EDITORIAL BOARD:

Editor In Chief
Dr. Mrs. Monika S. Daharwal
Address: A & V Publications, RJPT House, Lokmanya GihNirman Society, Rohanipuram, In-front of Sector- 1, Pt. Deendayal Upadhyay Nagar, Raipur 492 010. (CG) India
Email ID: editor.rjpt@gmail.com

Associate Editors

Dr. A.K. Jha
Address: Principal, Shri Shakarcharya College of Pharma. Sciences, Bilhail CG India
Email ID: jhaaak@rediffmail.com

Dr. R. B. Kakade
Address: Professor, Uni. Dept. of Pharmaceutical Sri, RTM Nagpur University, Nagpur India
Email ID: drkakde@yahoo.com

Dr. Vibha Yadav
Address: Covington, LA, USA
Email ID: editor.rjpt@gmail.com

Dr. U.S. Mahadeva Rao
Address: Kuala Terengganu, Malaysia
Email ID: raomsm@gmail.com

Chandrasekaran VM
Address: 124 Technology Tower VIT University Vellore 632014 (TN)
Email ID: vmcsn@yahoo.com

Dr. Deepansh Sharma
Address: Block 28, Room No. 202 Department of Biosciences, Lovely Professional University
Email ID: deepanshsharma@gmail.com

Dr. Deependra Singh
Address: University Institute of Pharmacy Pt. Ravishankar Shukla University Raipur(C.G.)
Email ID: deependraip@gmail.com

Vasundhara Kashyap PhD, MBA, MS
Address: 66 Lowden Avenue, Somerville, MA 02144 USA
Email ID: vk76@cornell.edu

Dr. Nagham Mahmood Aljamali
Address: College Education, Department, IRAQ
Email ID: dr.nagham mj@yahoo.com

Wissam Zam
Address: Al-Andalus University of Medical Sciences/Faculty of Pharmacy-Tarous, Syria
Email ID: wzam@au.edu.sy

Dr. S. Ashutosh Kumar
Address: Department of Pharmacy, Tripura University (A Central University) Suryamaninagar, West Tripura, Tripura- 799027.
Email ID: ashu.mpharm2007@gmail.com

Behzad Foroutan
Address: Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
Email ID: behzad_foroutan@hotmail.com

NAEEM HASAN KHAN
Address: Faculty of Pharmacy, AIMST University, 08100 Bedong, Kedah D.A., Malaysia.
Email ID: naeemhshinzzi@hotmail.com

Dr. S. Saraf
Address: Professor, University Institute of Pharmacy, PT. Ravishankar Shukla University, Raipur-492010 CG India Vice-President, Pharmacy Council of India, New Delhi
Email ID: shailendrasaraf@rediffmail.com

Dr S Rajeshkumar
Address: Nanotherapy Lab School of Biosciences and Technology, VIT, Vellore
Email ID: ssrajeshkumar@hotmail.com

Roman Lysiuk
Address: Department of Pharmacognosy and Botany, Danylo Halytskyi Lviv National Medical University, Pekarska,69., Lviv, Ukraine, 79010
Email ID: pharmacognosy.org.ua@ukr.net
Reviewers

Dr. Subhashis Debnath
Address: Seven Hills College of Pharmacy
Venkatramanapuram, Tirupati- 517561
Email ID: subhashis.ooty@gmail.com

Gaurav Kumar
Address: Department of Microbiology School of Bioengineering and Biosciences Lovely Professional University Phagwara, 144411, Punjab, India
Email ID: gau_ravkr@yahoo.com

ruchi verma
Address: manipal college of pharmaceutical sciences, manipal university, karnataka, India.
Email ID: ruchi.verma@manipal.edu

Dr. Ketan Vinodlal Shah
Address: 201, Rudrax Appartment, Guruprasad Society, Nehind Telephone exchange, Krishanagaur Main road, Rajkot
Email ID: ketan42301@gmail.com

K Sujana
Address: university college of pharmaceutical sciences Acharya Nagarjuna university
Email ID: sujana_36@yahoo.co.in

Dr. P. Brinidha Devi
Address: Vels University, Velan Nagar, PV Vaithiyalingam Road, Pallavaram
Email ID: pbrindhadevi@gmail.com

Dr. Vamshi Krishna Tippavajhala
Address: Assistant Professor-Senior Scale Department of Pharmaceutics Manipal College of Pharmaceutical Sciences Manipal University Manipal, Karnataka, India
Email ID: krisrscm@gmail.com

Zain Baality
Address: Syria, Latakia
Email ID: zein_syria@hotmail.com

Laith Ahmed Najam
Address: Mosul University, College of Science, Physics Dept., Mosul
Email ID: Prof.Iai2014@gmail.com

Veerem Dewoolkar
Address: 4824 Washtenaw Ave, Apt C1, Ann Arbor, MI 48108
Email ID: veerenvx@gmail.com

Neeran Obied Jasim
Address: University of AL-Qadisiyah college of Pharmacy Iraq
Email ID: neeran_jasim@qu.edu.iq

MAHMOUD NAJIM ABID
Address: Mustansiriyah University, College of Science, Department of Chemistry
Email ID: mahmoudaljibouri@gmail.com
Volume - 11 | Issue - 12
Online since Monday, Dec 31, 2018
Accessed 27522 times.
Download Cover Image

ORIGINAL ARTICLES

Determination of Antioxidant Capacity, Flavonoids and Total Phenolic Content of Extracts from Atractylis flava Desf (AbstractView.aspx?PID=2018-11-12-1)
Mohamed Akrak Melakhessou, Naima Benkiki, Salah Eddine Maref
DOI: 10.5958/0974-360X.2018.00952.6
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-1] [Cite]
Viewed: 1 (pdf), 644 (html) Private Access

R. Subbalya, S. Priyanka, D. Suresh, M. Maslakamani Selvam, R. Balachandar, S. Chozhuvendhan
DOI: 10.5958/0974-360X.2018.00961.7
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-10] [Cite]
Viewed: 1 (pdf), 440 (html) Private Access

Suresh Dhanraj, P. Bhavathiraj, R. Dhandapani, R. Subbalya, A. K. Kathiresha
DOI: 10.5958/0974-360X.2018.00963.9
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-11] [Cite]
Viewed: 1 (pdf), 372 (html) Private Access

A Retrospective Study on prescribing pattern of drugs among pregnant inpatients in Tertiary Care Hospital (AbstractView.aspx?PID=2018-11-12-12)
Sri Roja I, Shanmugasundaram, P. Sathen Kumar S
DOI: 10.5958/0974-360X.2018.00965.0
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-12] [Cite]
Viewed: 1 (pdf), 341 (html) Private Access

Cardioprotective Activity of Telmisartan, Metformin and its Combination against Doxorubicin Induced Myocardial Infarction in Rat Model (AbstractView.aspx?PID=2018-11-12-13)
P. Aruna, M. M. Gayathri
DOI: 10.5958/0974-360X.2018.00964.2
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-13] [Cite]
Viewed: 1 (pdf), 338 (html) Private Access

1-Eicosane, A Hydrocarbon from Curvuloria lunata an endophytic fungi isolated from bark tissue of Ficus religiosa (AbstractView.aspx?PID=2018-11-12-14)
Sundararamoorthy Maheshwari, Kalyanakumar Rajagopal, Valthirathanathan Sriraman, Kumar Lokesh, Meenambiga S. S., Meenashree Balakrishnan, Arulmoli Sanmugan
DOI: 10.5958/0974-360X.2018.00965.4
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-14] [Cite]
Viewed: 1 (pdf), 372 (html) Private Access

Dynamics Persistent Potential of Bacteria as a Treatment Target in Pyoinflammatory Diseases (AbstractView.aspx?PID=2018-11-12-15)
Zaira F. Kharava, Magomet Sh. Mustafaev, Larisa Z. Blieva, Ibragim V. Hulus, Oksana M. Gendugova, Djamilya S. Bazieva
DOI: 10.5958/0974-360X.2018.00966.6
[Abstract] [PDF Paper] [HTML Paper] [HTMLPaper.aspx?Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-15] [Cite]
Viewed: 1 (pdf), 378 (html) Private Access
Pinky Yadav, Pankaj Patel, Prabhakar Das, Nitin Deshmukh, Suljit Pillai
DOI: 10.5958/0974-360X.2018.00967.8
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-16] [Cite]
Viewed: 3 (pdf), 371 (html) Private Access

D Hypovitaminosis in Syrian Type 2 Diabetes Mellitus Patients: Lack of Relationship with Glycemic Control (AbstractView.aspx?PID=2018-11-12-17)
Razan Ibrahim, Mohammad Imad Khayat, Arefe Ziadi
DOI: 10.5958/0974-360X.2018.00968.X
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-17] [Cite]
Viewed: 1 (pdf), 348 (html) Private Access

Extraction, Isolation and Analysis of Chondroitin Sulphate from Chicken Shank by Spectrophotometric Method (AbstractView.aspx?PID=2018-11-12-18)
Ricky Amalia Adlia Aflamni, Juni Ekowati, Noor Ema Nasution Sugianto
DOI: 10.5958/0974-360X.2018.00969.7
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-18] [Cite]
Viewed: 1 (pdf), 416 (html) Private Access

The Development of Identification and Quantitative Definition Methodic of Active substances of the Ointment “Allergolic” (AbstractView.aspx?PID=2018-11-12-19)
Rickhwarin Olg, Khemikh Tajaona, Tykhovsk Oleksander
DOI: 10.5958/0974-360X.2018.00970.8
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-19] [Cite]
Viewed: 1 (pdf), 319 (html) Private Access

Sampath Kumar Jadhav, S. Viswajith
DOI: 10.5958/0974-360X.2018.00971.8
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-2] [Cite]
Viewed: 1 (pdf), 343 (html) Private Access

Association of Neutrophil/Lymphocyte (N/L) Ratio and Spatial and Verbal Memory in Females (AbstractView.aspx?PID=2018-11-12-20)
Sahithi Alagahi, Kumar Sai Saihesh
DOI: 10.5958/0974-360X.2018.00972.1
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-20] [Cite]
Viewed: 1 (pdf), 336 (html) Private Access

Effectiveness of Eccentric Strengthening of Wrist Extensors along with Conventional Therapy in Patients with Lateral Epicondylitis (AbstractView.aspx?PID=2018-11-12-21)
Anitha, A. Prachi, G
DOI: 10.5958/0974-360X.2018.00973.3
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-21] [Cite]
Viewed: 1 (pdf), 315 (html) Private Access

Deepanari K. Urologin, S. Jayakumari
DOI: 10.5958/0974-360X.2018.00974.4
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-22] [Cite]
Viewed: 1 (pdf), 471 (html) Private Access

DOI: 10.5958/0974-360X.2018.00975.7
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-23] [Cite]
Viewed: 1 (pdf), 313 (html) Private Access

HPTLC Fingerprinting Analysis of Tannin Profile on Capsicum frutescens and Fuguvea leucopyrus wild. (AbstractView.aspx?PID=2018-11-12-24)
A. Anto Anicka Ray, J. Vinnaras K. Venkataraman, M. August
DOI: 10.5958/0974-360X.2018.00976.7
[Abstract] [PDF Paper] [HTML Paper] [Journal=Research Journal of Pharmacy and Technology;PID=2018-11-12-24] [Cite]
Viewed: 1 (pdf), 327 (html) Private Access
Extraction, Isolation and Analysis of Chondroitin Sulphate from Chicken Shank by Spectrophotometric Method

Rizky Amalia Adlina Affandi¹, Juni Ekowati¹, Noor Erma Nasution Sugijanto¹*
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga
*Corresponding Author E-mail: erma.sugijanto@yahoo.com

ABSTRACT:
This study evaluated Chondroitin sulphate isolated from chicken shank cartilage in aspects such as sufficient quantities and requisite quality for feasible source of Chondroitin sulphate. Chondroitin sulphate has been widely used in treatment of osteoarthritis. Chondroitin sulphate not only reduces joint pain, but also inhibiting the disease progression. Chondroitin sulphate was obtained from cartilage of chicken shank, using enzyme (papain), acid (acetic acid), and heat. The cartilage obtained from chicken shank was hydrolysed using papain for 24h. Extraction was carried out using acetic acid and incubated at pH 4.5 and 37°C for 6h and 8h. The supernatant was treated with cetylpyridinium chloride (CPC), NaCl, methanol and ethanol. The precipitate obtained from extraction was dried in oven at 55°C. Chondroitin sulphate yield from 6h incubation was 16.30% and from 8h incubation was 36.35 % (dry weight). The FT-IR spectra of extracted Chondroitin sulphate was identical with Chondroitin sulphate standard (Fenchem Biotech Ltd). Overlay of the spectra showed characteristic absorption at the wave number 854.64 cm⁻¹ for sample and 856.54 cm⁻¹ for standard chondroitin sulphate. Quantitative analysis was performed using spectrophotometry. The precision was good with RSD <7.3% and the accuracy was good with recovery of 82.48-108.88%. The detection limit and quantification limit were 0.15 ppm and 0.46 ppm. This study shows that chicken shank cartilage produces a source for isolation of chondroitin sulphate of 36.35% (dry weight) and purity of 87.87%.

KEYWORDS: Chondroitin sulphate, chicken shank, spectrophotometric method, isolation, extraction.

INTRODUCTION:
Chondroitin sulphate (CS) is a glycosaminoglycan (GAG) comprised of repeating disaccharide units of N-acetylglactosamine and glucuronic acid.¹ Chondroitin sulphate has been widely used in treatment of osteoarthritis. Osteoarthritis is a progressive disease of whole joint and involves subchondral bone destruction, formation of osteophytes (bone spurs), synovial inflammation and cartilage loss (ref). One of the risk factors is age, where the disease increases with age. Osteoarthritis has also been associated with a reduced quality of life and increased healthcare costs.³ Osteoarthritis affects Indonesians in which over 5% population aged below 40 year-old, 30% in age between 40 and 60 year-old, and 65% in age above 61 year-old. The prevalence of knee osteoarthritis is quite high with 15.5% for men and 12.7% for women.³ Chondroitin sulphates is Symptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs) and not only reduces joint pain, but also inhibiting the disease progression.³ Chondroitin sulphate occurs naturally in the extracellular matrix of connective tissues, e.g., bone, cartilage, skin, ligaments and tendons. Commercially available chondroitin sulphate is extracted from animal cartilage such shark and then purified. However, extraction process may results in degradation such as reducing molecular weight from 50–100 kDa to around 10–40 kDa (ref). To minimize chemical and structural modifications during extraction, a selective and robust extraction process should be used; while potent, non-specific oxidation in alkaline conditions and high temperatures should be avoided. Extraction should include enrichment, purification and solvent fractioning steps to produce chondroitin sulphate with a narrow
molecular weight range. Purification protocols are important to minimize contaminants, which can include other glycosaminoglycans, proteins, small organic molecules, and solvents. The Structures of chondroitin sulphate (Figure 1).

![Chondroitin sulfate structures](image)

Figure 1: Structures of chondroitin sulphate.

As an essential component of shark cartilage, chondroitin sulphate is widely used as a dietary supplement. Sharks are one of the most threatened groups of marine animals, as high exploitation rates coupled with loss resilience to fishing pressure have resulted in population declines worldwide. The other known sources of chondroitin sulphate used in nutritional supplements are the cartilaginous rings of bovine trachea and pork ears. Nowadays chondroitin sulphate is produced only from porcine trachea because of the risk of bovine spongiform encephalopathy (BSE). However, chondroitin sulphate which is produced from porcine-trachea cannot be consumed by muslim community. Popularity of CS and its limited sources makes CS a prime candidate for economic adulteration. Because of its high price and limited sources, exploration on new sources of chondoroitin sulfate which is easily obtained, sustainable and affordable with low cost are highly needed.

One of the biggest wastes of chicken farm is the shanks. Indonesian statistic reported that from 2003 there were 1,297,333.333 chicken shanks were produced from chicken farm waste. Chicken shanks’s potency has not been optimally explored. Chicken shank is only used for making soup or another food and even ends up in trash can.

There are many isolation methods of chondroitin sulphate including alkaline hydrolysis, acid hydrolysis enzymatic hydrolysis, and purification using gel chromatography. The obtained CS was identified using Fourier Transform – Infrared (FT-IR) and quantitative analyzed by spectrophotometric method.

MATERIAL AND METHODS:

Chondroitin sulphate standard was obtained from Fenchem Biotech Ltd (China). The chicken shanks was obtained from market (Surabaya, Indonesia). Cetylpyridinium chloride (RonaCare® CPC), acetic acid, NaCl, methanol and ethanol, Ferric chloride, Hydrochloric acid and Potassium bromide were purchased from Merck (Darmstadt, Germany). Papain (food grade), resorcinoipharmaceutical grade) and double distilled water were purchased from P.T. Brataco (Surabaya, Indonesia).

Isolation of chondroitin sulphate from chicken shanks:

The cartilage from chicken shank was separated from the hard bone, skin, and the flesh by boiling the chicken shank in water at 90-95°C for ten minutes. The cartilage obtained from chicken shank was hydrolysed by papain (50 g/550g cartilage) for 24 h and dried with oven at 55°C. The dried cartilage was chopped and ground in blender. The cartilage in approximately 5 g, were used for each experiment. The cartilage was divided into two groups. First group was extracted by incubation at pH 4.5 using 20 mL acetic acid 10% and temperature of 37°C for 6h. The second group was incubated for 8h. After incubation, the supernatant was separated from the residue. CPC (3%) in solution of 0.8 M NaCl was added to the supernatant and then centrifuged at 3600 rpm for 20 minutes, and temperature of 4°C to remove precipitates that contain another GAGs. Solution of 2 M NaCl (5 ml) was added to the supernatant followed by methanol at the same volume of supernatant. Furthermore, ethanol was added to the solution until the precipitation stop. The precipitate obtained from extraction was dried in oven at 55°C. All experiment were done in triplicate.

Characterization of Chondroitin Sulphate Fourier Transform – Infrared:

Fourier Transform Infrared Spectrometer using potassium bromide (KBr) pellet technique was employed to identify the types of chondroitin sulphate in the sample. Standard of chondroitin-4-sulphate and chondroitin-6-sulphate were analyzed and used as standard spectra. Dried chondroitin sulphate sample, approximately 2 mg, was mixed with dried potassium bromide powder (100-200 mg), then pressed into thin disc under hydraulic press and used as a sample for FTIR analysis. The spectrum was obtained at mid-infrared region.

Spectrophotometric Method:

Reagent preparation:

Ferric chloride (75 mg) was dissolved in 50 mL of concentrated hydrochloric acid. Ethanol containing 200
mg of resorcinol (5 ml) was added to this solution and volume was made up to 50.0 ml with concentrated hydrochloric acid.11

Preparation of standard stock solution:

About 100 mg of chondroitin sulphate working reference standard of known purity (92.42\% pure) was accurately weighed into a 100.0 mL volumetric flask, dissolved and volume was made up to 100.0 mL with water (1 mg/mL). 10.0 mL of this solution was further diluted to 50.0 mL with water (200 \mu g/mL).11

Determination of wavelength of maximum absorbance:

2.0 mL of working reference standard solution was pipetted into a 25.0 mL volumetric flask. 10.0 mL of resorcinol reagent was added and solution was cooled to room temperature. The solution mixture was heated in a boiling water bath for 1 hour and cooled to room temperature by placing in ice-cooled water. The volume was made up to 25.0 mL distilled water. The yellow-orange coloured solution was scanned in 400 - 800 nm range against reagent blank.11

Preparation of sample solution:

Sample of chondroitin sulphate (about 100 mg) was transferred to 100.0 mL volumetric flask, dissolved in about 50.0 mL of double distilled water, sonicated for 15 minutes and made up the volume with double distilled water. The resulting solution was filtered through Whatman® filter paper. Filtrate solution (10.0 mL) was diluted to 50.0 mL with distilled water. From this, a 2.0 mL was transferred into 25.0 mL volumetric flask, and added with 10.0 mL of resorcinol reagent solution. Solution was cooled to room temperature. The solution mixture was heated in a boiling water bath for 1 hour and cooled to room temperature by placing in ice-cooled water. The volume was made up to 25.0 mL with distilled water. The absorbance of yellow-orange colour chromogen was measured at 435 nm against reagent blank.1

Method validation:

The method was validated for linearity, accuracy, system precision, method precision, detection limit, quantitation limit and stability of the absorbance of yellow-orange colour chromogen analytical solution during assay.

Linearity:

Serial concentrations of chondroitin sulphate in range between 4-32 ppm were made from chondroitin sulphate standard stock solution.11

Accuracy:

Accuracy of the method was determined in terms of percent recovery of standard chondroitin sulphate at three different concentrations of 50\%, 100\% and 150\%.11 Results of the recovery study were found to be within the acceptable criteria of 80-110\%, indicated sensitivity of the method towards detection of chondroitin sulphate and non-interference of excipients in the method.12

System precision:

The precision of the system was determined by 6 repetitive absorbance of the same standard solutions by using 2.0 mL of stock solution. The values of \% RSD of system precision study were in within the acceptable limit. Hence the method provides good precision.11

Method precision:

The precision of the method for the assay of chondroitin sulphate was determined by the assay of six aliquots of the homogeneous sample. The values of \% RSD of method precision study were in within the acceptable limit. Hence the method provides good precision and reproducibility.11

Detection limit:

The detection limit was determined by analyzing chondroitin sulphate with known concentrations and establishing minimum level at which the chondroitin sulphate was reliably detected. The detection limit (DL) may be expressed as; DL =3.3 \sigma/ S, where \sigma = the standard deviation of the response S = the slope of the calibration curve.11

Quantitation limit:

The quantitation limit was determined by analyzing of chondroitin sulphate with known concentrations and establishing minimum level at which the chondroitin sulphate was quantified with acceptable accuracy and precision. The quantitation limit (QL) may be expressed as; QL=10 \sigma/ S, where \sigma = the standard deviation of the response and S = the slope of the calibration curve.11

Solution stability:

The stability of the analytical solution for assay of chondroitin sulphate was determined by measuring absorbance of sample solution at fixed intervals of time (every 1 minute for 15 minutes). The \% RSD for the assay values for chondroitin sulphate should be up to 2\%.11

RESULTS:

Isolation of chondroitin sulphate from chicken shanks:

The mean yields of chondroitin sulphate obtained from chicken shank in dry weight were 36.35 \% and 16.30\% from 8h and 6h incubation, respectively.
Characterization of Chondroitin Sulphate Fourier Transform – Infrared:
The FTIR spectra of chondroitin sulphate sample was overlayed with the spectra of chondroitin sulphate standard. The FT-IR spectra of chondroitin sulphate from shank cartilage was identical with the spectra of chondroitin sulphate standard in fingerprint area. The Overlay spectra of CS standard and CS from chicken shank (Figure 2).

![Image](image.jpg)

Figure 2: Overlay spectra of CS standard and CS from chicken shank

Overlay of the spectras showed that samples and standards have a similarity in the fingerprint area (wave number 1500-400 cm⁻¹) with the characteristic absorption at the wave number 854.64 cm⁻¹ for sample and 856.54 cm⁻¹ for standard chondroitin sulphate. In addition there was absorption at wave number 1641.32 cm⁻¹ for standard and 1642.45 cm⁻¹ for the samples indicated the presence of a carbonyl group. There was also absorption at wave number 3466.12 cm⁻¹ for standard and 3461.26 cm⁻¹ for the samples indicated the presence of hydroxyl group.

Spectrophotometric Method:
Determination of wavelength of maximum absorbance:
The wavelength of maximum absorbance of yellow-orange colour chromagen was found at 436 nm as shown in (Figure3).

Method validation:
Linearity:
The linearity of chondroitin sulphate using serial concentration of 4-32µg/mL showed r = 0.9954 and Vx= 10.49 %.

Accuracy:
The accuracy of the method was established by recovery study, referring to AOAC guidelines, and the obtained % recovery were ranged from 82.48-108.88%. Results of the recovery study were found the acceptable criteria of 80-110%, indicating sensitivity of the method towards detection of chondroitin sulphate and non interference of excipients in the method.

System precision:
The precision was good with % RSD was 0.6% and within the acceptable limit (less than 7.3%). Hence the method provided good precision.

Method precision:
The precision of the method for the assay of chondroitin sulphate was good with % RSD of 0.08%. This was within the acceptable limit (less than 7.3%). Hence the method provided good precision and reproducibility.
Detection limit and Quantitation limit:
The detection limit and quantification limit were found to be 0.15 ppm and 0.46 ppm, respectively.

Solution stability:
The % RSD for the absorbance values for chondroitin sulphate up to 15 minutes was 2.13%, indicating that the analytical solution was stable up to 15 minutes.

Determination of chondroitin sulphate in the sample:
Concentration of chondroitin sulphate in samples for 8h extraction was 87.87% and 53.74% for 6h extraction. Statistical analysis of the results shows that these two concentrations were significantly different.

DISCUSSIONS:
Chondroitin sulphate (CS) can be extracted from chicken shank obtained from farm wastes using acid hydrolysis extraction method. CS mean yields in dry weight obtained from 6h and 8h incubation were 16.30% and 36.35%, respectively, whilst yield from chicken keel was reported 14.08% and from shark cartilage was 9.6% (dry weight). The FT-IR spectra of CS from shank cartilage was identical with CS standard. Concentration of chondroitin sulphate in sample from 8h and 6h extraction were 87.87% and 53.74% respectively. CS purity from chicken shank cartilage was 87.87% for 8h extraction by (acid hydrolysis extraction method) whilst certificate of analysis of the CS from Fenchem Biotek Ltd stated 90.47% and those from Chemical Point UG Germany stated 90.7%. Therefore, the method needs more purification steps. Quantitative analysis and validation were conducted using spectrophotometric method were showed satisfactory results. The precision was good with RSD=7.3%. The accuracy was good with percent recovery of 82.48-108.88%. The detection limit and quantification limit were 0.15 ppm and 0.46 ppm, respectively. This study showed that chicken shank cartilage is a readily available source of chondroitin sulphate.

CONCLUSION:
The present work showed that chicken shank cartilage is potential source of chondroitin sulphate. The yield was 36.35 % (dry weight) and the purity was 87.87% indicated a feasible source for isolation of chondroitinsulphate.

ACKNOWLEDGMENTS:
The authors would like to thank Faculty of Pharmacy Universitas Airlangga that has supported this research.

CONFLICT OF INTEREST:
The authors declare no conflict of interest.

REFERENCES:
7. Miwada INS and Simperi IN. Optimalisasi potensi ceker ayam (shank) hasil limbah RPA melalui metode ekstraksi termodifikasi untuk menghasilkan gelatin. Majalah Ilmiah Perternakan Universitas Udayana. 10 (1); 2007: 5-8. [In Indonesian]
Research Journal of Pharmacy and Technology

Country: India - SJR Ranking of India
Subject Area and Category: Medicine, Pharmacology (Medical), Pharmacology, Toxicology and Phamacuetics, Pharmacology, Toxicology and Pharmacuetics (miscellaneous)
Publisher: A and V Publication
Publication type: Journals
ISSN: 09743618, 0974360X
Coverage: 2011-ongoing
Scope: Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal, devoted to pharmaceutical sciences. The aim of RJPT is to increase the impact of pharmaceutical research both in academia and industry, with strong emphasis on quality and originality. RJPT publishes Original Research Articles, Short Communications, Review Articles in all areas of pharmaceutical sciences from the discovery of a drug up to clinical evaluation. Topics covered are: Pharmacuetics and Pharmacokinetics; Pharmaceutical chemistry including medicinal and analytical chemistry; Pharmacognosy including herbal products standardization and Phytochemistry; Pharmacology: Allied sciences including drug regulatory affairs, Pharmaceutical Marketing, Pharmaceutical Microbiology, Pharmaceutical biochemistry, Pharmaceutical Education and Hospital Pharmacy.

Impact factor 5.87, low cost

Fast Publication. Low Cost. Fast Response, 1-day publication, low cost free e certificate