A New N,N-Dimethyl Purine from an Australian Dictyoceratid Sponge

by Suciati Suciati
A New \(N_2N\)-Dimethyl Purine from an Australian \textit{Dictyoceratid} Sponge

Sociati · Mary J. Garson · Paul V. Bernhardt · Gregory K. Pierens

Received: 24 March 2011 / Accepted: 9 June 2011 / Published online: 26 June 2011
© Springer Science+Business Media, LLC 2011

Abstract \(N_6\)-methyl guanine (C₈H₁₃NO₄) has been isolated from a
\textit{dictyoceratid} sponge collected in South East Queensland. The solid state structure of the new metabolite (I) was confirmed by X-ray crystallography, while an NMR study in \(d_6\)-MeOH reveals the presence of a minor tautomer identified as (II).

Keywords Purine · Marine sponge · Tautomer

Introduction

A number of purine \textit{derivatives} have been reported from
marine organisms, including marine sponges [1–12], sea
anemones [13, 14], and ascidians [15–17]. Interesting
biological properties have also been reported for these
purines, including cytotoxicity [3, 6], antiangiogenic
activity [10], cdk2 kinase inhibition [11] and antifouling
activity [8]. More recently the neuroactive effects of
selected purines have been described [1]. In the search for
new secondary metabolites from marine sponges from
South East Queensland, we recently isolated a new purine
derivative whose structure was revealed as tautomer I
(Scheme 1) by X-ray diffraction analysis. However, an
NMR study established that the purine is a mixture of
tautomers I and II in solution.

Experimental

Isolation and Purification

A single specimen (code 18-7-09-2-1a) of a pale yellow
encrusting \textit{dictyoceratid} sponge was collected using
SCUBA on 18th July 2009 at a depth of 10–12 m from the
Caves dive site, inner Gneering shoals, near Mooloolaba
in South East Queensland, and then frozen for transport to
brisbane. Subsequent identification of the sponge specimen
to genus level was not possible owing to the small size
of the voucher sample. Frozen sponge (3.8 g wet wt.) was
diced and extracted with DCM:MeOH (1:1, 2 × 15 mL).
The DCM layer was removed, dried with anhydrous
\(MgSO_4\), then evaporated to dryness under a \(N_2\) stream to
afford a viscous yellow oil (17.6 mg). The organic extract
was then subjected to SiO₂ flash chromatography with
gradient elution (hexanes → EtOAc) followed by recrystallization in a 4 mL vial from MeOH using the vapor
diffusion technique (with a small volume of EtOAc in an
outer chamber) to give the new purine (7.5 mg, m.p.
226–228 °C). The metabolite can be named as either N₃,
\(N_6\)-dimethyl-2-methoxymadenine or, less systematically, as
the \(N_6\)-methyl derivative of the known sponge metabolite
mucronatine [8].

HRESIMS \((M + \text{H})^+\) caled. for \(C_{8}H_{13}N_{2}O_{4}, 194.1036\). Found: 194.1045. Gradient-enhanced HSQC (900 MHz,
\(^1J_{CH} 145 \text{ Hz}) and HMBC (900 MHz, \(^2J_{CH} 8 \text{ Hz}) were
used in NMR structure analysis. The C-atom numbering is
as shown for I in Fig. 1: for tautomer I \(\text{H} NMR (\text{MeOH-}
d_6) \delta 3.17 (3H, s, N6-CH₃), 3.76 (3H, s, N3-CH₃), 4.18

Sociati · M. J. Garson (Ed.) · P. V. Bernhardt
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
e-mail: m.garson@uq.edu.au
P. V. Bernhardt
e-mail: p.bernhardt@uq.edu.au
G. K. Pierens
Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia

\(\textcircled{2}\) Springer
Physical Methods

1D and 2D NMR spectra were acquired on a Bruker AV III-900 instrument fitted with a TCI triple resonance cryoprobe (5 mm) at room temperature. Spectra were measured in MeOD-\(d_4\) and chemical shifts (\(\delta\)) were referenced internally to MeOH (\(\delta_0 = 3.30\) or \(\delta_c = 49.0\)). Positive ion electrospray mass spectra (HRESIMS) were determined using a Bruker Esquire HCT instrument or (HRESMS) using a MicrOTOF Q instrument each with a standard ESI source. Samples were introduced into the source using MeOH as solvent Table 1.

Structure Determination and Refinement of (I)

Intensity data were acquired on a non-merohedrally twinned specimen of (I) on an Oxford Diffraction Gemini CCD diffractometer with Cu-K\(\alpha\) radiation and operating in the \(\omega\) scan mode. Data reduction was performed resolving both twin components with the CrysalisPro package [Oxford Diffraction vers. 171.33.42]. The structure was solved with data taken from the major twin component and then refinement of both twins was carried out with SHELXL [18]. All non-H atoms were refined anisotropically whereas H-atoms were included in calculated positions and constrained using a riding model. All calculations were performed with the WinGX package [19]. The thermal ellipsoid diagram was drawn with ORTEP3 [20] while packing diagrams were produced with PLUTON [21].

Results and Discussion

The new purine was isolated as a colourless powder which was further recrystallised from MeOH using a vapor diffusion method. The HRESIMS exhibited a molecular ion at \(m/z\) 194.1045 (M\(^+\)H) corresponding to the molecular formula C\(_9\)H\(_8\)N\(_2\)O. Inspection of the \(^1\)H NMR revealed the presence of two N-methyl signals (\(\delta_0 = 3.17\) and 3.76), a methoxy group (\(\delta_0 = 3.16\)) and an isolated methine signal (\(\delta_0 = 7.73\)) in the pyrimidine ring. NMR assignments were made by comparison with data for other purines [5, 8, 12], and from 2D NMR data. In both the \(^1\)H and \(^13\)C NMR spectra, a second set of spin-coupling signals was observed. For this minor component, unobserved resonances for H8, C5 and C8 presumably overlap with corresponding signals of the major species. The NMR data suggested that the metabolite exists as a mixture of tautomers in solution, inferred to be (I) and (H) (Scheme 1), in a ratio of \(\approx 8:1\) in solution. No N-H \(^1\)H NMR signals were observed due to exchange with the solvent (MeOH-\(d_4\)). \(^1\)H NMR work, not pursued here, could also provide a way of resolving the two tautomers.
Structure determination of methylated purines by spectroscopic methods alone can often be ambiguous [1], and does not always provide insight into the tautomeric composition of the metabolite. For example, for 1,5-dimethylisoguanine (III/IV) or its trihydrate, different tautomeric forms were deduced by NMR and by X-ray crystallographic analysis; the major tautomeric form has been shown to be III by X-ray analysis [7, 12] rather than IV deduced from NMR study [4, 5]. In contrast, for mucronatine (V/VI, Scheme 1) NMR investigations have confirmed tautomer V rather than VI in solution [7, 8].

In order to confirm the solid state structure of the isolated purine, its crystal structure was determined. The ORTEP diagram of tautomer (I) is apparent in Fig. 1. This corresponds with the major tautomer identified in solution by NMR. The H-atoms were all identified during refinement thus unequivocally confirming that tautomer (I) is the form present in the solid state. The purines form centrosymmetric H-bonded dimers (Fig. 2) comprising pairs of symmetry related N6-H···N7 contacts (N6-H···N7 2.14 Å, N6···N7 2.94(2) Å, N6-H···N7 15.5°, symmetry operation –x+1, –y+1, –z+1). The purines also stack in an expected anti-parallel fashion (Fig 3) with an interplanar separation of 3.37 Å.

Although numerous N-methylated purines are documented in the natural products literature, mucronatine and the N6-methyl analogue reported here represent rare examples of purines with a 2-methoxy group. Our data also indicate a preference for the amino tautomer rather than the imino tautomer in both solution and the solid state.

Supplementary Material

Crystallographic data reported in this paper have been deposited with the Cambridge Data Centre (CCDC deposition number 817620). The data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ (email deposit@cds.cri.cam.ac.uk).
Acknowledgments We thank the University of Queensland and the Australia Research Council for financial support. The assistance of Sharm K. Graham and Daniel Holdsworth with sample collection, and Mr Graham McFarlane for mass spectrometry is gratefully acknowledged. Permission to collect sponge samples was provided by the Queensland Department of Primary Industries and Fisheries.

References

A New N,N-Dimethyl Purine from an Australian Dictyoceratid Sponge

ORIGINALITY REPORT

13% SIMILARITY INDEX
7% INTERNET SOURCES
10% PUBLICATIONS
0% STUDENT PAPERS

PRIMARY SOURCES


2. media.proquest.com
Internet Source

Publication

4. web.mit.edu
Internet Source

5. zfn.mpdl.mpg.de
Internet Source

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Source</th>
<th>URL</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>d-nb.info</td>
<td>Internet Source</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>8</td>
<td>N. Sampath. &quot;Crystal Structure and Conformation of a Piperidine-Containing Thiosemicarbazone Derivative&quot;, Molecular Crystals and Liquid Crystals, 8/1/2006</td>
<td>Publication</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>9</td>
<td>docserv.uni-duesseldorf.de</td>
<td>Internet Source</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>10</td>
<td>eprints.ucm.es</td>
<td>Internet Source</td>
<td></td>
<td>&lt;1%</td>
</tr>
<tr>
<td>11</td>
<td>link.springer.com</td>
<td>Internet Source</td>
<td></td>
<td>&lt;1%</td>
</tr>
<tr>
<td>12</td>
<td><a href="http://www.coursehero.com">www.coursehero.com</a></td>
<td>Internet Source</td>
<td></td>
<td>&lt;1%</td>
</tr>
<tr>
<td>4</td>
<td>Marijana Hranjec. &quot;Crystal structure and</td>
<td></td>
<td></td>
<td>&lt;1%</td>
</tr>
</tbody>
</table>
synthesis of benzimidazole substituted acrylonitriles and benzimidazo[1, 2-a]quinolines", Structural Chemistry, 02/2009
A New N,N-Dimethyl Purine from an Australian Dictyoceratid Sponge

GRADE MARK REPORT

FINAL GRADE
/0

GENERAL COMMENTS
Instructor

PAGE 1

PAGE 2

PAGE 3

PAGE 4