Journal of Parasite Science

Vol. 3, No. 1, Maret 2019

Journal of Parasite Science memuat tulisan ilmiah dalam bidang Parasitologi Frekuensi terbit dua kali satu tahun pada bulan Maret dan September

SUSUNAN DEWAN REDAKSI

Ketua Penyunting:
Kusnoto

Sekretaris:
Poedji Hastutiek

Bendahara:
Endang Suprihati

Iklan dan Langganan:
Agus Sunarso

Penyunting Pelaksana:
Setiawan Koesdarto
Nunuk Dyah Retno Lastuti
Lucia Tri Suwanti
Muchammad Yunus
Mufasirin

Penyunting Penyelia:
Moch Arifudin

Alamat: Departemen Parasitologi, Fakultas Kedokteran Hewan
Universitas Airlangga, Kampus "C" Jl. Mulyorejo Surabaya 60115
Telp. (031) 5992785; 5993016; Fax. (031) 5993015
e-mail: jparasitol@gmail.com; ips@fkh.unair.ac.id
Rekening: BNI No. 0112443130 (a.n. Endang Suprihati)

Journal of Parasite Science

Ketentuan untuk Penulisan Naskah

1. Ketentuan Umum
2. Ketentuan Umum
 a. Journal of Parasite Science memuat tulisan ilmiah dalam bidang Parasitologi, berupa hasil penelitian, artikel ulas balik (review) dan laporan kasus baik dalam Bahasa Indonesia maupun Inggris.
3. Standar Penulisan
 a. Makalah diketik dengan jarak 1 spasi, kecuali Judul, Abstrak, Judul tabel dan tabel, Judul gambar, Daftar Pustaka, dan Lampiran diketik memuat ketentuan tersendiri.
 b. Alinea baru dimulai 3 (tiga) ketukan ke dalam atau (First line 0.76 cm) dari format paragraf.
 c. Huruf standar untuk penulisan adalah Constantia 10.
 d. Memukul kertas HVS ukuran A4 (8,27 x 11,69)
 e. Mengunakan Bahasa Indonesia atau Inggris.
 f. Table/Ilustrasi/Gambar harus amat kontras, juga menyertakan file scanning (foto) terpisah dengan makalah dengan format file JPG. Keterangan Tabel, Gambar atau Penjelasan lain dalam Lampiran diketik 1 (satu) spasi.
4. Tata cara penulisan naskah / makalah ilmiah
 a. Tebal seluruh makalah sejak awal sampai akhir minimal 18 halaman.
 b. Penulisan topik (Judul, Nama Penulis, Abstrak, Pendahuluan, Metode dst.) tidak menggunakan huruf kapital tetapi menggunakan Title Case (Capitalize Each Word) dan diletakkan di pinggir (sebelah kiri).
 c. Sistematisa penulisan makalah adalah Judul (Bahasa Indonesia atau Inggris), Nama Penulis dan Identitas, Abstrak dengan Key words, Pendahuluan, Metode Penelitian, Hasil dan Pembahasan, Kesimpulan, Ucapan Terima Kasih (bila ada), Daftar Pustaka dan Lampiran (bila ada).
 d. Judul harus pendek, spesifik, tidak boleh disingkat dan informatif, yang ditulis dalam bahasa Indonesia dan bahasa Inggris.
 e. Nama penulis di bawah judul, identitas dan instansi penulis harus jelas, tidak boleh disingkat dan ditulis di bawah nama penulis.
 f. Abstrak maksimal terdiri dari 200 (dua ratus) kata, diketik 1 (satu) spasi dalam bahasa Indonesia dan Inggris.
 g. Kata kunci (key words) maksimum 5 (lima) kata setelah abstrak.
 h. Metode Penelitian memuat peralatan/bahan yang digunakan (terutama yang spesifik), prosedur penelitian dan analis statistik (bila ada).
 i. Daftar Pustaka disusun secara alfabetik tanpa nomor urut. Singkatan majalah/jurnal berdasarkan tata cara yang dipakai oleh masing-masing jurnal. Diketik 1 (satu) spasi dengan paragraf hanging 0.3” dan before 3.6 pt. Proporsi daftar pustaka, Jurnal/Majalah Ilmiah (60%), dan Text Book (40%). Berikut contoh penulisan daftar pustaka berturut-turut untuk Text Book dan Jurnal.

5. Pengiriman makalah dapat dilakukan setiap saat dalam bentuk cetakan (print out) sebanyak 3 (tiga) eksemplar. Setelah ditelah oleh Tim Penyunting, makalah yang telah direvisi penulis segera dikembalikan ke redaksi dalam bentuk cetakan 1 (satu) eksemplar dengan menyertakan makalah yang telah direvisi dan 1 (satu) Compac Disk (Program MS Word/IBM Compatible) dikirim ke alamat redaksi: Journal of Parasite Science, Fakultas Kedokteran Hewan Universitas Airlangga, Kampus C Unair, Jalan Mulyorejo, Surabaya 60115, Telepon 031-599.2785; 599.3016; Fax. 031-599.3015; e-mail: jparasitol@gmail.com, jps@fh.unair.ac.id

6. Ketentuan akhir

 Terhadap naskah/makalah yang dikirim, redaksi berhak untuk:
 a. memuat naskah/makalah tanpa perubahan
 b. memuat naskah/makalah dengan perubahan
 c. menolak naskah/makalah

7. Redaksi tidak bertanggung jawab atas isi naskah/makalah.
8. Makalah yang telah dimuat dikenai biaya penerbitan dan biaya pengiriman.
10. Semua keputusan redaksi tidak dapat diganggu gugat dan tidak diadakan surat menyurat untuk keperluan itu.
UCAPAN TERIMA KASIH

Redaksi, penulis dan pembaca Journal of Parasite Science memberikan penghargaan dan terimakasih yang setinggi-tingginya kepada para pakar di bawah ini, selaku mitra bestari yang telah menelaah semua tulisan baik yang dimuat maupun yang ditolak sesuai rekomendasi yang disampaikan pada redaksi dalam Volume 3 No. 1, edisi Maret 2019

Prof. Dr. Sri Subekti, drh., DEA. (P4I Cabang Surabaya)

Prof. Dr. Upiek Kesumawati Hadi, drh., MS. (FKH IPB)

April Hari Wardhana, SKH, M.Si, Ph.D. (Balai Besar Penelitian Veteriner Bogor)

Dr. Raden Wisnu Nurcahyo, drh. (FKH UGM)

Dr. Dwi Priyowidodo, drh., MP. (FKH UGM)

Dr. Nyoman Adi Suratma, drh., MP. (FKH UDAYANA)
Journal of Parasite Science

Vol. 3, No. 1, Maret 2019

Terbit tiap 6 bulan sekali, pada bulan Maret dan September

DAFTAR ISI

Identifikasi Larva Stadium Pertama (L1) dan Larva Stadium kedua (L2) Toxocara catti Secara Mikroskopis (Eny Coolfina Simarmata, Kusnoto, Mochmad Lazuardi, Setiawan Koesdarto, Endang Suprihati, Kuncoro Puguh Santoso)	1 - 4
Deteksi Protozoa Darah yang Menginfeksi Ayam Ras Pedaging di Peternakan desa Tanjung Gunung, Kabupaten Jombang (Marchelisa Arifiandani, Endang Suprihati, Wiwik Misaco Yuniarti, Nunuk Dyah Retno Lastuti, Poedji Hastutiek, Sunaryo Hadi Warsito)	5 - 8
Prevalensi Penyakit Protozoa Darah pada Sapi dan Kebau di Kecamatan Moyo Hilir Kabupaten Sumbawa Nusa Tenggara Barat (Melani Anggraini, Hardany Primarizky, Mufasirin, Lucia Tri Suwanti, Poedji Hastutiek, Setiawan Koesdarto)	9 - 14
Aktivitas Anthelmintika Ekstrak Etanol Daun Afrika (Vernonia amygdalina) Terhadap Mortalitas Fasciola gigantica Secara in Vitro (Dhio Asmaydo, Iwan Sahrial Hamid, Muchammad Yunus, Kusnoto, Muhammad Sukmanadi, Endang Suprihati)	15 - 18
Efektivitas Ekstrak Etanol Daun Sirih Merah (Piper crocatum) Terhadap Mortalitas Larva Boophillus microplus Secara In Vitro (Meta Aprilia, Poedji Hastutiek, Rochmah Kurnijasanti, Lucia Tri Suwanti, Moh Sukmanadi, Endang Suprihati)	23 - 26
Prevalensi dan Intensitas Infeksi Nematoda pada Persilangan Kuda di Pasukan Berkuda Parongpong Bandung Jawa Barat (Sesa Puput Febriyanti, Lucia Tri Suwanti, Eka Pramyrrtha Hestinah, Setiawan Koesdarto, Boedi Setiawan, Kusnoto)	27 - 32
Pengaruh Asam Folat Sebagai Terapi Pendukung Spiramycine pada Berat Janin terhadap Toxoplasma gondii - Tikus Hamil yang Terinfeksi (Mus musculus) (Alifina Azkiana, Boedi Setiawan, Erma Safitri, Lucia Tri Suwanti, Mufasirin, Djoko Legowo)	33 - 36
Prevalensi Cestodes Usus Kecil pada Kambing di Rumah Potong Hewan Pegirian Surabaya (Bryan Ahmad Affan Lubis, Setiawan Koesdarto, Eka Pramyrrtha Hestinah, Kusnoto, Lucia Tri Suwanti, Muhammad Yunus)	37 - 40
The Effect of Folic Acid as Supportive Therapy of Spiramycine on Weight of Foetus to Toxoplasma gondii – Infected Pregnant Mice (Mus Musculus)

Pengaruh Asam Folat Sebagai Terapi Pendukung Spiramycine pada Berat Janin terhadap Toxoplasma gondii - Tikus Hamil yang Terinfeksi (Mus Musculus)

1) Alfina Azkiana, 2) Boedi Setiawan, 3) Erma Safitri, 4) Lucia Tri Suwanti, 5) Mufasirin, 5) Djoko Legowo

1) Student, Faculty of Veterinary Medicine, Universitas Airlangga
2) Department of Veterinary Clinic, Faculty of Veterinary Medicine Universitas Airlangga
3) Department of Veterinary Reproduction, Faculty of Veterinary, Medicine Universitas Airlangga
4) Department of Veterinary Parasitology, Faculty of Veterinary, Medicine Universitas Airlangga
5) Department of Veterinary Pathology, Faculty of Veterinary, Medicine Universitas Airlangga

Received: 25-02-2019, Accepted: 10-03-2019, Published Online: 19-03-2019

Abstract

This research aimed to investigate the effect of folic acid as supportive therapy of spiramycine on weight of foetus to Toxoplasma gondii-infected pregnant mice (Mus musculus). Twenty pregnant female mice were divided into four groups as C - , C + , T1 and T2. C +, T1 and T2 were infected by Toxoplasma gondii. C – and C + administered orally 0.5 ml aquadest, T1 administered orally 130 mg/kg BW spiramycine and 0.052 µg/g BW folic acid and T2 administered orally 0.052 µg/g BW folic acid. Experimental groups received the treatments for 5 days, then animals of each groups were sacrificed. Foetuses were dissected out for observation. The weight of fetuses were measured using an analytical balance. The data weight of foetuses was presented descriptively and analyzed by ANOVA test and continued by Tukey HSD. From this study, the weight of fetuses from the pregnant mice of T1 and T2 have difference compared with the controls. The result of this research is folic acid affects the weight of foetuses to Toxoplasma gondii-infected pregnant mice.

Keyword: folic acid, Toxoplasma gondii, Mus musculus, foetus

Introduction

Toxoplasma gondii is an obligate intracellular protozoan which could live in all cell’s host. Toxoplasma gondii has definitive host is family Felidae, while human and warm-blooded animal are intermediate host (Suwanti et al., 2012). Toxoplasmosis as zoonotic diseases that could cause problems for human and animal, especially at pregnancy. This infection could cause disruption of female reproduction process and result in fetal birth defects, blindness, premature birth, stillbirth, and abortion. Primary infections that occur in the first trimester of pregnancy causes the foetus to become infected transplacentally and suffer congenital abnormalities, this could lead premature birth to abortion (Bayat et al., 2013). The primary infected of pregnant women, parasitemia phase will occur first, then the maternal blood entering the placenta will infect the placenta (placentitis). Parasitic infections could be transmitted to the foetus vertically. Tachyzoite will proliferate and produce necrotic foci that cause placental necrosis and surrounding tissues, thus endangering the foetus where pregnancy expulsion or abortion may occur (Suparman, 2012). Toxoplasma gondii which reaches the foetus could inhibit nutrient intake, especially folic acid and amino acids from parent to child so that could be a factor causing low birth weight mice foetus.

Spiramycine is a macrolide antibiotic which is not readily cross the placenta, and therefore is not reliable for treatment of fetal infection. Spiramycine is aimed at preventing vertical transmission of the parasite to the foetus, and it is indicated only before fetal infection (Javvier, 2013).

Toxoplasma gondii, as an intracellular parasite, will infect cells, multiply, exit the host cell, then infect new cells. This process could cause cell death and tissue damage. This is due to the speed of replication of tachyzoite faster
than the ability of mitotic cells (Lavine and Arrizabalaga, 2008). Mitotic cells is one phase of the cell cycle. In the cell cycle, before entering the mitotic phase, DNA replication is needed. DNA is formed from 4 nucleotides namely adenine, thymidine, guanine, and cytosine (Alberts et al., 2002).

According to Talaulikar and Arulkumaran (2013), body cells use folic acid to synthesize thymidine, adenine, and guanine which needed to assemble DNA in a cell. Folic acid is a nutrition which is needed for mother in fertile period, pregnancy, prevent pregnant disruption, and abnormalities on foetus (Martinussen et al., 2015).

Research Materials and Method

Materials and Equipments

The materials that used in this study were male and female mice, BALB/c strain, which is 3-4 months old, healthy, puberty, and not in pregnant condition, isolate *T. gondii* RH strain tachyzoite stage obtained from the Department of Veterinary Parasitology, Faculty of Veterinary, Universitas Airlangga, folic acid, spiramycine, sterile aquadest, physiological NaCl, 70% alcohol, mice feed number 594, and ad libitum drinking water.

The equipments used in this research were cages made of plastic tub covered by wires, water container, syringe sonde spuit, hemostometer, 1 ml spuit, 5 ml spuit, gloves, surgical masks, cover glasses, object glasses, microscope. For dissection preparation, the equipments used were sterile scalpel, sterile pincet, forceps, section set, petri dish, analytical balance, and sterile containers. For chemical preparation, the equiments used were erlenmeyer, mortar, pestle, watch glass, and analytical balance.

Trial Preparation

The 20 female mice used in this study are divided into 4 treatment groups and put into the cage, each treatment group is consisted of 5 mice with details for weight mice foetuses weighing. Prior to treatment, the mice were adapted for one week in order to adapt to the new environment. After one week, one male mice was added to one female mice in each group to facilitate mating. Mice usually mate at night. The next day, for pregnancy examination was looked at the vaginal plug in the vagina of mice, which means there was a copulation between female and male mice. If vaginal plug were found that means mice was 0.5 day pregnant (Suwanti, 2005). After one week, female mice were checked for pregnant condition. Mice were infected with *Toxoplasma gondii* at 12th day of pregnancy. Then, began treatments on 13th day of pregnancy.

Isolate Preparation

Preparation of *Toxoplasma gondii* isolates required 3 male mice. Isolates reproduced by injection to healthy mice through intraperitoneal with tachyzoites infections per mice. Mice that had been infected *Toxoplasma gondii* awaited for 24 - 48 hours or until the mice show symptoms of parasitemia with weak mice, lethargy, apathy, standing feathers, and quick breath. Then tachyzoites were harvested by mice sacrificed. Mice were section on the abdomen and then give 5 ml of physiological NaCl in the peritoneum cavity, as a medium of tachyzoites. Taken intraperitoneal fluid used a syringe until the peritoneal fluid was run out then calculated tachyzoites with the hemosito-meter improve Neubauer and used in the treatment (Mufasirin, 2011).

Treatments

In this study the research was used 20 female mice and divided into 4 groups and each treatment has 5 female mice. The treatments were began at 13th day of pregnancy. The four treatments were :

a. Control Negative Group
C - group : 5 mice treated with aquadest 0.5 ml / head / day to seen normal weight of mice foetuses
b. Control Positive Group
C + group : 5 mice infected tachyzoites of *T. gondii* with a dose of 5 through intraperitoneal and treated with aquadest 0.5 ml / head / day to seen changes weight of mice foetuses
c. First Treatment Group
T1 group : 5 mice infected tachyzoites of *T. gondii* with a dose of 5 through intraperitoneal and were treated with Spiramycine 130 mg / kg body weight / day and Folic Acid 0.052 µg / g body weight / day are given for 5 days to seen changes in weight of mice foetuses
d. Second Treatment Group
T2 group : 5 mice infected tachyzoites of *T. gondii* with a dose of 5 through intraperitoneal and were treated with Folic Acid 0.052 µg / g body weight / day are given for 5 days to seen changes in weight of mice fetuses.
Data Collection

Data collection was obtained during the treatment period up to a maximum of 5 days after treatment. Mice were sacrificed in the third trimester or on the eighteenth day of pregnancy in each group, then takes mice foetuses for the preparation of weighing. Made preparations were carried out at Protozoolgy Laboratory, Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga.

Observations of weight mice foetuses were performed to measure the changes weight mice foetus of the T1 and T2 groups that compared with the preparations in the C - and C + groups used as controls. Observations of the preparations were used an analytical balance.

Data Analysis

The data were processed by statistic used One-Way Analysis of Variance test (ANOVA) and Tukey Honestly Significance Difference (HSD). The analysis was used the Statistic Package for the Social Science (SPSS) 23.0 program.

Result and Discussion

The examination result obtained from each treatment groups of C - (without infection of *T. gondii* and administration of 0.5 ml aquadest), C + (with infection of *T. gondii* and administration of 0.5 ml aquadest), T1 (with infection of *T. gondii*, administration of 130 mg/kg BW spiramycin and 0.052 µg/g BW folic acid) and T2 (with infection of *T. gondii* and administration of 0.052 µg/g BW folic acid). Experimental groups received the treatments for 5 days, then animals of each groups were sacrificed with dislocation os cervicals. Foetuses were dissected out on abdomen for observation. The data of weight foetus were obtained from mice at 18th day of pregnancy. The weight of foetuses were measured using an analytical balance (Appendix 1).

The data obtained from each treatment group. After the foetuses were removed from the placenta and weighed, the foetuses of the five mice of each group were added up. The data were proceeded with Statistical Product and Service Solutions (SPSS) program using ANOVA, obtained significant less than 0.5% (p<0.05). Therefore, it continued to use Tukey HSD. The data used for SPSS were weight of foetuses from pregnant mice which has total same or similar foetuses. The results of data processing showed that T2 were significantly difference with C +, while not significantly difference with C -. Then, T1 not significantly difference with C +, while significantly difference with C -. The result of weight of foetuses from pregnant mice, shown in Table 1. below:

Table 1. Mean and Standard Deviation of Weight of Foetuses from Pregnant Mice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of Pregnant Mice (head)</th>
<th>Number of Foetuses From Pregnant Mice (head)</th>
<th>Mean ± Standard Deviation of Weight Foetuses (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C -</td>
<td>5</td>
<td>49</td>
<td>1.174 ± 0.107</td>
</tr>
<tr>
<td>C +</td>
<td>3</td>
<td>29</td>
<td>0.890 ± 0.258</td>
</tr>
<tr>
<td>T1</td>
<td>5</td>
<td>46</td>
<td>0.948 ± 0.378</td>
</tr>
<tr>
<td>T2</td>
<td>5</td>
<td>42</td>
<td>1.115 ± 0.106</td>
</tr>
</tbody>
</table>

Superscript : a, b, c : different notations in same columns showed significantly difference 5% (p<0.05).

Conclusion

Based on the results of the research, it could be concluded that the addition of folic acid as supportive therapy of spiramycin affected in the weight of foetus to *Toxoplasma gondii*-infected pregnant mice. Folic acid could be maintain the weight of foetuses which were infected by *Toxoplasma gondii*.

References

