Stroke: A Case Report
Bimo Sutomo and Nuniek Nugraheni
DOI:10.5220/0007314800230025

Rehabilitation Management of a Child with Scleroderma: A Case Report
Bayu Putra and Nurul Wardani
DOI:10.5220/0007314900260030

Patient with Multiple Non-contiguous Spondylitis (Spinal) Tuberculosis: A Case Report
Bayu Putra and Reni Masduchi
DOI:10.5220/0007315000310034

Correlation of ASIA Impairment Scale (AIS) Classification and Pain in Spinal Cord Injury Patients in Dr Soetomo Hospital Surabaya, Indonesia
Bona Pardede and Patricia Maria
DOI:10.5220/0007315100350038

Bona Pardede and Dewi Poerwandari
DOI:10.5220/0007315200390042

Correlation between Parity Status and Urinary Incontinence Among Elderly Women
Relation of Cognitive and Physical Functional Performance with Urinary Incontinence Problems in the Elderly
Dewi Ayub, Rwahita Satyawati and Nuniek Nugraheni
DOI:10.5220/0007315400460048

The Effect of Garlic Extract on Endothelial Progenitor Cells (EPCs) Quantification in Chronic Stable Angina Pectoris Patients
Alisia Putri, Yudi Her Oktoviono and Budi Susetyo Pikir
DOI:10.5220/0007315500490052

In Vitro Effect of Lisinopril on Endothelial Progenitor Cell (Epc) Proliferation from Peripheral Blood of Stable Coronary Artery Disease Patients
Yudi Her Oktoviono, Ragil Nur Rosyadi and Djoko Soemantri
DOI:10.5220/0007315600530058

Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells for Stroke: Rationale, Technique and Early Clinical Experience
Asra Al Fauzi
DOI:10.5220/0007315700590064

Comparison of the Effects of Resistance Training with and without Vascular Occlusion on Creatine Kinase (CK) and C-Reactive Protein (CRP)
David Sugiarto, Hening Laswati, SM Mei Wulan and Hiroaki Kimura
DOI:10.5220/0007315800650070

Direct and Indirect Method of Sonographic Measurements of the Median Nerve in Carpal Tunnel Syndrome
Lydia Arfianti
DOI:10.5220/0007315900710075

Increasing Muscle Regeneration in Response to Exercise
S.M Mei Wulan
DOI:10.5220/0007316000760080

The Role of Comprehensive Rehabilitation Management in Noncontiguous Spinal Tuberculosis Involving Thoracic and Lumbar: A Case Report
Fitria Wardhani and Indrayuni Wardhani
DOI:10.5220/0007316100810084

Rehabilitation Program for Elderly with Neglected Elbow Dislocation with Coronary Heart Disease: A Case Report
Ni Made Maya Aprillia Sari and Rwahita Satyawati
DOI:10.5220/0007316200850089
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home-based Rehabilitation to Reduce Spasticity in Spastic Quadriplegia</td>
<td>92</td>
</tr>
<tr>
<td>Cerebral Palsy: A Case Report</td>
<td></td>
</tr>
<tr>
<td>Mufidha Zulfia and SM Mei Wulan</td>
<td></td>
</tr>
<tr>
<td>Effectiveness of Aerobic Exercise Addition Using a Static Cycle in Improving Cardiorespiratory Fitness and Gait Speed after Sub-Acute Ischemic Stroke</td>
<td>93-100</td>
</tr>
<tr>
<td>Fifin Indraswari, Hening Laswati and Indrayuni Lukitra W.</td>
<td></td>
</tr>
<tr>
<td>Incentive Spirometer as a Prognostic Factor for Post Cardiac Surgery Patients</td>
<td>101-103</td>
</tr>
<tr>
<td>Bastianus Alfian Juatmadja and Dewi Poerwandari</td>
<td></td>
</tr>
<tr>
<td>Rehabilitation Management of Chronic Inflammatory Demyelinating Polyneuropathy: A Case Report</td>
<td>104-106</td>
</tr>
<tr>
<td>Sri Panca Lastiani and SM Mei Wulan</td>
<td></td>
</tr>
<tr>
<td>Rehabilitation Management of Intracerebral Hemorrhage with Various Complications: A Case Report</td>
<td>107-110</td>
</tr>
<tr>
<td>Gadiza Raizinthia P and Ditaruni Asrina U.</td>
<td></td>
</tr>
<tr>
<td>Congenital Scoliosis Caused by Hemivertebrae: A Case Report</td>
<td>111-114</td>
</tr>
<tr>
<td>Masadah and Nurul Kusuma Wardani</td>
<td></td>
</tr>
<tr>
<td>Anal Pressure Biofeedback Training in a Patient with Diverting Colostomy after Blunt and Penetrating Anorectal Injury: A Case Report</td>
<td>115-119</td>
</tr>
<tr>
<td>Benni Azhari and Martha Kurnia Kusumawardani</td>
<td></td>
</tr>
<tr>
<td>Comparison of the Immediate Effect between Radial Shock Wave Therapy and Ultrasound Diathermy on Ankle Range of Motion in Cerebral Palsy with Plantar Flexor Spasticity</td>
<td>120-124</td>
</tr>
<tr>
<td>Nur Sulastri, Sri Mardjia Mei Wulan and Noor Idha Handajani</td>
<td></td>
</tr>
<tr>
<td>Rehabilitation Outcome of Mixed Transcortical Aphasia and Right Hand Function Disturbance in Intracerebral Hemorrhage: A Case Report</td>
<td>125-129</td>
</tr>
<tr>
<td>Wahyu Sita Wardani and Subagyo</td>
<td></td>
</tr>
<tr>
<td>An Obscure Case of Residual Poliomyelitis</td>
<td>130-134</td>
</tr>
<tr>
<td>Anindya K Zahra and SM Mei Wulan</td>
<td></td>
</tr>
<tr>
<td>DOI: 10.5220/0007316300900092</td>
<td></td>
</tr>
</tbody>
</table>
Benefits of Sport Rehabilitation for Patients with ACL and PCL Tears after Reconstructive Surgery: A Case Report
Bimo Sutomo and I Putu Alit Pawana
DOI:10.5220/0007317301350139

Rehabilitation Management for Traumatic SCI During Pregnancy: A Case Report
Wahyu Sita Wardani and Patricia Maria
DOI:10.5220/0007317401400143

Difficulty of Returning to Work After Traumatic Spinal Cord Injury: A Case Report
Astrina Nur Bahrun and Andriati
DOI:10.5220/0007317501440147

Adolescent Idiopathic Scoliosis Rehabilitation in a Patient with Tuberculosis-Destroyed Lung: A Case Report
Benni Azhari and I Lukitra Wardhani
DOI:10.5220/0007317601480151

Rehabilitation Intervention in Hypertensive Intracerebral Hemorrhage: A Case Report
Astrina Nur Bahrun and Dewi Poerwandari
DOI:10.5220/0007317701520154

Correlation of Rehabilitation Management Initiation and Length of Stay on Traumatic Brain Injury Patients in Dr. Soetomo Hospital Surabaya, Indonesia
Yohan Christian Suisan and Reni Hendrarati Masduchi
DOI:10.5220/0007317801550158

The Role of Comprehensive Rehabilitation Management in Spina Bifida Patient with CTEV: A Case Report
Yohan Christian Suisan and S.M. Mei Wulan
DOI:10.5220/0007317901590162

Urinary Incontinence Prevalence and Its Relation between Pelvic Floor Muscle Strength and Type of Incontinence Urine Based on Incontinence Questions (3IQ) among Elderly Men
Gde Ganiar Oka Narasara, Rwahita Satyawati and Nuniek Nugraheni
DOI:10.5220/0007318001630166

Rehabilitation Challenges of Frequent Implant Failure of the Elbow
Alfin Windarjati Wyoso and I Putu Alit Pawana
DOI:10.5220/0007318101670170

Comprehensive Rehabilitation Program for Cervical Spinal Cord Injury Caused by Atlantoaxial Dislocation: A Case Series Report
Meta Novantisari and I Lukitra Wardhani
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitation Program for Spinal Neurofibromatosis: A Case Report</td>
<td>P. 177-180</td>
</tr>
<tr>
<td>Meta Novantisari and Damayanti Tinduh</td>
<td>DOI:10.5220/0007318301770180</td>
</tr>
<tr>
<td>Rehabilitation of Post Sciatic Nerve Repair with Mesenchymal Stem Cell: A Case Report</td>
<td>P. 181-185</td>
</tr>
<tr>
<td>Ikhwan Muhammad and Damayanti Tinduh</td>
<td>DOI:10.5220/0007318401810185</td>
</tr>
<tr>
<td>The Effect of Kinesio Taping on Lower Extremity Muscle Power in Adult Males</td>
<td>P. 186-188</td>
</tr>
<tr>
<td>Stela Clara, Julia Windi Gunadi and Yenni Limyati</td>
<td>DOI:10.5220/0007318501860188</td>
</tr>
<tr>
<td>The Functional Capacity Difference between Below Elbow Prosthesis Three Jaw Chuck and Five Actuated Finger Terminal Devices on Able-Bodied Subjects</td>
<td>P. 189-193</td>
</tr>
<tr>
<td>Rahmad, Fatchur Rachman, I Lukitra Wardhani and I Putu Alit P</td>
<td>DOI:10.5220/0007318601890193</td>
</tr>
<tr>
<td>Role of Allogeneic NK Cells Treatment in the Early Phase of Apoptosis on Poorly Differentiated Retinoblastoma Cells Culture</td>
<td>P. 194-201</td>
</tr>
<tr>
<td>Hendrian Dwikoloso Soebagjo, Fitría Kusumastuti, Parma Ratna Jaya, Susy Fatmariyanti, Endang Retnowati and Ugrosono S Yudho Bintoro</td>
<td>DOI:10.5220/0007318701940201</td>
</tr>
<tr>
<td>The Relationship between Degree of COPD and Malnutrition in Patients in The Polyclinic of Meuraxa General Hospital</td>
<td>P. 202-205</td>
</tr>
<tr>
<td>Husnah</td>
<td>DOI:10.5220/0007318802020205</td>
</tr>
<tr>
<td>Affect of Hatha Yoga Exercise in Executive Function of Diabetes Mellitus Patient</td>
<td>P. 206-211</td>
</tr>
<tr>
<td>Ernie, Robby Tjandra and Suhartono</td>
<td>DOI:10.5220/0007318902060211</td>
</tr>
<tr>
<td>Tooth Mobility as an Impact of Psychological and Psycho-Physical Work Distress in a Rat Model</td>
<td>P. 212-217</td>
</tr>
<tr>
<td>Zahreni Hamzah and Elyana Asnar</td>
<td>DOI:10.5220/0007319002120217</td>
</tr>
<tr>
<td>Comprehensive Program of Degenerative Scoliosis in Reducing Pain</td>
<td>P. 218-221</td>
</tr>
<tr>
<td>Rwahita Satyawati and Ida Yuanita</td>
<td>DOI:10.5220/0007319102180221</td>
</tr>
<tr>
<td>Effects of Tai Chi Exercise on Cardiorespiration Function in Elderly</td>
<td>P. 222-</td>
</tr>
<tr>
<td>https://www.scitepress.org/ProceedingsDetails.aspx?ID=OqP9y...</td>
<td></td>
</tr>
</tbody>
</table>
Women at Nursing Homes
D Kusumawardhana, PM Kurniawati and D Poerwandari
DOI: 10.5220/0007319202202226

Functional Mobility and Pain Severity in Older Low Back Pain Patients
Dian Marta Sari, Pavankumar Balachandran, Ahmad Ramdan and Marina A. Moellono
DOI: 10.5220/000731930270232
Role of Allogenic NK Cells Treatment in the Early Phase of Apoptosis on Poorly Differentiated Retinoblastoma Cells Culture

Hendrian Dwikoloso Soebagijo1, Fitria Kusumastuti1, Parma Ratna Jaya1, Susy Fatmariyanti 1, Endang Retnowati2 and Ugrosono S Yudho Bintoro3

1Department/Medical Staff of Ophthalmology, Faculty of Medicine, Airlangga University, Dr. Soetomo Hospital
2Department of Clinical Pathology, Faculty of Medicine, Airlangga University, Dr. Soetomo Hospital
3Hematology and Medical Oncology Division, Department/Medical Staff of Internal Medicine, Faculty of Medicine, Airlangga University, Dr. Soetomo Hospital

hendriand@yahoo.com

Keywords: Allogeneic, Apoptosis, Cancer Immunotherapy, NK Cells, Poorly Differentiated Retinoblastoma.

Abstract: Introduction: Retinoblastoma is a retinal malignant tumor because of mutations on chromosome 13q14. This is associated with apoptosis deregulation processes. Both autologous or allogeneic NK cells play their roles in both innate and adaptive immune systems. They can stimulate apoptosis through several mechanisms. Methods: This study determined the role of allogeneic NK cells in retinoblastoma cell apoptosis. Poorly differentiated retinoblastoma tissues were treated with SDS-PAGE. Allogeneic NK cells were isolated from peripheral blood of the healthy family members of patients. There were two culture groups consisting of retinoblastoma cells only as the control and retinoblastomas treated with allogeneic NK cells as the treated group. Each group consisted of 10 well plates. Examinations of the expression of Bcl-2, Caspase-3, and Apoptosis were performed by the flow cytometry method. Results: SDS-PAGE electrophoresis showed strong expression of proteins with molecular weights of 15, 19, 25, 35, 53, and 65kDa. The percentage of early phase apoptosis is higher than late phase. There were significant correlations (p<0.05) between Bcl-2, Caspase-3, and the ratio of both cell apoptosis. Conclusion: In conclusion, allogeneic NK cells play a role in retinoblastoma cell apoptosis, especially in the early phase. It is expected to be one of the new strategies in cancer immunotherapy.

1 INTRODUCTION

Retinoblastoma is the most common eye cancer occurring in children. Retinoblastoma is a malignant tumor of the retina that is derived from primitive neuroectodermal tissues. This tumor is caused by mutations on chromosome 13q14. The most common occurrence is diagnosed when children are aged less than 3 years old. The incidence rate reaches approximately 4% of all malignancies in children. In the United States, retinoblastoma affects 1 in 18,000 children aged less than 5, and the prevalence reached 250 to 300 cases per year, resulting in a 1% death rate in all cases. The figures are higher in developing countries and continue to increase annually, making the success of retinoblastoma therapy a constant challenge for developing countries. There were 44 cases from 2010 to 2012 in Dr. Soetomo General Hospital in Surabaya (Bunin & Orjuela, 2007; Chantada & Leal-Leal, 2007; Chintugumpala et al., 2007; Soebagijo et al., 2013; Stewart & Wild, 2014).

Retinoblastoma is a tumor type that is known to be genetically influenced. The mutation of the tumor suppressor gene (RB1) which is located at chromosome 13q14 is closely related to tumor formation (Leideman et al., 2007). Due to the genetic mutations occurring in retinoblastoma, proliferation will increase as apoptosis decreases. Homeostasis is achieved when the proliferation rate on the tissue is balanced with apoptosis. When apoptosis deregulation takes place, the number of dividing cells will be higher than the dying cells and in the end, a tumor is formed (Cheng et al., 2013).

The apoptosis process runs through two pathways, which are (1) the extrinsic pathway (cytoplasm) through the activity of the Fas death receptor by activating Fas ligand (FasL) interaction and (2) the intrinsic pathway (mitochondrial) that stimulates...
cytochrome-c release, which depends on Bcl-2 protein regulation (B cell lymphoma) as an anti-apoptotic protein and Bax as a pro-apoptotic protein. Singh et al. (2015) reported that the Bcl-2 is positively correlated to the growth of invasive retinoblastoma cells even though it is not correlated with Bax expression. However, Sitorus et al. (2009) reported that Bcl-2 overexpression would not prevent apoptosis, even though the independent Caspase-3 pathway is the apoptosis main pathway in retinoblastoma (Singh et al., 2015; Sitorus et al., 2009).

One of the cell types which can influence apoptosis occurrence is the Natural Killer (NK) cell. This cell constitutes lymphocytes playing a role in both the innate and adaptive immune systems. These cells can induce apoptosis through several mechanisms. In the last decade, the knowledge of NK cells, both the autologous and allogeneic, has developed and become one of the new strategies in cancer immunotherapy. Davis & Rizzieri (2015) mention that applying NK cells in therapy on malignancy showed success and the studies in this field continue to grow rapidly. Eguzabal et al. (2014) state that NK cells play an important role in building immunity against cancer. Soebagio et al. (2015) report that autologous NK cells play an important role in RB cell aggressiveness through the expression of IL-10, IL-6, and RB cell apoptosis (Davis & Rizzieri, 2015; Eguzabal et al., 2014; Soebagio et al., 2015).

According to the facts, NK cell-based immunotherapy acts as one of the promising alternative therapies. So, investigations into the role of Bcl-2 protein as a regulator and Caspase-3 as the apoptosis executor on retinoblastoma cells treated with autologous NK cell will be the basic treatment especially as an alternative therapy for retinoblastoma cases.

2 METHODS

2.1 Research Subjects

Poorly differentiated retinoblastoma tumor tissues were collected from the enucleated patients of Dr. Soetomo General Hospital, Faculty of Medicine, University of Airlangga, Indonesia after obtaining informed consent. Fresh tumor tissues were tested using the SDS-PAGE method to determine the molecular weight of proteins. There were two groups consisting of retinoblastoma cells only as the control group and retinoblastoma versus autologous NK cells as the treated group. Each group consisted of 10 well plates of cells culture. Expression of Bcl-2, Caspase-3, and Apoptosis was examined with the flowcytometry test.

2.2 SDS-PAGE

The SDS-PAGE test is useful to describe the molecular weight of tissue. Basically, proteins in the tissue are extracted in a buffer gel. The gel is then divided into two parts, the stacking gel and separating gel. The stacking gel consisted of 830 μL of UGB (upper gel buffer), 534 μL of acrylamide (T-acryl), 1950 μL of ddH2O, 40μL of ammonium persulfate (APS), and 4μL of tetramethylenylene diamine (TEMED). The separating gel consisted of 2600 μL of LGB (lower gel buffer), 4000 μL of acrylamide (T-acryl), 3400 μL of ddH2O, 140 μL of ammonium persulfate (APS), and 14 μL of tetramethylenylene diamine (TEMED). As much as 3 μL of tumor tissue was prepared with μLTris-c1 + 15 μL of RSB (Reducing Sample Buffer) and then it was separated by electrophoresis gelusing with 100 V voltage. The gel was then dyed with Coomasie Brilliant Blue R-250 so that the strands of molecules became visible. The molecular weight of each strand could be measured with an standard maker strand. The weight calculation of protein molecules was conducted based on Rf (Retardation factor) strand value of each sample. It is Migration distance of the polypeptide is a proportional inverse of the logarithm (log) value of the polypeptide molecule weight.

\[Rf = \frac{\text{Migration distance}}{\text{Gel length}} \]

2.3 Culture of Retinoblastoma Cells

The retinoblastoma tissue was cleaned 3 times with sterile PBS. It was then finely chopped in serum-free media of type-I collagenase. Finally, it was incubated for 30 minutes at 37°C. After that, medium plus serum was added and then the tissue was filtered. Next, the tissue was put in a centrifuge for 10 minutes at the speed of 1600 rpm. The supernatant was discarded and the pellets were resuspended with medium plus serum. After that, the cell culture was conducted on plates so it became confluent. Multiple passages were conducted until cell lines formed. And then, the confluent culture was divided into two groups. The first was the control
group which was not treated with allogeneic NK cells and the second was treated with NK cells with the ratio of 1:1 (Soebagio et al., 2015).

2.4 Peripheral Blood Collection for Allogeneic NK Cells

The isolation of peripheral blood mononuclear cells (PBMC) was based on Boyum’s method (1968) with some modifications. Isolation of mononuclear cells is often used to analyze the cellular immune responses by reacting antibody with mononuclear cell-surface antigens (Boyum, 1968; Rantamaki, 2003).

The peripheral blood collection for NK cell isolation was performed on healthy biological family members of the retinoblastoma patients. The blood samples were stored in a KELTA vacuum tube for PBMC isolation. In addition, the collection of NK cells can also be conducted through stem cell lines.

2.5 Examination of the Number of NK Cells (CD3–CD56+/CD16+)

The NK cell examination was performed using flow cytometry by means of BD FACS Calibur™ reagents of BD TruCOUNT tube. Fluorescein isothiocyanate (FITC)/CD16/CD56 phycoerythrin (PE)/CD45 and peridinin-chlorophyll protein (PerCP), which are the pigment reagents of immunofluorescent dye to determine the number of NK cells (CD3–CD56+/CD16+) (Hu et al., 2012).

The NK cells expressing CD3–CD56+/CD16+ would experience fluorescence in accordance with the area and then gating was performed on NK cells in the expression areas of CD56+/CD16+ and areas without the expression of CD3 (CD3–). The number of NK cells (cells/μL) was obtained by calculating the ratio of cell-event expressing CD3–CD56+/CD16+ with fluorescent bead event; the number was previously discovered on the BD TruCOUNT tube (Hu et al., 2012).

2.6 Examination of Cells Expressing Bel-2, Caspase-3, and Apoptotic Cells

The examination of cells expressing Bel-2, Caspase-3, and apoptotic cells was conducted using flow cytometry by means of BD FACS Calibur™ reagents of the primary antibody of Anti-Bel-2 (100) FITC and FITC Active Caspase-3 Apoptosis, and FITC Annexin V Apoptosis Detection Kit II Cat. 556 570, fixation reagents of BD Cytofix/Cytoper™, permeabilization reagents of BD FACS Permeabilizing Solution 2, washers reagents of BD Perm/Wash™ buffer, and lysis reagents of BD FACS Lysing Solution. Staining with Annexin V is typically used in conjunction with a vital dye such as propidium iodide (PI) for identification of early and late apoptotic cells. Meanwhile, the number of cells that expressed Bcl-2 and Caspase-3 (cells/μL) was obtained by calculating the amount of cell-event expressing antibodies with fluorescent bead events that were previously discovered on the BD TruCOUNT tube.

2.7 Statistical Analysis

All of the results were collected in specific data collection sheets, grouped and presented in tabular forms and diagrams, and then analyzed by using SPSS 15.0 so as to analyze the amount of Bel-2 and Caspase-3 and apoptosis between two groups using a T-Test and the Mann-Whitney Test. The correlation analysis between the variables was conducted by Spearmann’s Rank Correlation Test. The p value was <0.05 which statistically indicated a significance.

3 RESULTS

3.1 SDS-PAGE

The expression of protein fractions from poorly differentiated retinoblastoma samples was suggested from some staining proteins with the molecular weight range of 14-55 kDa. The SDS-PAGE electrophoresis test showed the strong expression of the protein with the molecular weights of 14, 19, 26, 35, 53 and 85 kDa (Figure 1). Some protein fraction expressions are in accordance with the theory on the possibility of some proteins with molecular weights contained in the poorly differentiated retinoblastoma samples.

![Figure 1: profile of retinoblastoma protein with SDS-PAGE test. Protein expression in retinoblastoma samples including proteins with molecular weights of 14, 19, 26, 35, 40, 53, and 85 kDa.](image)

The characterization overview of the culture of retinoblastoma cells showed cell growth between the control group and the treated group during the three
Role of Allogeneic NK Cells Treatment in the Early Phase of Apoptosis on Poorly Differentiated Retinoblastoma Cells Culture

4 DISCUSSIONS

4.1 Expression Percentage and Ratio of Bel-2, Caspase-3, and Apoptosis on Retinoblastoma Cells Culture

The results showed the percentage of apoptotic cells, necrotic cells and living cells as well as the expression of antibodies Bel-2 and Caspase-3 and the expression ratio of Bel-2 and Caspase-3 in the control group and treated group. The expression was calculated based on the mean percentage (± SD) of positive cells expressing antibodies through the flow cytometry test.

The mean percentage of the cells that expressed Bel-2 in the treated group was 0.10±0.10%, while in the control group the expression did not occur (0.10±0.10%). Caspase-3 expression in the treated group was 90.27±1.70%. It was higher compared with the control group (70.03±2.63%). The percentage of apoptotic cells in the treated group was 27.69% ± 2.36. It was lower compared with the control group (37.72%±2.01).

4.2 The Effect of NK Cell Treatment on the Total Expression of Bel-2, Caspase-3, and Cultured Retinoblastoma Cell Apoptosis

The number of early apoptosis in the treated group was 20.17%±1.81, slightly higher than the control group (19.53±2.36). In contrast, the percentage of the late phase apoptosis in the treated group of 7.51±6.01 is significantly lower than the control group (18.2±1.09).
The ratio of Bcl-2 and Caspase-3 was calculated to describe the difference between the expression of each parameter. There was no difference between the two groups (treated group was 0.11 ± 0.11% versus control group of 0.00 ± 0.00%).

The different test result analysis of all variables using the Mann-Whitney test and Independent T-test between the treated group and control showed a significant result among them. In addition, Spearmann’s Rank correlation test between variables and apoptosis showed a significant result.

Table 1: Different Test Result Analysis Control and Treatment in Phase Apoptosis.

<table>
<thead>
<tr>
<th>Apoptosis Phases</th>
<th>Groups</th>
<th>Mean</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>Rb</td>
<td>19.53±2.36</td>
<td>0.505</td>
</tr>
<tr>
<td></td>
<td>Rb+NK</td>
<td>20.17±1.81</td>
<td>0.000</td>
</tr>
<tr>
<td>Late</td>
<td>Rb</td>
<td>18.2±1.09</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Rb+NK</td>
<td>7.5±1.06</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: * significant at α = 0.05

Table 2: Difference Test Results on all variables between the two groups.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Difference Test Results</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2</td>
<td>0.000*</td>
<td></td>
</tr>
<tr>
<td>Caspase-3</td>
<td>0.000*</td>
<td></td>
</tr>
<tr>
<td>Cell apoptosis</td>
<td>0.002*</td>
<td></td>
</tr>
<tr>
<td>The ratio of Bcl-2/Caspase-3</td>
<td>0.000*</td>
<td></td>
</tr>
</tbody>
</table>

Note: * significant at α = 0.05

Table 3: Correlation Test Result between Variables and Apoptosis.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Apoptosis</th>
<th>rs</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2</td>
<td>-0.605</td>
<td>0.005*</td>
<td></td>
</tr>
<tr>
<td>Caspase-3</td>
<td>-0.657</td>
<td>0.002*</td>
<td></td>
</tr>
<tr>
<td>The ratio of Bcl-2/Caspase-3</td>
<td>-0.609</td>
<td>0.004*</td>
<td></td>
</tr>
</tbody>
</table>

Note: * significant at α = 0.05

Figure 1: Overview of flow cytometry on expression of Bcl-2, Caspase-3, and Apoptosis between the two groups.

A typical figure of retinoblastoma cell given NK cells is seen as the formation of remnant cells and NK cells surrounding cells that have an apoptotic process. Soebagio et al. (2015) reported that NK cells have the ability to induce retinoblastoma cells thus inhibiting tumor cell growth and finally cause cell death. Therefore, NK cells are found surrounding the dead cells. In contrast, retinoblastoma cells grew normally in the control group (Soebagio et al., 2015).

The SDS-PAGE electrophoresis test on poorly differentiated retinoblastoma samples shows strong expression of proteins with the molecular weights of 14, 19, 26, 35, 53 and 85 kDa. The expressions show that there are proteins corresponding to Bcl-2 and Caspase-3 that play a role in retinoblastoma formation.
Raghupathi et al. (2003) measured the molecular weight of Bcl-2 (26 kDa) and Bax (21 kDa) by using immunoblot on HeLa cortex and hippocampus cells. In the cardiomyocytes, two types of Bcl-2 expressions with different molecular weights were obtained (26 and 32 kDa) (Raghupathi et al., 2003; Cook et al., 1999).

Caspase-3 with a molecular weight of 35 kDa is a form of fraction activated by T cells and is found in the cell cytoplasm. In addition, 35 kDa molecular weight is similar to the molecular weight of procaspase-7 and procaspase-9 (Paulse et al., 2008; Dean et al., 2002; Kadirvel et al., 2010).

The process of cell death or apoptosis is commonly used as the selective parameter of a proposed anti-cancer source. Apoptosis induction was indicated by an increase in the percentage of cells undergoing apoptosis. The average of early apoptosis in the treated group was higher compared with the control group, while late apoptosis in the treated group was lower compared with the control group. So, NK cells play a role in early phase apoptosis. Cheng et al. (2013) mentioned the role of NK cells especially in the early stage of a good immune system both on innate and adaptive immune systems. Poggi et al. (2005) mentioned that the apoptosis trigger induced by NK cells will bind phospholipase D, consequently exposed on the surface of apoptotic cells and is marked by Annexin V in the early apoptosis phase. In contrast, in late-phase apoptosis, the death rate of NK cells is effective 24-hour incubation and it will reach the peak after 48 hours of incubation together inside tumor cells (coculture) (Cheng et al., 2013; Poggi et al., 2005).

The flowcytometry analysis showed that Bel-2 is relatively insignificant in the apoptosis process. However, caspase-3 showed significant cell expression but apoptotic cells were lower compared with the control group. The correlation of Bel-2/Caspase-3 showed that Bel-2 yielded less expression when compared with Caspase-3. Nevertheless, Caspase-3 turned out to be inversely proportional to the occurring cell apoptosis. This shows the apoptotic signaling process that occurred in allogeneic NK cells in retinoblastoma cells. In general, the process of NK cell apoptosis goes through two pathways, which are (1) the intrinsic pathway which goes through the NKG2D ligand or (2) the extrinsic pathway which goes through the TNF ligand/FasL (Drannoff, 2004; Krzewski & Coligan, 2012).

The NK cells will induce tumor cells through Killer Activation Receptors (KARs), i.e. the NKG2D ligand when the KIR inhibitory signal is hampered because the tumor cells are inhibited by the expression of MHC class I which cause cytotoxic granules (perforin and granzyme) to not be excreted. The cytotoxic granules will be excreted if NK cell receptors, FcYRIII (CD16) bind IgG tumor cells. Excreted perforin will open pores as the entrance of granzyme protein to mediate apoptosis (Drannoff, 2014; Abe et al., 2008).

There are 5 types of granzyme known to exist in humans. These are granzyme A, B, H, K, and M. The difference of the types lies in the structure of the serine protease substrate (Grossman et al., 2004). Hocheger et al. (2004) mention that the class of polymorphonuclear cells (PMN) excrete perforin and 2 types of granzyme which are granzyme A and B which contribute to the process of cytotoxic cells. Granzyme A induces cell death through the DNA characteristic of single chain cells and do not activate caspase cascade (Bots & Medema, 2006).

In NK cells, granzyme B plays a role. Granzyme B is capable of directly inducing apoptosis (bypass) via Caspase-3. This is consistent with the results of research and can occur because Bel-2 is not sufficient to affect the apoptosis process. Overexpression of Bel-2 in retinoblastoma itself is noted to not necessarily hinder the apoptosis process. The reason why Bel-2 is not functionally suppressed is supported by Sittorus et al. (2004) which indicate that constraints on Bel-2 will have an effect on increasing the ratio of the target and increase granzyme B. Granzyme B itself activates Bid pro-apoptotic proteins, along with Bax, which translocates to the mitochondria and affects the membrane permeability to release cytochrome-c after forming apoptosis by the Caspase cascade (Sittorus et al., 2009; Bots & Medema, 2006; Sutton et al., 1997; Pinkoski et al., 2001).

In addition, Pinkoski et al. (2001) noticed that in a direct path from granzyme B to caspase-3, apoptosis via the mitochondria can also occur via Smac/Diablo proteins that mediate apoptosis of granzyme B contributing to cell destruction by binding with XIAP. In addition, the release of Smac/Diablo in mitochondria will inhibit the Bel-2 (Pinkoski et al., 2001; Verhagen et al., 2000; Adrain et al., 2001).
The test results indicate that the ratio of the expression of Caspase-3 increased, reversely proportional to cell apoptosis. Sitorus et al. (2009) stated that there is a possibility that apoptosis occurs through Caspase-3-dependent or independent pathways. Apoptotic signals that have come to the Caspase-3 effector are possibly hindered by DNA enzyme of repair poly(ADP-ribose) polymerase (PARP-1). Active Caspase-3 protein will divide various substrates, including PARP-1 which is the mitotic apparatus core, lamina nucleus, and also actin and endonucleases. PARP-1 plays an important role in DNA repair processes by participating in the initiation of base excision repair (BER), nucleotide excision repair, and base repair with single-stranded DNA ligation III mediation, as well as controlling 60-70% of cell metabolism, cell cycle and cell transcription. Cell death signals of Caspase-3 towards PARP-1 cleave and the PARP-1 fragments will activate cell apoptosis. The cleavage process of PARP-1 is conducted by cytokine of Matrix Metalloproteinase-2 (MMP-2). However, the cleavage process by MMP-2 is inhibited by Enhancer Zeste Homolog-2 (EZH2) that represses micro RNA 21 promoters and inhibits MMP-2 through TIMP-2 inhibitors. Barriers on PARP-1 will result in the increased expression of Caspase-3 and in opposite proportion to cell apoptosis (Lazebnik et al., 1994; Niculescu et al., 2009).

5 CONCLUSIONS

It is concluded that the provision of allogeneic NK cells play a significant role in the apoptosis process of poorly differentiated retinoblastoma cells, especially at the early phase through the intrinsic pathway.

REFERENCES

Cheng, M., Chen, Y., Xiao, W., Sun, R. & Tian, Z., 2013, „NK Cell-Based Immunotherapy for Malignant Diseases“, Cellular & Molecular Immunology, 10, 230-252.

Role of Allogenic NK Cells Treatment in the Early Phase of Apoptosis on Poorly Differentiated Retinoblastoma Cells Culture

201