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Abstract More than a dozen Gongylonema
spp. (Spirurida: ~ Spiruroidea: Gongylonematidae)
have been described from a variety of rodent hosts
worldwide. Gongylonema neoplasticum (Fibiger &
Ditlevsen, 1914), which dwells in the gastric mucosa
of rats such as Rattus norvegicus (Berkenhout) and
Rattus rattus (Linnaeus), is currently regarded as a
cosmopolitan nematode in accordance with global
dispersion of its definitive hosts beyond Asia. To
facilitate the reliable specific differentiation of local
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rodent Gongylonema spp. from the cosmopolitan
congener, the genetic characterisation of G. neoplas-
ticum from Asian Rattus spp. in the original endemic
area should be considered since the morphological
identification of Gongylonema spp. is often difficult
due to variations of critical phenotypical characters,
e.g. spicule lengths and numbers of caudal papillae. In
the present study, morphologically identified G.
neoplasticum from 114 rats of seven species from
Southeast Asia were selected from archived survey
materials from almost 4,500 rodents: Thailand (58
rats), Cambodia (52 rats), Laos (three rats) and
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Philippines (one rat). In addition, several specimens
from four rats in Indonesia were used in the study.
Nucleotide sequences of the ribosomal RNA gene
(rDNA) (5,649 bp) and the cytochrome ¢ oxidase
subunit 1 gene (cox1) (818 bp) were characterised. The
rDNA showed little nucleotide variation, including the
internal transcribed spacer (ITS) regions. The coxl
showed 24 haplotypes, with up to 15 (1.83%)
nucleotide substitutions regardless of parasite origin.
Considering that Rattus spp. have been shown to
originate from the southern region of Asia and G.
neoplasticum is their endogenous parasite, it is
reasonable to propose that the present study covers a
wide spectrum of the genetic diversity of G. neoplas-
ticum, useful for both the molecular genetic specula-
tion of the species and the molecular genetic
differentiation of other local rodent Gongylonema
spp. from the cosmopolitan congener.

Introduction

Members of the genus Gongylonema Molin, 1857
(Spirurida: Spiruroidea: Gongylonematidae), are fili-
form nematodes dwelling in the mucosa of the upper
digestive tract of a variety of mammals and birds
worldwide (Yamaguti, 1961; Skrjabin et al., 1967,
Lichtenfels, 1971; Anderson, 1992). The worms are
characterised by verruciform thickenings, i.e. longi-
tudinal rows of cuticular bosses, on the anterior
surface of the body (Chabaud, 2009). More than a
dozen nominal Gongylonema spp. have been
described from rodents worldwide based on morpho-
logical criteria (Fibiger & Ditlevsen, 1914; Kruidenier
& Peebles, 1958; Yamaguti, 1961; Skrjabin et al.,
1967; Gupta & Trivedi, 1985; Ashour & Lewis, 1986;
Diouf et al., 1997; Kinsella et al., 2016). Some of the
described species require the collection and charac-
terisation of more specimens as their characterisation
was based on a limited number of worms or they were
recovered from a unique body location, different from
other species, as indicated by Kinsella et al. (2016).
Considering an earlier trend where many helminth
species descriptions were primarily based on different
isolation sources and/or some morphological unique-
ness of microscopically observed worms, it would be
prudent to discern the taxonomic relationships of local
Gongylonema spp. isolated from different rodent hosts
in the world, as has been done for G. pulchrum Molin,

@ Springer

1857 with many synonymised taxa based on cross-
infection experiments (Ransom & Hall, 1915; Baylis
et al., 1926a, b; Schwartz & Lucker, 1931; Lucker,
1932) or meticulous morphological analyses
(Schwartz & Lucker, 1931; Lichtenfels, 1971). These
strategies for taxonomical revision can be hampered
by the practical difficulties of worm collection from
wild rodent hosts and/or collection of wild rodents for
experimental infection purposes; however, molecular
genetic analyses now offer an alternative approach for
such a task.

Nucleotide sequencing of the ribosomal RNA gene
(rDNA) and partial cytochrome ¢ oxidase subunit 1
(cox1) region of mitochondrial DNA (mtDNA) of
specimens of Gongylonema isolated from different
mammalian hosts has enabled us to differentiate G.
nepalensis Setsuda, Da, Hasegawa, Behnke, Rana &
Sato, 2016 from G. pulchrum and understand their
possible natural transmission dynamics in domestic
and wild ruminants (Sato, 2009; Makouloutou et al.,
2013a, b; Setsuda et al., 2016; Varcasia et al., 2017).
We recently genetically characterised for the first time
two rodent Gongylonema spp., i.e. G. neoplasticum
from the black rat (Rattus rattus (Linnaeus)) on
Okinawa Island, Japan, and G. aegypti Ashour &
Lewis, 1986 from the Arabian spiny mouse Acomys
dimidiatus (Cretzschmar, 1826) on the Sinai Penin-
sula, Egypt, disclosing their distinctness but close
relatedness (Setsuda et al., 2016). Considering that
Rattus norvegicus (Berkenhout) (brown rats) and R.
rattus, the dominant hosts for G. neoplasticum world-
wide (Wells et al., 2015), originated from southern
China and Southeast or South Asia (Aplin et al., 2011;
Song et al., 2014; Thomson et al., 2014; Puckett et al.,
2016), the greatest genetic diversity of their endoge-
nous parasites would be expected to be found in
worms collected in Southeast Asia rather than invaded
localities beyond South and Southeast Asia (Morand
et al., 2015), such as Japan, the sole locality of
available molecular data for G. neoplasticum. In the
latter case, worms must have survived in their new
environment by way of the bottleneck phenomenon,
thus leading to lower genetic diversity.

In the present study, specimens of Gongylonema in
the stomach of Rattus spp. (R. norvegicus, R. exulans
(Peale), R. tanezumi (Temminck), R. andamanensis
Hinton, and another Rattus sp.), Maxomys surifer
(Miller), and Berylmys bowersi (Anderson) collected
in Cambodia, Indonesia, Laos, Philippines and
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Thailand were examined for their genetic diversity in
their putative native areas.

Materials and methods

Collection

observation
During the last 10 years, a variety of murine rodents
(approximately 4,500 individuals of more than 20
species) has been trapped in Cambodia, Laos, Philip-
pines and Thailand to try and understand the role of
host species and habitat on helminth species richness
and to also answer other ecological and epidemiolog-
ical questions related to parasitic diseases (e.g.
Pakdeenarong et al., 2014; Palmeirim et al., 2014;
Chaisiri et al., 2015, 2016; Veciana et al., 2015; Ribas
et al., 2016). As part of these studies, specimens of
Gongylonema were recorded from various murine
hosts (Pakdeenarong et al., 2014; Palmeirim et al.,
2014; Chaisiri et al., 2016; Ribas et al., 2016), a
portion of which was used for the present study; 114
worms collected from different individuals of five
Rattus spp., M. surifer, and B. bowersi trapped in
Thailand (11 localities), Cambodia (three localities),
Lao PDR (three localities), and Philippines (one
locality) during the period February 2008 to August
2014 (Table 1). To increase sampling areas, 13 worms
from four brown rats trapped in a wet market in
Surabaya city, Indonesia, in September 2017 were
included in the present study (Table 1). Individual
worms embedded in the gastric mucosa were carefully

of parasites and morphological

removed from the tissue using fine forceps and fixed
individually in 70% ethanol.

Nine of the 114 worms chosen from archived
survey materials were male. Six male and six female
worms displaying no morphological damage were
selected for morphological observation. Similarly, six
male and three female worms collected in Indonesia
were used for morphological examination. Specimens
preserved in 70% ethanol were placed in a clearing
solution with glycerol and lactic acid, and observed
under a light microscope. Figures were drawn with the
aid of a camera lucida. Measurements were performed
on these drawn figures using a digital curvimeter type
S (Uchida Yoko, Tokyo, Japan) when necessary.

DNA extraction, polymerase chain reaction (PCR),
and sequencing
The middle 1/5-1/3 section of 109 female worms and
2.5-mm long segments of two male worms were
individually used for DNA extraction. Each sample
was washed three times in distilled water, placed in a
clean 1.5-ml plastic tube, freeze-dried (freeze dryer
model EYELA FD-5N; Tokyo Rikakikai Co., Bun-
kyo-ku, Tokyo, Japan), then crushed with an individ-
ual clean plastic pestle. Parasite DNAs were extracted
separately from these samples using an Illustra™
tissue and cells genomicPrep Mini Spin Kit (GE
Healthcare UK, Buckinghamshire, UK) according to
the manufacturer’s instructions.

PCR amplification of overlapping rDNA fragments
was performed in a 20-pl volume containing a DNA
polymerase, Blend Taqg-Plus- (TOYOBO, Dojima

Table 1 Gongylonema neoplasticum worms examined in the present study

Host rodent speceis Thailand® Cambodia® Laos* Philippines® Indonesia® Total
Rattus norvegicus 29 (25) 2(1) 13 (4) 44 (30)
Rattus exulans 10 (1) 25 (7) 2 (1) 37 (9)
Rattus tanezumi 10 (4) 20 (3) 1(1) 31 (8)
Rattus andamanensis 2(2) 2 (2)
Rattus sp. 1(1) 1(1) 2(2)
Maxomys surifer 5@3) 2 (0) 703)
Niviventer fulvescens 3 (0) 3 (0)
Berylmys bowersi 1(1) 1(1)
Total 57 (36) 52 (11) 3(2) 2(2) 13 (4) 127 (55)

“Number of studied worms from different rodent individuals except for Indonesia (Number of worms reactive to PCR amplification of
the rDNA and/or cox] mtDNA fragments). In Indonesia®, 17 worms were collected from four rats; nine and four worms from two rats

were used for morphological and molecular genetic analyses
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Hama, Osaka, Japan), and universal eukaryotic primer
pairs as previously described (Makouloutou et al.,
2013a). PCR products for sequencing were purified
using a FastGene Gel/PCR Extraction Kit (NIPPON
Genetics Co., Tokyo, Japan). Following direct
sequencing of PCR amplicons, sequences were
assembled manually with the aid of the CLUSTAL
W multiple alignment program (Thompson et al.,
1994). For rDNA segments containing the internal
transcribed spacer (ITS) regions, the amplicon was
cloned into a plasmid vector, pTA2 (TArget Clone™;
TOYOBO), and transformed into Escherichia coli
IM109 cells (TOYOBO) according to the manufac-
turer’s instructions. Following propagation, the plas-
mid DNA was extracted using a FastGene Plasmid
Mini Kit (NIPPON Genetics Co.) and inserts from
multiple independent clones, at least three, were
sequenced using universal M13 forward and reverse
primers.

The cox1 region of mtDNA was amplified by two
different primer pairs as follows: (i) Gpul_Cox1-303F
(5’-GGC TCC TGA GAT GGC TTT TC-3') and
Gpul_Cox1-R (5-ATG AAA ATG TGC CAC TAC
ATA ATA TGT ATC-3'); and (ii) Gpul_Cox1-403F
(5-CCT GGT GGT AGC TGA ACT TT-3') and
Gpul_Cox1-906R (5-GCC CCA AAC AGA CGT
ACC TA-3'). These primers were designed using
online software ‘Primer3web ver.4.0.0’ (Untergasser
et al.,, 2012) and referring to a complete coxl
nucleotide sequence of G. pulchrum (DDBJ/EMBL/
GenBank: KM264298; Liu et al., 2015). PCRs were
conducted in a thermal cycler using the following
cycling protocol: 3 min at 94°C, followed by 40 cycles
at 94°C for 45 s, 48°C for 1 min, and 72°C for 1 min,
then a final extension at 72°C for 7 min. For
Indonesian worms, another primer pair, Gpul_Cox1-
F (5'-GTG GTT TTG GTA ATT GAA TGC TA-3')
and Gpul_Cox1-R, was used to amplify cox1 nucleo-
tide sequences, according to Varcasia et al. (2017).
Amplicons were sequenced after purification as
described above. For sequencing of 868 bp or 905 bp
long cox1 products, which included 50 bp or 53 bp
long primer-annealing areas, respectively, the five
PCR amplification primers detailed above were used.

The nucleotide sequences reported in the present
study are available from the DDBJ/EMBL/GenBank
databases under the accession numbers LC331001-
LC331051 and LC334451-LC334454. Voucher
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specimens for these DNA analyses were deposited in
the National Museum of Nature and Science, Tokyo,
Japan, under the accession numbers As4306—As4423.

Phylogenetic analysis

For phylogenetic analysis, the newly obtained coxl
sequences (818 bp in length) of Gongylonema worms
examined in the present study and those of the same
genus retrieved from the DDBIJ/EMBL/GenBank
databases were used. Spirocerca lupi (Rudolphi,
1809) (Spirurida: Thelaziidae; GenBank:
KC305876), Dirofilaria repens Railliet & Henry,
1911 (Spirurida: ~ Onchocercidae; ~ GenBank:
KX265048), and Onchocerca volvulus (Leuckart,
1893)  (Spirurida:  Onchocercidae;  GenBank:
AP017695) were retrieved from the databases and
used as an outgroup for the construction of the
phylogenetic tree. Maximum likelihood (ML) analysis
was performed with the program PhyML (Guindon &
Gascuel, 2003; Dereeper et al., 2008) provided on the
‘phylogeny.fr’ website (http://www.phylogeny.fr/)
using 818 characters, of which 258 were variable.
The probability of inferred branches was assessed by
the approximate likelihood ratio test (aLRT), an
alternative to the non-parametric bootstrap estimation
of branch support (Anisimova & Gascuel, 2000).

coxl haplotype analysis

The relationships of different haplotypes based on 369
bp long cox1 nucleotide sequences were visualised
using an automated haplotype network layout and
visualisation software, HapStar, downloaded at http://
fo.am/hapstar (Teacher & Griffiths, 2011).

Results
Morphology of G. neoplasticum from Asian rats

The number of worms embedded in the gastric mucosa
of each rat selected for this study from archived survey
materials (a total of 114 rats of seven different species
trapped at 18 localities in four countries) ranged from a
few to several; a single worm from each rat was used
(Table 1). In addition, nine worms from two brown
rats trapped in Surabaya city, Indonesia, were used for
morphological observation. Worms showed marked
sexual dimorphism, evident in worm sizes (distinctly
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Fig. 1 Gongylonema neoplasticum from Asian rats. A, B, Male, anterior extremity; C, D, Female, anterior extremity; E, Male,
posterior extremity, dorsal view; F, intrauterine egg. Photographs B and E are composed of three segments of photographs taken at
different depths, marked by gray lines. Abbreviations: EP, excretory pore; LA, lateral ala; LSp, left spicule; mE/gE, the border between
muscular oesophagus and glandular oesophagus; NR, nerve-ring; Ph/mE, the border between pharynx and muscular oesophagus; Phs,

phasmid; RSp, right spicule. Arrowheads indicate caudal papillae

smaller sizes of male worms; see Table 2) and
differently developed cuticular bosses in the anterior
part of the body (poor in male worms and well
developed in female worms; see Fig. 1). Mouth
opening was connected to the short pharynx, then
followed by the muscular and glandular oesophagi,
and intestine. Male worms with asymmetric caudal
alae had eight pairs of caudal papillae (four pre-
cloacal and four post-cloacal), in addition to a pair of
phasmids near the posterior extremity. One of six male

@ Springer

worms had an additional caudal papilla which was
located at the anteriormost position of the pre-cloacal
papillae on the left side (Fig. 1E). Male worms
possessed a long left and a short right spicule
(Fig. 1E). Left spicules were fine thread-like with
round distal ends, whereas right spicules and guber-
nacula were squat. Measurements of the collected
worms were well coincident with those of G. neo-
plasticum recorded in earlier studies (Table 2).
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rDNA of G. neoplasticum from Asian rats of
different origins

Following a preliminary reactivity check of rDNA
segment amplification by PCR, the rDNA nucleotide
sequences of several arbitrarily chosen worms were
sequenced (Table 3); 5,649 bp in length from near the
5'-terminus of 18S to 28S rDNA was comprised of
1,814 bp long partial 18S rDNA, 540 bp long ITSI,
158 bp long 5.8S rDNA, 478 bp long ITS2, and 2,659
bp long partial 28S rDNA. The nucleotide sequences
of different worms were almost completely identical
to one another, as well as to male and female worms of
G. neoplasticum from the black rat in Okinawa, Japan
(DDBJ/EMBL/GenBank: LC026032 and LC026033;
Setsuda et al., 2016). The few nucleotide substitutions
observed were located at positions 437, 579, 814 and
1,019 of the 28S rDNA (Table 4).

cox1 of G. neoplasticum from Asian rats of different
origins

A partial cox1 region, 818 bp or 852 bp in length,
was successfully sequenced in 55 of the collected
worms (Table 5), showing 24 haplotypes with mostly
only a few nucleotide substitutions and a maximum of
15 (1.83%) nucleotide substitutions. The most promi-
nent haplotypes with one or no nucleotide substitution
were found in 27 worms (49.1%) of different localities
and host origins. In an ML phylogenetic tree con-
structed on the basis of these 818 bp long coxl
sequences, all specimens of G. neoplasticum from
Asian rats formed a well-supported clade, which was
distinct from G. aegypti from the Arabian spiny mouse
in Egypt, a clade of G. pulchrum from domestic
ruminants in Japan and China, and G. nepalensis from
ruminants on Sardinia Island, Italy (Fig. 2). To define

Table 3 Gongylonema neoplasticum worms examined for the rDNA nucleotide sequences, Worms reactive to PCR amplification of
rDNA nucleotide fragments are shown by worm ID number. Specimens with numbers in bold showed a few nucleotide substitutions

in the 28S rDNA (see Table 4)

Host rodent species Thailand Cambodia Philippines
Rattus norvegicus #51, #76, #79, #82, #85, #87

Rattus exulans #17, #21, #90

Rattus tanezumi #36, #40, #49

Rattus andamanensis #45

Rattus sp. #59
Maxomys surifer #52

Berylmys bowersi #38

Table 4 Nucleotide variations in the 28S rDNA of Gongylonema neoplasticum of different origins. Worms with long rDNA

nucleotide sequences successfully amplified by PCR are shown

Worm ID DDBJ/ EMBL/ Host Locality 28S rDNA*
GenBank ID
437 579 814 1019
#17, #51, #59 LC330994-LC330996  R. norvegicus, R. exulans, Thailand, Cambodia, A C C C
Rattus sp. Philippines
#21 LC330997 Rattus exulans Cambodia . - T
#38 LC330998 Berylmys bowersi Thailand - . T
#49 LC330999 Rattus tanezumi Thailand . T
#82 LC331000 Rattus norvegicus Thailand . . . T
G. neoplasticum  LC026032, LC026033  Rattus rattus Japan C

JPN

“Relative nucleotide position to the 28S rDNA of a Japanese isolate of G. neoplasticum (DDBJ/EMBL/GenBank: LC026032)
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Table 5 Gongylonema neoplasticum worms examined for the cox] mtDNA nucleotide sequences

Host rodent species Thailand Cambodia Laos  Philippines  Indonesia
Rattus norvegicus #51, #62, #63, #65, #66, #67, #69, #8 #161, #162,
#70, #71, #72, #73, #75, #76, #77, #163, #164
#78, #79, #80, #81, #82, #83, #84,
#85, #86, #87, #89
Rattus exulans #95 #2, #7, #17, #21, #96, #47
#97, #98
Rattus tanezumi #36, #40, #49, #53 #15, #28, #30 #57
Rattus andamanensis #45, #50
Rattus sp. #123 #59
Maxomys surifer #41, #42, #52
Berylmys bowersi #38

the molecular genetic relationship with a specimen of
G. neoplasticum from the black rat in Okinawa, Japan
(DDBJ/EMBL/GenBank: LC026049; Setsuda et al.,
2016), 369 bp long coxl segments (constituting the
450th nucleotide through to the 3'-terminus of the 818
bp long coxl fragments) of the 55 successfully
sequenced worms were analysed by the HapStar
network illustration (Fig. 3). These 369 bp long cox1
segments contained the majority of nucleotide substi-
tutions (92 sites), whereas the anterior 449 bp long
segments contained only 24 nucleotide substitution
sites, when specimens of G. pulchrum, G. nepalensis,
G. aegypti, G. neoplasticum and Gongylonema col-
lected in the present study were compared. When the
55 specimens Gongylonema collected in the present
study were compared, the anterior 449 bp long coxl
segment contained 16 nucleotide substitution sites,
and the posterior 369 bp long cox1 segment contained
20 nucleotide substitution sites. Subsequent analyses
with the 369 bp long coxl segments showed 19
haplotypes; the most prominent haplotype was found
in 30 worms (54.6%). Translation of amino acid (aa)
sequences from the 818 bp and 369 bp long coxl
nucleotide sequences resulted in 17 types of 272 aa
sequences and 10 types of 123 aa sequences, respec-
tively. The most prominent amino acid sequence type
in each analysis was found in 56.4% (31/55; 272 aa
sequences) and 83.6% (46/55; 123 aa sequences) of
analysed worms. The cox1 haplotype of G. neoplas-
ticum collected in Okinawa, Japan, was identical to the
most prominent haplotype of the Gongylonema worms
collected in Southeast Asian countries (Fig. 3), and its
amino acid sequence, as well as that of G. aegypti, was
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identical to the most prominent amino acid sequence
type in worms collected in the present study.

Discussion

The Gongylonema worms collected in the present
study appear to be a single species, G. neoplasticum,
based on morphological characters such as continuous
lateral alae, numbers of caudal papillae (four pairs of
pre- and four pairs of post-cloacal ones), poor
development of cuticular bosses on the anterior
surface of male worms in contrast to developed ones
in female worms (Fig. 1), in addition to specimen
measurements (Table 2). Natural definitive hosts of
the species include not only R. norvegicus and R.
rattus, but also Bunomys chrysocomus (Hoffmann)
(yellow-haired hill rat), Bandicota savilei Thomas
(Savile’s bandicoot rat), Maxomys surifer (red spiny
rat), Mus caroli (Ryukyu mouse), Mus cervicolor
Hodgson (fawn-colored mouse), Mus cookii Ryley
(Cook’s mouse), Niviventer fulvescens (Gray) (chest-
nut white-bellied rat), Rattus exulans (Polynesian rat),
Rattus losea (Swinhoe) (lesser ricefield rat), Rattus
tanezumi (Asian house rat), Rattus tiomanicus (Miller)
(Malayan field rat) and Oryctolagus cuniculus (Lin-
naeus) (European rabbit) (Fibiger & Ditlevsen, 1914;
Yokogawa, 1925; Kruidenier & Peebles, 1958; Skr-
jabin et al., 1967; Singh & Cheong, 1971; Yap et al.,
1977; Leong et al., 1979; Krishnasamy et al., 1980;
Jueco & Zabala, 1990; Hasegawa & Syafruddin, 1995;
Eira et al., 2006; Syed-Arnex & Mohd Zain, 2006;
Paramasvaran et al., 2009; Dewi, 2011; Chaisiri et al.,



Syst Parasitol (2018) 95:235-247

243

ik

G. aegypti ex. Acomys dimidiatus: EG (LC026046)
_I(r neoplasticum ex. Maxomys surifer: TH (LC331012) #41
. neoplasticum ex, Rattus andamanensis: TH (LC331017) #50
el neoplasticum ex. Rattus tanezumiz TH (LC331020) #S3
‘L[ . neoplasticum ex, Raftus tanezumi: KH (LC321008) #30
52 G. neoplasticurn ex. Berylmys bowersi: TH (LC331010) #38
&, G. neoplasticumn ex. Rattus norvegicus: TH (LC331037) #79
G. neoplasticum ex, Raftus norvegicus: TH {LC331040) #82

- . neoplasticum ex. Raftus novvegicus: TH (LC331018) #51
®G. neoplusticum ex. Rattus norvegicus: ID (LC334451) #161
G. neoplasticum ex. Rattus norvegicus: D (LC334452) #162
G. neoplasticum ex. Rattus norvegicus: 1D {LC334454) #164
G neoplasticum ex. Rattus exulans: KH (LC331005) #17
r d (. neoplasticum ex, Raftus exulans: KH (Lc331006) #27
G. neoplasticum ex. Rattus tanezumiz TH{LC331016) #49
G neoplusticum ex. Maxomys surifer: TH (LC331019) #52
G. neoplasticum ex. Rattus norvegicus: D {LC334483) #163
T [34 isolates of G. neoplusticum ex murids in TH, KH, and LA]
G neoplasticun ex. Rattus exulans: KH (LC331001) #2
|C neoplasticum ex. Rattus exulans: LA (LC331015) #47
G. neoplasticum ex. Rattus norvegicus: TH (LC331023) #62
-IE. neoplasticum ex. Rattus norvegicus: TH (LC331043) #85
G. neoplusticum ex. Rattus norvegicus: TH (LC331036) #78

EL]

0.09 substitutions/ site

a1y G. pulchrum ex. Bos taurus: CN (LC026035)
G. pulchrum ex. Capra hircus: CN (KM264238)

G. pulchrum ex. Bos taurus: JP (LL791121)
35 Q. pulchrum ex. Bos taurus: CN (LC026041)
G. nepalensis ex. Bos taurus: [T (LC278393)

Spirocerca lupi ex. Canis lupus familiaris: CN (KC305876)
az a8 [—— Dirofilaria repens ex. Canis lupus familiaris: IT (Kx265048)
Onchocerca volvulus ex. Homo sapiens (AP017695)

Fig. 2 Maximum Likelihood phylogenetic tree based on 818 bp long coxl nucleotide sequences. All nucleotide sequences of
Gongylonema neoplasticum shown in the figure are newly generated in the present study, with 27 isolates omitted for simplification.
The species name of isolates is followed by host species, country of collection, DDBJ/EMBL/GenBank accession number, and worm ID
number. Abbreviations: CN, China; EG, Egypt; IT, Italy; JP, Japan; KH, Cambodia; LA, Laos; PH, Philippines; and TH, Thailand

2012; Paramasvaran et al., 2012; Dewi & Purwan-
ingsih, 2013). As detailed measurements of specimens
from different hosts or localities have not always been
recorded, possible variations of phenotypical charac-
ters of G. neoplasticum have not been assessed to any
great extent. Without any knowledge of the genetic
background of worms under investigation, i.e. worms
of a single species or multiple species, it is impossible
to explain the significance of possible phenotypical
variations. Due to this reason, Kinsella et al. (2016)
stressed the importance of acquiring molecular data in
addition to phenotypical character data from collected
parasites to understand the systematics of rodent
Gongylonema spp.

The present study aimed to characterise the rDNA
and coxl nucleotide sequences of G. neoplasticum
based on material collected as part of several helminth
surveys conducted in Thailand, Cambodia, Laos and
Philippines during the period February 2008 to August
2014, with additional worms from Indonesia (Pakdee-
narong et al., 2014; Palmeirim et al., 2014; Chaisiri
et al., 2015, 2016; Veciana et al., 2015; Ribas et al.,
2016). The majority of worms collected in these
surveys had previously undergone microscopic obser-
vation for their specific identification. Furthermore, a
portion of the worms had been preserved for several
years, dating from February 2008 through to the spring
of 2016. Therefore, at the outset of our study, we were
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Cattle haplotype I 7362

G. nepalensis

(12)

:\0\

G. aegypti

Fig. 3 Relationships of cox1 haplotypes of Gongylonema neoplasticum recovered from Asian rats, based on 369 bp long nucleotide
sequences. Numbers in the circles for G. neoplasticum indicate the worm ID number, while letters in the circles for other Gongylonema
spp. indicate the host animal (B, wild boar; C-hl, cattle with cox1 haplotype I G. pulchrum; C-hll, cattle with cox1 haplotype II G.
pulchrum; D, sika deer; G, goat; S, spiny mouse; W, water buffalo). ‘Gn’ in the prominent haplotype of G. neoplasticum indicates the
worm collected in Okinawa, Japan (DDBJ/EMBL/GenBank: LC026049)

aware that these past treatments of the samples could
negatively affect the PCR amplification of rDNA and
cox] mtDNA fragments. Indeed, successful coxl
sequencing was achieved in 47.7% (51/107) of
examined worms from archived survey materials.
Using several arbitrarily chosen worms, almost
identical rDNA sequences (including the ITS regions)
with only a few nucleotide substitutions over a length
of 5,649 bp were obtained. The ITS regions are highly
variable nuclear DNA regions useful for species and
strain separation. In the case of G. pulchrum, numer-
ous repeats of a few to several nucleotide units often
occur in the ITS regions, and intraspecific as well as
intra-individual variations of these nucleotide repeats
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have been seen in addition to interspecific variations
(Makouloutou et al., 2013a; Setsuda et al., 2016).
Similarly, G. neoplasticum collected from Southeast
Asian rats exhibited such nucleotide repeats in the ITS
regions, but lacked variation in the number of repeats
of certain nucleotide units. The rDNA nucleotide
sequences of G. neoplasticum worms collected in the
present study were almost completely identical (only a
few nucleotides differed) to those of G. neoplasticum
isolated in Okinawa, Japan (DDBJ/EMBL/GenBank:
LC026032 and LC026033). Therefore, as the unique
rDNA sequences of G. neoplasticum and those of
congeners such as G. aegypti, G. pulchrum and G.
nepalensis were discussed in our previous study



Syst Parasitol (2018) 95:235-247

245

(Setsuda et al., 2016), we do not repeat that discussion
here.

Makouloutou et al. (2013a) reported a great variety
of coxl gene nucleotide sequences (seven coxl
haplotypes), but only a small amount of amino acid
sequence variation, in G. pulchrum isolated from wild
mammals such as deer, wild boars and Japanese
macaques in Japan. This is in contrast to only two
major cox1 haplotypes in cattle in Japan, China (Inner
Mongolia) and Iran (Halajian et al., 2010; Mak-
ouloutou et al., 2013a; Setsuda et al., 2016). This
might reflect the fact that endemic mammals have a
parasite population with a spectrum of genetic diver-
sity, whereas mammals translocated by human activ-
ities have a parasite population with little genetic
diversity. Considering that G. neoplasticum is cur-
rently cosmopolitan in distribution with an unintended
introduction of its rodent hosts as a consequence of
recent global trade, and that Rattus spp. such as R.
norvegicus, R. rattus, R. tanezumi, and R. exulans have
been shown to originate in southern China and
Southeast or South Asia (Aplin et al., 2011; Song
et al., 2014; Thomson et al., 2014; Puckett et al.,
2016), it is reasonable to propose that G. neoplasticum
examined here is likely to have a maximum spectrum
of genetic diversity in fast-evolving mtDNA genes
such as coxl.

As hypothesised above, the coxl nucleotide
sequences of G. neoplasticum examined in the present
study showed a high genetic diversity, represented by
the presence of 24 haplotypes (based on 818 bp long
sequences) or 19 haplotypes (based on 369 bp long
sequences) regardless of collection site (country) and
host rat species (Fig. 3). When these 818 bp and 369
bp long nucleotide sequences were translated to amino
acid sequences, 17 and 10 types of sequences were
differentiated, with the most prominent sequence
found in 56.4% (31/55) and 83.6% (46/55) of analysed
worms, respectively. This finding indicates that most
of the cox1 nucleotide substitutions of samples of G.
neoplasticum examined in the present study occurred
at the third nucleotide of codons, as previously
observed in an earlier study (Setsuda et al., 2016).
As far as examined here, similar to G. pulchrum
isolated from wild mammals in Japan, there is no
suggestion of colonisation of special haplotypes of G.
neoplasticum at defined localities nor prevalence of
special haplotypes in defined rat species. Since known
intermediate hosts (e.g. common insects such as

cockroaches and beetles (Fibiger & Ditlevsen, 1914;
Yokogawa, 1925; Dittrich, 1963) and definitive hosts
(different rat species) for G. neoplasticum are sym-
patric and probably have comparable susceptibilities
to infection with this spirurid nematode, the current
wide distribution of genetically heterogeneous G.
neoplasticum with different cox1 haplotypes in South-
east Asia could be a natural outcome. On the contrary,
the lower genetic heterogeneity of G. neoplasticum in
localities where black and brown rats were introduced
as a consequence of recent global trade is highly
predictable in view of the bottleneck phenomenon
(Morand et al., 2015).

A possible genetic spectrum of G. neoplasticum
from rats distributed in their original endemic area,
Southeast Asia, is of great importance, particularly
when only a single (or a few) Gongylonema worm
from a rodent host at a certain locality is collected and
analysed for its genetic uniqueness. As mentioned
earlier, more than a dozen rodent Gongylonema spp.
have been recorded to date. The molecular character-
isation of each species should facilitate the phenotyp-
ical characterisation which often shows variation.
Such efforts may detect substantial specific diversities
of rodent Gongylonema spp., as previously communi-
cated by Kinsella et al. (2016).
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