About the Journal

All manuscripts must be prepared in English and are subject to a double-blind peer review process. Generally, accepted papers will appear online within 8 weeks.

The journal publishes original papers including but not limited to the following fields:
Editorial Team

EDITORIAL BOARD

EDITOR IN CHIEF
Prof. Dina Nath Mishra
Professor and Head of Pharmaceutics, Department of Pharmaceutical Sciences,
Guru Jambheshwar University of Science and Technology, INDIA

Board Members
Dr. Somnath Singh
Creighton University, Omaha, USA

Dr. Tathagata Dutta
University of Queensland, Brisbane, AUSTRALIA

Dr. Ashish Suttee
Lovely Professional University, Phagwara, INDIA

Dr. Kalpesh Gaur
Geetanjali College of Pharmaceutical Studies, Udaipur, INDIA

Dr. Vishal Gupta
Director, Research & Development Covidien, USA
Dr. Chandan M. Thomas
Department of Pharmaceutical Sciences, Lake Erie College of Osteopathic Medicine and School of Pharmacy
5000 Lakewood Ranch Blvd, Bradenton, Florida-34211

Prof. Kamla Pathak
Rajiv Academy of Pharmacy, Mathura, INDIA

Prof. V. R. Sinha
Panjab University, Chandigarh, INDIA

Prof. Pramil Tiwari
National Institute of Pharmaceutical Education and Research (NIPER), Mohali, INDIA

Prof. Arun Nanda
Faculty of Pharm. Sciences, Maharshi Dayanand University, Rohtak, INDIA

Prof. O.P. Katare
Panjab University, Chandigarh, INDIA

Dr. Amit Bhatia
Lovely Professional University, Punjab, INDIA

Dr. Anil Philip
Rajiv Academy Academy of Pharmacy, Mathura, INDIA

Dr. Dinesh Kaushik
Hindu College of Pharmacy, Sonepat, INDIA

Dr. Munish Ahuja
Dept. of Pharm. Sciences, Guru Jambheshwar University of Science and Technology, Hisar, INDIA
Dr. Sanju Nanda
Dept. of Pharm. Sciences, M.D.University, Rohtak, INDIA

Dr. Rakesh P. Patel
S.K. Patel College of Pharm. Edu. & Res., Ganpat University, Gujrat, INDIA.

Dr. Bhaskar Mazumder
Dept. of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, INDIA.

Dr. Kalpana Nagpal
Apeejay Satya University, Sohna, Gurgaon, Haryana, INDIA

ISSN: 0975-4415
Amorphous Mixtures of Albendazole with Carboxylic Acids By Cogrinding Technique: Solid State Characterizations and In Vitro Efficacy Study
A S Shete, B Kambhar, A V Yadav, S Korpale, S S Sakhare, R C Doijad
509-516
PDF

Development of Mouth Dissolving Films of Ondansetron Hydrochloride By Using Factorial Experimental Design
Siddhant Thakur, Vandana Arora Sethi, Abdul Wadood Siddiqui, Lalit Kumar Tyagi
517-524
PDF

Peel-off Mask Formulation From Black Mulberries (Morus Nigra L.) Leaves Extract as a Tyrosinase Inhibitor
Arif, Bodiman, Zalika Mega R, Nasliatul Khairia y, Diah Lia Aulifa
527-524
PDF

Development of Gastro Retentive Floating Microspheres of Roxatidine Acetate HCl By Emulsion Solvent Diffusion Technique
F C Miranda, K K Kamath, A R Shabaraya
530-537
PDF

The Phosphatase And Tensin Homolog Gene (PTEN-Gene) Expression Level is a Novel Indicator for Poor Prognosis in Invasive Ductal Carcinoma
Adel Mossa AL-Redahi, Shoroq Mohammed AL-Temimi
538-543
PDF

Mutagenicity Acridine Orange Mutagen On The Biological Activity of S.aureus Isolated From Tonsillitis
Nebras Rada Mohammed, Salwa Jaber AL-Auadi AL-Musawwi
693-696
PDF

Synthesis New Liquid Electrodes For Determination Pyrazinamide Based On A Molecularly Imprinted Polymer
Mohammed A. Mudhi, Yehya Kamal Al-Bayati, Khalaf F Al- Samarrai
645-650
PDF
Using of the L-Arginine and Co-Enzyme Q10 Shows Improvement of the Male Subfertility
Muzni A Hasoon
544-551

Evaluation of Sterile Supply Cycle at One of The Malaysia Government Hospital in Perak
Ismun Susan Kurniawisnayah, Sorsaya Ratnapulas Mita, Looi Shih Ying
552-557

Synthesis and Characterization of Poly (CH/AA-co AM) Composite: Adsorption and Thermodynamic Studies of Benzocaine on from Aqueous Solutions
Abbas N. Karter, Layth S Jastan
558-562

Simple and Rapid Method For Estimate of Propranolol With Bi (III) Via Long Distance Chasing Photometer (NAG ADF 300 2) Utilization Continuous Flow Injection Analysis
Nagan S. Turkish, Elham N Messal
563-574

Synthesis and Modification of Some New Prodrug Polymers Based on Chitosan and Study of Some Applications
Taimara F Hassans, Faris H. Mohammed Q Al-Noami
580-586

Synthesis, Characterization and Study Biological Activity of Five and Seven Heterocyclic Compounds
Fadhl A Neshan, Muna S Al-Rawi, Jumhoud H Tomma
587-592

The Metabolic Effect of Walnut in Polycystic Ovarian Syndrome
Ahmed I Rashdi, Isalda R Mohammed, Hossad A Kadhem, Noura Al-Hayati, Ensiyar J Al Mokhtar
593-599

Formulation and Evaluation of Lornoxicam Transdermal patches using various Permeation Enhancers
Neha I Sharma, S K Sharma, R Kaushek
597-607

Stem Cell Factor Antibody: Effective Manipulation of Antihormonal Therapy in Resistant Human Breast Cancer In Vitro
Khalid Bahroom Arif, Isam Hussein, Carol Rea, Mohamed El-Shaemey
608-613

Synthesis and Biological Studies of Some Diazo Dyes As New Drugs
Hassan M Aliu, Sanaa Qassam Badr, Assauer Salim Termez
613-646

Hepatitis C and IL-6 with 174G/C Gene Polymorphism in β-Thalassemia
Aeapel A Alsadawy, Al-Karrar Kais Abdul Jaleel jahbel, Haider A Alnajji
627-628

Isolation of Lytic Bacteriophage Cocktail Against Methicillin-Resistant Staphylococcus Aureus Isolated From Human Skin Infections
Saad M Hantooh, Eman M Jarallah
629-639

Diagnostic Values of Some Immunological Markers in Patients With Urinary Tract Infection
Tasha Ahmed Hamada Al-Tikriti, Marwa Tariq Abdul Al-Dosri, Nihad Nejess Hilal, Mohammed Mohsin Abdul Aziz
635-639
International Journal of Drug Delivery Technology

Country: Australia • SIR Ranking of Australia

Subject Area and Category: Pharmacology, Toxicology and Pharmaceutics, Pharmaceutical Science

Publisher: International Journal of Drug Delivery Technology

Publication type: Journals

ISSN: 09754415

Coverage: 2011-ongoing

Scope: International Journal of Drug Delivery Technology (IJDDT) provides the forum for reporting innovations, production methods, technologies, initiatives and the application of scientific knowledge to the aspects of pharmaceutics, including controlled drug release systems, drug targeting etc. in the form of expert forums, reviews, full research papers, and short communications.

Cambridge University Venue

Call for participation to 23rd International Conference on Multidisciplinary Studies

euser.org

Open

Quartiles: Pharmaceutical Science

SJR

Citations per document

2012 2013 2014 2015 2016 2017 2018

Total Cites: 40

Self-Cites
Cambridge University Venue

Call for participation to 23rd International Conference on Multidisciplinary Studies

I'd like to publish my paper in your journal

Citable documents
Non-citable documents
Cited documents
Uncited documents

SCImago Team

Journal & Country Rank is not a journal, but is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. We suggest you to look for author's instructions/submission guidelines in the journal's website. Best Regards, SCImago Team

saba hadee 5 months ago
I'm an author at your journal, please could you tell me whether you accept research papers from Iraq/University of baghdad/College of pharmacy and I want to asked about the processing fee of your journal.

With my best regard

reply

Melanie Ortiz 5 months ago
Dear Sir,
thank you for contacting us.
Sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus.
Unfortunately, we cannot help you with your request, we suggest you to visit the journal's homepage or contact the journal's editorial staff, so they could inform you more deeply.
You can see the updated journal's information just above.
Best Regards, SCImago Team

Huda salih khadiar 9 months ago
Hi sir
I would like to publish my research paper in your journal
I am huda salih, master student in pharmaceutics department at Al-mustansiriya university college of pharmacy I'm from Baghdad
Dr. Zainab Al-Sharifi 11 months ago

hi sir,
I would like to publish my paper in your journal, my name is dr. Zainab Al-Sharifi
am from Iraq, Collage of medicine / University of Baghdad

I'm not a robot

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.
RESEARCH ARTICLE

Formulation, Physical Characterization and Wound Healing Activity Evaluation of Carboxymethyl Chitosan-Curcumin Carbomer-Based Hydrogel

Retno Sari*, 1 Tristiana Erawati1, Faza Fauziah1, Wiwik M Yuniarti2

1Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
2Deparment of Clinical Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia

Received: 23th Oct, 19; Revised: 25th Nov, 19, Accepted: 15th Dec, 19; Available Online: 25th Dec, 2019

ABSTRACT

The aim of this study was to determine the effect of different concentration of carboxymethyl chitosan and curcumin on physical characteristics and wound healing activity of carboxymethyl chitosan-curcumin hydrogel. Hydrogels were prepared using carbomer as a gelling agent and TEA was added to neutralize the carbomer hydrogel in order to make it swell. The obtained hydrogels were evaluated for its physical characterization such as organoleptic, viscosity, spreadability, drying time, pH, and wound healing activity on the burned wound in Wistar rats. The results showed that higher concentration of carboxymethyl chitosan significantly reduces viscosity and pH while its spreadability and drying time are significantly increased. Curcumin only affected two out of five physical characteristics: organoleptic and pH. Higher concentration of curcumin reduces its pH but statistical analysis showed no interaction between carboxymethyl chitosan and curcumin. The wound healing activity in Wistar rats with 2nd degree burn wound model indicates that carboxymethyl chitosan-curcumin hydrogel can significantly improve wound healing activity in rats compared to control group. Higher concentration of carboxymethyl chitosan can affect the physical characteristics of carboxymethyl chitosan-curarumin hydrogel i.e. a decrease in viscosity and pH, as well as an increase in spreadability and drying time. On the other hand, higher concentration of curcumin only affected the pH of the preparation. In the wound healing activity test, macroscopic observation showed that the combination of carboxymethyl chitosan-curcumin significantly increased the wound healing activity of 2nd degree burn in Wistar rats. However, the use of this hydrogel preparation statistically did not give significant improvement in wound healing process when compared with G1, G2, G3, G4, and positive control. Based on histopathology test results, it can be concluded that after 14 days of treatment the value of collagen deposition and PMN between groups 1, 2, 3, 4, and positive control and intergroup replication (1, 2, 3, 4, and positive controls) are in uniformity which indicates that the wound has undergone process. In addition, the four groups possess better results than negative controls which didn’t receive any treatment.

Keywords: Hydrogel, Carboxymethyl chitosan, Curcumin, Wound healing.

International Journal of Drug Delivery Technology (2019); DOI: 10.25258/ijddt.9.4.32

Source of support: Nil.

Conflict of interest: None.

INTRODUCTION

Wound healing is a dynamic process consisting of four steps, namely hemostasis, inflammation, proliferation, and tissue remodeling phase.1 Each stage of wound healing process must go on precisely. Prolongation or extension that occurs in the process will delay healing process or can inevitably become chronic, incurable wounds.2 Wound healing is a result of cytokine, growth factor, and extracellular matrix interaction. Treatment of wounds needs to be done for both severe and minor injuries. Part of the wound treatment process is called wound dressing.3

The dressing can be used to promote and accelerate re-epithelialization, collagen synthesis, and also to support of angiogenesis by making hypoxic environmental condition at the base of the wound and reduce pH level at the wound site, therefore decrease the possibility of wound to get infected by bacteria.3 Wound dressing can be classified into two categories: traditional and modern wound dressing, where the traditional wound dressing works as primary/secondary dressing to prevent wound from getting contaminated. When excessive wound drainage occurs, this type of dressing can be more humid and tends to be stickier at the wound site, so it may

*Author for Correspondence: retno-s@ff.unair.ac.id
cause pain when it is removed. The modern wound dressing is developed to make the wounds stay hydrated and does not need removal after use.

A hydrogel is developed in modern wound dressing that has a high content of water (70–90%) which provides a humid environmental condition at the wound site and give cool and comfort effect when it is applied. Humid condition promotes wound healing process because cell regeneration mostly occurs in a humid condition. Bioactive addition in the dressing can increase the effect and accelerate the wound healing process.

Carboxymethyl chitosan is a water-soluble chitin derivative and functional biomaterial which possesses many favorable biological properties such as biocompatibility, biodegradability, and bioactivity. Studies have suggested that carboxymethyl chitosan can effectively accelerate wound healing and reduce scar formation. Carboxymethyl chitosan can significantly accelerate wound healing process of 2nd-degree burn. Carboxymethyl chitosan is a bacteriostatic agent which is more effective compared to chitosan, and it increases fibroblast proliferation of skin and stimulates extracellular lysozyme activity on the skin. To upgrade the efficacy of healing process, carboxymethyl chitosan can be combined with another pharmacology material such as growth factor or antibiotic like curcumin.

Curcumin is a compound that has an effect on the wound healing process. The potential effect of curcumin in the wound healing process is associated with its anti-inflammatory, antibacterial, anti-infection, and anti-oxidant properties.

Research conducted by Emiroglu et al. (2017) demonstrated that 0.01% curcumin for topical dosage form significantly reduces edema, cell hyperplasia, and leukocyte infiltration in the wound healing process. Hydrogel physical characterization is important to ensure effectiveness and acceptability. The previous research showed that the formulation of hydrogel preparations with carboxymethyl chitosan concentration of 0.5%, 1%, and 0.05% curcumin gave steady results in terms of includes pH, viscosity, spreadability, and drying time after 30 days.

The aim of this study was to determine the effect of carboxymethyl chitosan-curcumin concentration on physical characteristics (pH, viscosity, spreadability, drying time) and wound healing activity. The histopathological test was done to evaluate the skin physiology from the healing process.

MATERIALS AND METHOD

Material

Carboxymethyl chitosan (81.9% degree of substitution, 96.5% degree of deacetylation, viscosity 1% 22 mPa.s, China Eastar Group Co., Ltd.); Curcumin 95% (RD Health Ingredients Co., Ltd, China); propylparaben, carbomer 940, propylene glycol, 96% ethanol pro analysis (Merck), Triethanolamine (C.V. Tristar Chemical); Ketamine® (PT Guardian Pharmatama); Xylazine®; Bumazine® (PT Darya-Varia).

Experimental animal

A total of 30 healthy Wistar mice (Rattus norvegicus) aged 2-3 months, weighted 150–250 g were used in this research.

Ethical clearance

This research was approved by the research ethics committee of the Faculty of Veterinary Medicine, Airlangga University, with a certificate number of ethical clearance No: 2.K.E.083.05.2018.

Preparation of carboxymethyl chitosan-curcumin hydrogel

500 mg carbomer powder was dispersed into CO₂-free distilled water and stirred. Carboxymethyl chitosan was dissolved in distilled water then mixed with carbomer-water dispersion. 20 mg of propylparaben was dissolved in propylene glycol, then put into the mixture and mixed until homogenous. TEA was added gradually into the mixture, stirred continuously until pH 6 was obtained. Curcumin was dissolved in ethanol 90% then added to the hydrogel.

Characterization of carboxymethyl chitosan-curcumin carbomer-based hydrogel

Organoleptic

The organoleptic examination was done by observing the physical appearance of the preparation such as consistency, color, and odor of the hydrogel.

pH

1 g of hydrogel was diluted in 10 mL CO₂-free distilled water, then stirred, and pH was examined using calibrated SI Analytics LAB865 pH meter. pH measurement was conducted 3 times replication.

Viscosity evaluation

Viscosity was examined using Brookfield cup and bob RION Viscometer VT-04E. 140 g of hydrogel was placed in the

<table>
<thead>
<tr>
<th>Material</th>
<th>F I (% w/w)</th>
<th>F II (% w/w)</th>
<th>F III (% w/w)</th>
<th>F IV (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboxymethyl Chitosan</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Curcumin</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Propyl paraben</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Carbomer 940</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 1: Formula Prepared in this Research

UDDT, Volume 9 Issue 4 Oct 2019 - Dec 2019
sample chamber, and the spindle was dipped into the chamber, and the viscometer was run in 3 replication for each sample.

Spreadability

1 g of hydrogel was put in the center of the glass plate then covered with another glass plate. The load was added on top of an upper glass plate gradually, starting from 0 to 5 g. The spreading diameter was measured when the preparation stopped spreading at each additional loading (± 5 minutes). The latest diameter recorded becomes the spreadability data of the preparation (3 times replication).

Drying time

1 g of hydrogel was applied to the glass plate then put into the incubator (36 ± 0.5°C), and the sample was weighed every 10 minutes until the constant weight was obtained (3 times replication).

Wound healing activity evaluation

Wistar rats were intramuscularly anesthetized with ketamine and xylazine. The hair on the back surface of rats was removed using a razor blade. The wound was made using an electric burner (85 °C) with an exposure time of 5 seconds.

Treatment

Before the treatment was given, adaptation was carried out on experimental animals for 7 days in animal cages. Experimental animals were randomly divided into 6 groups (4 test groups and 2 control groups) further explained below:

G1: Rats with 2nd-degree burn wound are treated with carboxymethyl chitosan-curcumin hydrogel of the selected formula
G2: Rats with 2nd-degree burn wound treated with carboxymethyl chitosan hydrogel
G3: Rats with 2nd-degree burn wound treated with curcumin hydrogel
G4: Rats with 2nd-degree burn wound treated with hydrogel basis
G5: Rats with 2nd-degree burn wound treated with silver sulfadiazine cream as control positive
G6: Rats with 2nd-degree burn wound, no treatment given

Each group was given the treatment according to the test group by topically applying 100 mg of hydrogel on a wound site twice a day for 14 days.

Wound healing percentage

Macroscopic visual was observed every day during the study, and the area of wounds was measured on days 1, 7, and 14. Wound healing percentage was calculated using the formula:

\[
\% \text{ Wound Healing} = 100 - \% \text{ wound area}
\]

\[
\% \text{ wound area} = \text{ wound area on day- X} / \text{ wound area on day 0}
\]

<table>
<thead>
<tr>
<th>Formula</th>
<th>Color</th>
<th>Odor</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Orange</td>
<td>Curcumin like odor</td>
</tr>
<tr>
<td>II</td>
<td>Darker orange</td>
<td>Stronger curcumin like odor</td>
</tr>
<tr>
<td>III</td>
<td>Orange</td>
<td>Curcumin like odor</td>
</tr>
<tr>
<td>IV</td>
<td>Darker orange</td>
<td>Stronger curcumin like odor</td>
</tr>
</tbody>
</table>

Histopathology evaluation

The wounded area of rat skin was excised on day 7 and day 14 of treatment, followed by making histological slide preparation. Parameters observed were polymorphonuclear neutrophils (PMN), collagen deposition, degree of fibrosis, and angiogenesis. Scoring criteria: collagen deposition (normal bundle = 2, unorganized/edema = 1, amorphous = 0), PMN infiltration (0–10 = 2, 11–40 = 1, >40 = 0), angiogenesis (mild, moderate, and severe), degree of fibrosis (mild, moderate, and severe).

RESULTS AND DISCUSSION

Organoleptic evaluation

As shown in Table 2, there were some differences in the color and the odor of each formula. The increase in carboxymethyl chitosan concentration affected the consistency of the preparations, which appeared to be more dilute and possess stronger odor and color.

pH evaluation

The result of pH evaluation from F1, F2, F3, and F4 were 6.89 ± 0.02, 6.96 ± 0.08, 6.77 ± 0.02, and 6.84 ± 0.03, respectively. F1 and F2 (0.5% carboxymethyl chitosan) had higher pH compared to F3 and F4, this indicated that the addition of carboxymethyl chitosan concentration increased the acidity of hydrogel preparation because 1% aqueous carboxymethyl chitosan solution pH range at 4–5.5 On the other hand, higher concentration of curcumin increased the pH of the hydrogel because of its alkaline properties.

Viscosity

Based on the replicated test, viscosity data for F1, F2, F3, and F4 were 30.0 ± 0.0, 30.0 ± 0.0, 17.5 ± 0.0, and 17.5 ± 0.0 dPa.s, respectively. Carbomer has a chemical structure where each end of the chain has a carboxylic group (R-COOH), which is acidic when reacted with H₂O. At acidic pH, the carboxyl groups of carbomer are not ionized. TEA addition serves to form gel systems from hydrogels. If the addition of a base neutralizes the pH of the carbomer dispersion, the carbomer group of carbomer will be ionized. The repulsive force between ionized groups causes hydrogen bonds in the carbomer group to stretch, which will result in viscosity increment.

![Figure 1: pH histogram of hydrogel preparation with different concentrations of carboxymethyl chitosan-currumin F1, F2, and F4.](image-url)
Formulation, Physical Characterization And Wound Healing Activity Evaluation of Carboxymethyl Chitosan-Curcumin...

Figure 2: Viscosity evaluation results from carboxymethyl chitosan-curcumin hydrogel F I, F II, F III, and F IV.

On the other hand, carboxymethyl chitosan also has a carboxyl group in its structure, which can lead to competition between carboxymethyl chitosan and carboxymer in the neutralization process by TEA. This can cause a decrease in repulsive force between carboxyl groups of carboxymer and results in viscosity decrease. It can be concluded that different concentration in carboxymethyl chitosan (0.5% and 1.0%) affects the viscosity of carboxymethyl chitosan-curcumin hydrogel that curcumin does not.

Spreadability
Based on the replicated test, spreadability of hydrogel preparation was obtained 8.6 ± 0.17, 8.9 ± 0.06, 9.4 ± 0.10, and 9.4 ± 0.10 cm for F1, F2, F3, and F4, respectively. The higher concentration of carboxymethyl chitosan is known to increase the spreadability of the hydrogel preparation. This is in accordance with the theory that the spreadability is influenced by the viscosity of the preparation: the thicker the preparation, the lower the spreadability of hydrogel preparation and vice versa.16

Drying time
Based on the replicated test, the drying time of F1, F2, F3, and F4 were 60 ± 0.00, 60 ± 0.00, 73.33 ± 5.77, and 73.33 ± 5.77 min, respectively. Higher carboxymethyl chitosan concentration will increase the drying time of the preparation.

Wound healing activity

Visual
Visual wound observation in Figure 5 shows that the carboxymethyl chitosan-curcumin hydrogel has better wound healing activity by repairing the damaged tissue until the wound is well-closed. It is capable to significantly accelerate the

Figure 5: Wound visualization during treatment.

Figure 3: Spreadability histogram of hydrogel preparation with different concentration of carboxymethyl chitosan-curcumin F1 (0.5 % 0.05 %); F II (0.5 % 0.10 %); F III (1.0 % 0.05 %); F IV (1.0 % 0.1%).

Figure 4: Drying time histogram of hydrogel preparation with different concentration of carboxymethyl chitosan-curcumin F1 (0.5 % 0.05 %); F II (0.5 % 0.10 %); F III (1.0 % 0.05 %); F IV (1.0 % 0.1%).
wound healing process when compared to the G6 (untreated, natural healing process).

Based on wound healing percentage histogram (Figure 6), it can be seen that G6 (negative control) has the lowest healing percentage among other treatment groups while G1 (carboxymethyl chitosan-curcumin hydrogel) has the highest percentage of wound healing, even higher than the G5 (positive control). This indicated that the carboxymethyl chitosan-curcumin hydrogel improved the effectiveness of wound healing.

But the statistical analysis using one way ANOVA showed that there is a significant difference between G1, G2, G3, G4, and G5 with G6 but there no significant difference between G1, and G2, G1 with G3, G1 with G4, G1 with G5, G2 with G3, G2 with G4, G4 with G5, G3 with G4, and G3 with G5. So, it can be concluded that the combination of carboxymethyl chitosan-

![Figure 6: Wound healing percentage of different treatments: G1 (carboxymethyl chitosan-curcumin hydrogel), G2 (carboxymethyl chitosan hydrogel), G3 (curcumin hydrogel), G4 (hydrogel basis), G5 (positive control), and G6 (negative control).](image)

![Figure 7: Histopathological images of albino rat's skin on treatment day 7 and 14.](image)
curcumin had similar activity compared to carboxymethyl chitosan or curcumin alone.

Figure 7 shows the histopathological features of the healing process of skin burns in various treatments (HE, 40x staining). The burn healing area was observed to form collagen coir (all groups), epithelialization (red arrow), fat tissue (green arrow), and hair follicles (yellow arrow) begin to form. Description: normal skin area.

The result of this study showed wound healing indicators, consisting of collagen deposition, PMN infiltration, angiogenesis, and fibrosis. Collagen deposition score, PMN score, degree of angiogenesis, and fibrosis were listed in Table 3 within a treatment duration of 7 and 14 days. Collagen deposition and PMN values for 7 days of treatment showed varied results between groups. However, it can be seen that KI has the highest score on the PMN score. The histopathology result after 14 days showed collagen deposition and PMN scores between groups 1, 2, 3, and 4 as well as positive control and intergroup replication are all in uniformity, which showed that the wound had undergone healing after 14 days. However, the four test groups had better results than the negative control, which can be seen from the value of collagen deposition and PMN from negative control, which had a lower score after 14 days of treatment than the other groups.

Table 3: Histopathological Result

<table>
<thead>
<tr>
<th>Group</th>
<th>Duration of treatment</th>
<th>Collagen deposition score</th>
<th>PMN score</th>
<th>Degree of angiogenesis</th>
<th>Degree of fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1.2 I</td>
<td>7 days</td>
<td>2</td>
<td>1</td>
<td>medium</td>
<td>severe</td>
</tr>
<tr>
<td>G1.4 I</td>
<td>7 days</td>
<td>2</td>
<td>1</td>
<td>medium</td>
<td>severe</td>
</tr>
<tr>
<td>G1.6 I</td>
<td>7 days</td>
<td>1</td>
<td>1</td>
<td>mild</td>
<td>medium</td>
</tr>
<tr>
<td>G2.1 I</td>
<td>7 days</td>
<td>2</td>
<td>0</td>
<td>severe</td>
<td>severe</td>
</tr>
<tr>
<td>G2.4 I</td>
<td>7 days</td>
<td>2</td>
<td>0</td>
<td>severe</td>
<td>severe</td>
</tr>
<tr>
<td>G3.1 I</td>
<td>7 days</td>
<td>2</td>
<td>0</td>
<td>medium</td>
<td>severe</td>
</tr>
<tr>
<td>G3.4 I</td>
<td>7 days</td>
<td>2</td>
<td>0</td>
<td>medium</td>
<td>severe</td>
</tr>
<tr>
<td>G3.5 I</td>
<td>7 days</td>
<td>2</td>
<td>0</td>
<td>severe</td>
<td>severe</td>
</tr>
<tr>
<td>G4.3 I</td>
<td>7 days</td>
<td>2</td>
<td>0</td>
<td>medium</td>
<td>severe</td>
</tr>
<tr>
<td>G4.5 I</td>
<td>7 days</td>
<td>1</td>
<td>1</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>G5.2 I</td>
<td>7 days</td>
<td>1</td>
<td>1</td>
<td>mild</td>
<td>medium</td>
</tr>
<tr>
<td>G5.5 I</td>
<td>7 days</td>
<td>1</td>
<td>0</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>G6.1 I</td>
<td>7 days</td>
<td>1</td>
<td>0</td>
<td>mild</td>
<td>medium</td>
</tr>
<tr>
<td>G6.3 I</td>
<td>7 days</td>
<td>1</td>
<td>0</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>G1.1 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>mild</td>
</tr>
<tr>
<td>G1.3 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>mild</td>
</tr>
<tr>
<td>G1.5 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>severe</td>
</tr>
<tr>
<td>G2.3 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>medium</td>
</tr>
<tr>
<td>G2.5 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>medium</td>
</tr>
<tr>
<td>G2.6 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>Medium</td>
</tr>
<tr>
<td>G3.2 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>Medium</td>
</tr>
<tr>
<td>G3.3 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>medium</td>
<td>Medium</td>
</tr>
<tr>
<td>G3.6 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>medium</td>
<td>Medium</td>
</tr>
<tr>
<td>G4.1 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>medium</td>
<td>Severe</td>
</tr>
<tr>
<td>G4.6 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>Medium</td>
</tr>
<tr>
<td>G5.1 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>Medium</td>
</tr>
<tr>
<td>G5.3 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>Medium</td>
</tr>
<tr>
<td>G5.6 II</td>
<td>14 days</td>
<td>2</td>
<td>2</td>
<td>mild</td>
<td>Severe</td>
</tr>
<tr>
<td>G6.2 II</td>
<td>14 days</td>
<td>1</td>
<td>1</td>
<td>mild</td>
<td>medium</td>
</tr>
<tr>
<td>G6.4 II</td>
<td>14 days</td>
<td>1</td>
<td>1</td>
<td>mild</td>
<td>medium</td>
</tr>
</tbody>
</table>

CONCLUSION

The higher concentration of carboxymethyl chitosan could affect the physical characteristics of carboxymethyl chitosan-curcumin hydrogel, i.e., a decrease in viscosity and pH, as well as an increase in spreadability and drying time. On the other hand, a higher concentration of curcumin only affected the pH of the preparation. Macroscopic observation from the wound healing activity test showed that the combination of carboxymethyl chitosan-curcumin increased the wound healing activity of 2nd-degree burns in Wistar rats. From the histopathology test results, it can be concluded after 14 days of treatment the value of collagen deposition and PMN between groups 1, 2, 3, 4, and positive control and intergroup replication (1, 2, 3, 4, and positive controls) are in uniformity which indicates that the wound has undergone wound healing process.

ACKNOWLEDGMENT

This work was financially supported by PUF Research Grant 2018 from Faculty of Pharmacy Airlangga University, Surabaya, Indonesia. The authors gratefully acknowledge the support from the Faculty of Pharmacy and Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia for providing facilities to conduct the research.
REFERENCES