The role of *Mycobacterium tuberculosis* lineages on lung tissue damage and TNF-α level among tuberculosis patients, Indonesia

Muhammad Amin, Budi Yanti, Harapan Harapan, Ni Made Mertaniasih

Department of Pulmonology and Medical Respirology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
Airlangga University Hospital, Surabaya, Indonesia
Dr. Soetomo Academic Medical Center Hospital, Surabaya, Indonesia
Department of Pulmonology and Medical Respirology, School of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
Medical Research Unit, School of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
Department of Medical Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia

ARTICLE INFO

Keywords:
Tuberculosis
Mycobacterium tuberculosis
Lineage
Strain
Severity

ABSTRACT

Background: *Mycobacterium tuberculosis* (MTB) is divided into ancient and modern lineage. Both lineages have different virulence property and therefore associated with different immune responses and disease severity in tuberculosis (TB) patients. The aim of this study was to determine the association between MTB lineages and the level of tumor necrosis factor alpha (TNF-α), and lung tissue damage among Indonesian TB patients.

Methods: Thirty new and active TB patients were recruited randomly from Dr. Soewandhie Hospital, Surabaya, Indonesia. MTB isolates were isolated from bronchoalveolar lavage fluid (BALF) and their lineages were determined by primer-specific PCR targeting *TbD1* and *RD9* region gene. The degree of lung tissue damage was assessed and classified using NICE Scoring System and TNF-α level of BALF was measured by ELISA.

Results: MTB were detected in all patients in which 17 and 13 isolates were classified as modern and ancient lineage, respectively. Modern lineage was associated with the degree of lung damage (odds ratio [OR]: 3.97; 95% CI: 1.57–6.37, \(p < 0.001 \)). This lineage was also associated with high TNF-α level (OR: 2.06; 95% CI: 1.31–3.17, \(p = 0.026 \)). In addition, the level of TNF-α was higher in severe compared to mild lung damage cases (\(p = 0.001 \)).

Conclusion: Modern lineage is likely associated with high TNF-α level and increases the risk of having severe lung damage three times among TB patients from Indonesia. Therefore, laboratory test to determine MTB lineages might crucial to be integrated in National Tuberculosis Control Program in the country.

1. Introduction

It is estimated that one million of new tuberculosis (TB) cases occur annually in Indonesia, the second rank of the highest TB cases after India. In 2015, the World Health Organization (WHO) estimated there were 10.4 million new TB cases, but only 6.1 million cases were detected and officially notified. This highlights a large gap in locating and detecting people who may be infected with TB. Tuberculosis still remains to be one of the leading cause of morbidity associated with lung tissue damage throughout the world. The deterioration in public health systems in developing countries, and the emergence of multi-drug resistance forms of TB also contribute to TB spread.

Over 2 billion people are believed to harbor latent *Mycobacterium tuberculosis complex* (MTBC), the causative agent of TB. *Mycobacterium tuberculosis complex* comprises of *Mycobacterium tuberculosis* (MTB), *M. africanum*, *M. canetti*, *M. bovis*, *M. microti*, *M. orygis*, *M. caprae*, *M. pinnipedii*, *M. suricattae* and *M. mungi*. One of the first evolution re-constructed on MTBC genetic structure is known as a *TbD1* region deletion. *TbD1* deletion strain is referred as modern lineage while strain without deletion known as the ancestral or ancient lineage. The impact of strain diversity in human TB has been well established increasingly in various infection models. A particular lineage consists of different molecular, cellular, immunological, epidemiological virulence and global pyelography. It is well known that the modern lineage is associated with more virulent with rapid disease progression, extensive lung tissue damage, drug resistance, produced high proinflammatory...
citokynes and outbreak rates.3–12 Tumor necrosis factor alpha (TNF-α) is a pleiotropic cytokine with nonredundant roles in TB and perturbations of TNF-α levels significantly affect the course of infection. In disease progressive, TNF-α is associated with disease activity which can upregulate metalloproteinases and therefore facilitates degradation of structural lung structure.7 TNF-α also contributes to the formation of granulomas, infection control, driven necrosis and cavity that result in subsequent tissue destruction.9,13,14 Study assessing the level of TNF-α in bronchoalveolar lavage fluid (BALF) in active pulmonary TB patients is limited. It is believed that the modern lineage is associated with high proinflammatory cytokynes10–12 and studies also demonstrated that TNF-α level significantly higher in BALF of active pulmonary TB patients.15,16 However, in-vitro, studies found that high virulence of MTB lineages such as modern lineage were associated a low inflammatory response.9,13,14 Low level of inflammatory cytokine was also demonstrated for MTB HN878 strain infection, a member of Beijing family of modern lineage, which became an outbreak in Texas.19 Studies using different types of cell lines also found that modern lineage induced lower TNF-α level than those of ancient lineage in-vitro.20–23 Therefore, more study to assess the association between MTB lineages and TNF-α level is required. This aim of this study was to assess the association between MTB lineages and both of lung tissue damage and the level of TNF-α among TB patients in Indonesia.

2. Methods

2.1. Ethical consideration

The protocol of this study was approved by Ethical Committee of Health Research Dr. Soetomo Academic Medical Center Hospital (No: 388/PANKE/KKE/V/2017). The work was carried out in accordance with the Code of Ethics of the World Medical Association for experiments involving humans. Informed consent was obtained from all participants prior to enrolment.

2.2. Study setting

A cross-sectional study was conducted at Dr. Soewandhie Hospital, Surabaya, Indonesia, between June and October 2017. A consecutive sampling method was employed to recruit the patients. All new and active TB patients were invited to participate and once they agreed and met the inclusion criteria, the patients were prepared for the bronchoalveolar lavage (BAL) procedure. To perform a BAL, the patients must met certain conditions: Cardiac Risk Index = 1, PO2 more than 65 mmHg without oxygen supply, no breathlessness, hemoglobin more than 10 g/dl, and classified as American Society of Anesthesiologists Classification (ASA) level I anesthesia.

2.3. Patients

All new and active TB cases, diagnosed based on combination of sputum acid fast bacilli (AFB) staining, chest radiograph, and Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA, United States), and aged 15–60-years-old were recruited. Ziehl–Neelsen AFB staining and the result interpretation were conducted based on International Union Against Tuberculosis (IUATLD) recommendation24 and the interpretation of chest radiograph was performed by two radiologists independently. Patients with HIV, diabetes mellitus, abnormal renal function, heart diseases, immune response disorders such as systemic lupus erythematosus and rheumatoid arthritis, and non-TB pulmonary diseases were excluded.

2.4. Detection of MTB lineages

Detection of MTB lineages was conducted to BALF. Bacterial genetic material were extracted using Daeasyb Blood & Tissue kit (Ambion, Inc., Austin, TX, USA) according to the manufacturer’s instructions. To identify the modern and ancient lineage, primer-specific PCRs targeting RD9 and TbD1 gene region of MTB genome were conducted. RD9 regions present in both of modern lineage and ancient MTB lineage while TbD1 present in ancient lineage and absent in modern lineage.7,20 The primers for RD9 and TbD1 are presented in Table 1.

2.5. Assessment of lung damage

The degree of pulmonary damage was classified using the NICE Scoring System based on the total lesions in six lung areas.26 This scoring system assesses four components: nodule (N), infiltration or consolidation (I), cavity (C) and ectasis (E) based on chest radiograph of three areas of each lung (i.e. six areas of both lungs). For each area, the score was 1–4 indicating lung damage area of 0–25%, > 25%–≤ 50%, > 50% –≤ 75% and > 75%, respectively. The pulmonary damage was categorized as mild if the total score was 8 or less and severe if the total score was more than 8.

2.6. TNF-α measurement

The level of TNF-α from BALF supernatant were measured with a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) using microtitre plates from LEGEND MAXa Human TNF-α ELISA Kit (BioLegend, San Diego, CA, USA) following manufacturer’s protocol.

2.7. Statistical analysis

We did explorative statistical analyses to assess the potential variables of patient characteristics associated with lineages of MTB and lung damage. The associations between [patient characteristics] and [MTB lineages, lung damage and TNF-α level] were assessed using chi-squared test. For statistical analysis, TNF-α divided into two categories, low and high, in which low if value less than 1167 pg/ml and high if equal or higher than 1167 pg/ml. Chi-squared test was also used to assess the association between [MTB lineages] and [the degree of lung damage and TNF-α level]. For all analyses, significance was assessed at \(p = 0.05 \). Statistical Package of Social Sciences 18.0 software (IBM Inc., Chicago, IL, USA) was used to analyze the data.

3. Result

3.1. Patients’ demographics and clinical characteristics

Between June and October 2017, 30 new TB cases were included in the study. Majority of the patients (56.7%) were female and a third of the patients aged between 21 and 30 years old (Table 2). Among 30 cases, 12 (40.0%) were AFB smear-positive sputum. Infiltrate was detected in all cases while only one case had lung cavity. The Xpert MTB/RIF assay confirmed MTB in 25 (83.3%) cases. Five (16.7%) negative patients, based on Xpert MTB/RIF assay, were also included in the final analysis because all of them had positive sputum AFB staining and chest X-ray with tuberculosis lesion. This is in accordance with the Infectious

Table 1

<table>
<thead>
<tr>
<th>Region</th>
<th>Primers name</th>
<th>Sequences</th>
<th>Amplicon (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD9</td>
<td>Forward</td>
<td>5′-GTG-TGC-AGC-CCC-ATC-C-3′</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5′-GAC-CGA-TTG-TTG-TGG-TGC-3′</td>
<td></td>
</tr>
<tr>
<td>RD9 Int</td>
<td>Forward</td>
<td>5′-GCT-ACC-CTC-GAC-CAA-GTG-3′</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5′-GAGTCTGTGGACGTATG-3′</td>
<td></td>
</tr>
</tbody>
</table>

| TbD1 | Forward | 5′-AGTACCGGCTGTCACAAAC-3′ | 306 |
| | Reverse | 5′-GAGTCTGTGGACGTATG-3′ | |

\(^{a} \) Human
\(^{b} \) Blood & Tissue
Disease Society of America (IDSA) and WHO guidelines. Ninety percent of the patients presented lung ectasis. Out of total cases, 19 (63.3%) had severe lung damage based on NICE Scoring System and 18 (60.0%) had low TNF-α level (Table 2).

3.2. Mycobacterium tuberculosis lineages

Out of 30 MTB isolates, based on RD9 and ThD1 region detection, we identified 13 (43.4%) isolates as ancient lineage (ThD1+ and RD9+) and 17 (56.7%) as modern lineage (ThD1-) (RD9-).

3.3. Association between patients’ characteristics and Mycobacterium tuberculosis lineage, lung damage, and TNF-α level

There was no association between the patients’ characteristics (age, gender, educational attainment, and AFB staining of sputum) and MTB lineages (Table 3). We also found that patients’ characteristics and AFB smear had no association for both lung damage and TNF-α level (Table 3).

3.4. Association of Mycobacterium tuberculosis lineage on lung damage and TNF-α

Modern lineage was identified among 16 (84.2%) patients with severe lung damage while ancient lineage was identified in 10 out of 11 (90.9%) of mild lung damage cases. There was a significant association between modern lineage and severe lung parenchymal damage, OR = 3.97; CI 95%; 1.57–6.37, p < 0.001 (Table 4). There was a significant association between MTB lineage and TNF-α level, in which modern lineage associated with higher TNF-α level (OR = 2.06; CI 95%; 1.31–47.00 with = 0.026). We also found that the level of TNF-α was higher among patients with severe lung damage compared to those with mild lung damage (1359.1 ± 462.9 pg/ml vs. 760.8 ± 471.3 pg/ml (p = 0.001, analyzed with Mann-Whitney Test).

4. Discussion

We found that modern lineage is more prevalent among TB cases. This result is comparable with another study in Indonesia that found Beijing genotype family (member of modern lineage) was more prevalent in populous region in Indonesia.30 Our study site, Surabaya, is the second largest city in Indonesia after Jakarta, with a land area of 333,063 km² and a population of more than 3 million. Surabaya is a center for business, trade, industry and education in eastern Java. In the context of other countries, a study in North India in 2014 found that 81.1% of TB cases were associated with modern lineage.51 Another study in eastern and western regions of Azerbaijan also found that the prevalence of modern lineage in western Azerbaijan was higher than in eastern Azerbaijan because western region is the borderland of Iran with a higher population movement from neighboring countries.52 Altogether, these data indicate that MTB lineages are distributed differently in geographical regions and their distributions are related to population migratory.

We found a significant association between modern lineage and severe lung damage and a high level of TNF-α. It is well known that MTB modern lineage is more virulent than ancient lineage.12,49,50 Although, the genomic sequence of MTB modern lineage, such as the H37Rv strain, is 99.95% identical with the M. bovis, ancient lineage,56 there are some virulent properties that associated with lung tissue damage among modern lineage.27 This might associate with virulence property of MTB lineages that links to diversity of lipid and protein composition and secretion. The composition of cell wall lipid (phthiocerol dimycocerosate, lipomannan, lipoarabinomannan, trehalose dimycocerosate) is highly considered within a lineage and this associated with induction of proinflammatory cytokines and granuloma formation.37 Lipomannan from virulent MTB lineage binds Toll-like receptor 2 (TLR2) in the surface of macrophage to produce proinflammatory cytokines and granuloma formation.37,38 The virulence of modern lineage might also influence by another cell wall component: sulfolipid-1. Sulfolipid-1 is one of the most abundant lipids in the mycobacterial outer membrane and its production is higher in modern lineage than ancient lineage.39 High production of sulfolipid-1 in modern lineage is associated with reduction of phagocytosis macrophage ability.12 Ancient lineage also lacks of trehalose-containing glycolipids in its cell wall.9,38 This loss represses to PhoPR signalling system and reduces biosynthesis of cell-wall complex lipids and Esx/ESAT-6 secretion. As a sequence, this reduces immunogenicity and virulence of the ancient lineage. Altogether, these indicate that modern lineage is more virulent and therefore is associated with more severe disease including lung tissue damage.

This study has several limitations. This study was conducted at a single center and small number of patients and; therefore, it is not representative of current TB condition in Indonesian due to referral bias. This study did not include all consecutive patients who were diagnosed with active pulmonary TB because not all of patients were willing to follow the intervention measures undertaken in this study. Finally, the distribution of MTB lineages in this study did not match with the regional distribution in Indonesia, suggesting that the TB condition might be influenced by other factors such as socioeconomic status, hygiene and disease burden in the community.
The association between patient characteristics and Mycobacterium tuberculosis lineage, lung damage and tumor necrosis factor-α level.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n</th>
<th>MTB lineage</th>
<th>p-value</th>
<th>Lung damage</th>
<th>p-value</th>
<th>TNF-α level</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>16</td>
<td>MTB</td>
<td>1.000</td>
<td>0.446</td>
<td>0.296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14</td>
<td>Modern</td>
<td>0.306</td>
<td>0.433</td>
<td>0.143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 21</td>
<td>5</td>
<td>4 (80.0)</td>
<td>1 (20.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td>10</td>
<td>3 (30.0)</td>
<td>7 (70.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>5</td>
<td>3 (60.0)</td>
<td>2 (40.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>6</td>
<td>2 (33.3)</td>
<td>4 (66.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 50</td>
<td>4</td>
<td>1 (25.0)</td>
<td>3 (75.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational attainment</td>
<td>0.318</td>
<td></td>
<td>0.214</td>
<td>0.794</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary school</td>
<td>8</td>
<td>2 (25.0)</td>
<td>6 (75.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior high school</td>
<td>14</td>
<td>8 (57.1)</td>
<td>6 (42.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior high school</td>
<td>8</td>
<td>3 (37.5)</td>
<td>5 (62.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFB sputum result</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>18</td>
<td>8 (44.4)</td>
<td>10 (55.6)</td>
<td>7 (38.9)</td>
<td>11 (61.1)</td>
<td>7 (38.9)</td>
<td>0.879</td>
</tr>
<tr>
<td>Positive</td>
<td>12</td>
<td>5 (41.7)</td>
<td>7 (58.3)</td>
<td>4 (33.3)</td>
<td>8 (66.6)</td>
<td>7 (58.3)</td>
<td>5 (41.7)</td>
</tr>
</tbody>
</table>

MTB: Mycobacterium tuberculosis, OR: odds ratio, TNF-α: tumor necrosis factor-α

NICE scoring system was employed to analyze pulmonary damage associated with MTB. This scoring system was initially developed to assess lung damage associated with M. avium not M. tuberculosis.

5. Conclusion

Active pulmonary TB patients in Surabaya are predominantly infected with MTB modern lineage. This lineage is likely associated with higher TNF-α level and more severe lung tissue damage. In addition, patients with severe lung damage have higher level of TNF-α compared to those with mild lung damage cases.

References
15. Tsao TCY, Hong J, Huang C, Yang P, Liao SK, Chang KS. Increased TNF-α, IL-1b and IL-6 levels in the bronchoalveolar lavage fluid with the upregulation of their mRNA in macrophages lavaged from patients with active pulmonary tuberculosis. Tub Lung Dis. 1999;79(5):279–285.

