155. A Study on Work Life Balance and Stress of Female Employees in IT Sector: A Study with Special Reference to Employees in Chennai
Mary Sudharshini Fernando, M. Kavitha

829

156. Effectiveness of Sublingual Versus Oral Misoprostol for Induction of Labour at Term
Rekha Parimkayala, Shraddha Shetty K.

834

157. Study of Death among Children Below Five Years of Age and its Relation with Socio Economic Status and Place of Residence Using Verbal Autopsy as a Tool in Dehradun
Sushil Dalal, Kiran Pande, Md Abu Bashar

839

158. Impact of Body Mass Index and Age on Mental Health of Adolescents Girls
Reeta Venugopal, Priyanwada Srivastava, Aniksha Varoda, Mahendra Kumar

843

159. Early Childhood Caries and its Prevalence among the Preschool Children’s Attending the Anganwadi’s at Ukkali Vijayapura District, Karnataka India
Shardha Bai Rathod, Anand V. Nimbal, Padmashree S., Sanjeev Khanagoudra, Ishwar B. Bagoji, G.A. Hadimani

850

160. Knowledge, Attitude and Practices of Biomedical Waste Management among Dental Practitioners in Karad City, Maharashtra, India
Surabhi Mahajan, Shivakumar K.M., Vidya Kadasheetti

856

161. Exploring the Role of Hatha Yoga in Altering Dispositional Mindfulness
Teesta Saksena, Ritu Sharma, Ishwar V. Basavaraj

862

162. Morphometry of Acromion Process of Scapula with Respect to Gender
Pushpa N.B., Roshini Baipe, Pushpalatha K., Deepabhat

868

163. Evaluation of Knowledge and Attitude of Undergraduate Medical and Dental Students towards Integrative Medicine and Integrative Dentistry: A Questionnaire Study
Jaber Emad Mohamed, Ishita Mintal, Sukanya Goswami, Swathi Pai, Vishal Bhat

874

164. Antibacterial Activity of Combination between Probiotic Milk and Mango Honey Against Streptococcus Mutans
Inaaroh Waachidah Azzulfiyiah, Isnaeni, Noor Erma

879

165. Prevalence of Premarital Sex among Adolescents in Kula, Sango in Ilorin South Local Government Area, Kwara State, Nigeria
Oniyangi, Shuaib Olanrewaju, Jamiu Abdul Qudus Tosin, Umar Ibrahim Babangida, Ahmad Makama Getso, Sindama Helen

884

166. Perceived Effect of Sleep Deprivation on the Health of Undergraduates in Kwara State University, Malete, Nigeria
Oniyangi, Shuaib Olanrewaju, Jamiu Abdul Qudus Tosin, Umar Ibrahim Babangida, Ahmad Makama Getso, Sindama Helen

889

167. Noise Relationship with Complaints of Disorders of Hearing in Crafts Industry with Iron in Parigi Moutong District
Abdul Hamid, Abdul Rohim Tualeka

894
1. Study Protocol: A Randomised Controlled Trial on Effectiveness of a Worksite Health Intervention on Common Musculoskeletal Problems and Work-Related Quality of Life (WRQoL) among Female Workers in the Garment Manufacturing Sectors .. 1
 A. Santham Lilly Pet, Tinsi Jain, Bobby Joseph, Pethuru Devadason, Gayathri M

2. Health of the Elderly in India: A Socio-Legal Study ... 7
 Arti, J.K. Mittal

 Sridhar M., Abilasha Ramasubramanian

4. Vitamin D Deficiency in Rural Area of Gautam Buddh Nagar: An Observational Study 16
 Vijay Deepak Verma, Ajay Kumar Garg, Suresh Babu, Ashish Satyarthi

5. Identifying the Status of Menstrual Hygiene Management ... 20
 Amrita Shilpi, Rajasree Roy, Gobina, Spriha Roy

6. Effect of Strengthening of Scapular Stabilizers in Treatment of Rounded Shoulder Posture in Dental Students .. 27
 Ankita M. Patil, Sayali Gifare

7. Elder Abuse in Indian Setting—A Misconception or a Reality— A Deductive Analysis 31
 Anusha Rashmi, Linda Sequeira, Prianka Shashi Kumar, Rashmi

8. A Study on Women Entrepreneurs Dealing Through Stress .. 35
 Archana R.V., K. Vasanthi Kumari

 Arpan Dhoka, G. Varadharajulu

10. In Vitro Antibacterial and Anticancer Study of Bioactive Compounds Isolated from Punica Granatum Peel .. 45
 Arunava Das, J. Bindhu, M. Bharathi, Nithin Johnson, M. Jeevanantham

11. A Study on Utilization of Primary Health Care Services among the People Residing in a Semi-Urban Area 53
 B. Charumathi, D. Jayashri, S. Manisha, Aadhitya, C. Hemanthkumar, Tinsi Jain

12. An Empirical Relationship between Stress and Job Performance: A Study with Private School Teachers 57
 D.S. Premalatha, S. Subramanian
Antibacterial Activity of Combination between Probiotic Milk and Mango Honey Against Streptococcus Mutans

Inaaroh Waachidah Azzulfiyyah¹, Isnaeni¹, Noor Erna¹

¹Chemistry Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Dharmawangsa Dalam Street No. 4 - 6, Airlangga, Surabaya (60286), Indonesia

Abstract

Background: *Streptococcus mutans* commonly found in oral cavity and can be a pathogenic bacteria that leads to dental caries. Rinsing the oral cavity with antibiotic oral therapy is not suggested as the treatment of dental caries, because it has side effects. It can cause resistance of *Streptococcus mutans* towards antibiotic.

Objective: To analyze the antibacterial activity of honey of mango, prebiotic milk, and the combination of both against *Streptococcus mutans* bacteria

Method: The antibacterial activity test was performed by agar diffusion method with Mueller Hinton agar medium to determine the minimal inhibitory concentration inhibition (MIC). A study had been conducted on the antibacterial activity of the combination of honey of mango and probiotic milk of *Lactobacillus paracasei* ATCC BAA52 on the growth of *Streptococcus mutans*. Fermented milk was made by inoculating *Lactobacillus paracasei* ATCC BAA52 fermented milk, mango honey and their combination at optimum ratio (proportion) into fresh milk at 45°C, then incubated for 24 hours at room temperature

Result: The result of probiotic milk characterization showed that the pH of probiotic milk decreased compared to fresh milk from pH 6.33 to 3.89. Furthermore, the MIC of each samples against *Streptococcus mutans* were determined

Conclusion: Combination between mango honey (*Mangifera indica*) and probiotic milk (*Lactobacillus paracasei* ATCC BAA52 can give optimum anti bacteria activities against *Streptococcus mutans*

Keywords: Antibacterial activity, probiotic milk of *Lactobacillus paracasei* ATCC BAA52, Mango Honey, *Streptococcus mutans*.

Introduction

Streptococcus mutans is a facultative anaerobic bacterium, gram positive cocci bacterium. It is commonly found in human oral cavity and being the most pathogenic bacteria which causes dental caries (¹). The characteristics of *S. mutans* are acidogenic, which produces acid, acidoburic, which is capable surviving in an acid environment, and capable to produce a sticky polysaccharide, called dextran. *S. mutans* can adhere to the dental enamel and promote other acidoduric bacteria towards dental enamel, which leads to dental caries (¹).

Rinsing the oral cavity with liquid containing antibiotic is one of solution to prevent dental caries. Unfortunately, it can not prevent dental caries completely because it has side effect that leads to that antibiotic resistance (²). To avoid the antibiotic resistance, scientists nowadays develop extracts and biological active compounds isolated from nature that used for herbal medicine (³).

Exploring the probiotics usage is one of the ways to resolve that problem. Probiotic contains hydrogen

Correspondence Author:
Isnaeni
Chemistry Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Dharmawangsa Dalam Street No. 4 - 6, Airlangga, Surabaya (60286), Indonesia
e-mail: akhmadkusumaW@gmail.com
Phone Number: +6281999201024
peroxide (H₂O₂), organic acids, and peptide compounds namely bacteriocin which are active as antibacterial⁹. Probiotic milk *Lactobacillus paracasei* has ability to inhibit the growth of pathogenic bacteria *S. mutans* in its host⁶. Consuming probiotics regularly can inhibit the growth *S. mutans* without causing side effects.

In addition to probiotics, currently it has been developed the treatment using natural ingredients that have activity as antimicrobial, on of which using honey. Honey is a sweet liquid that derived from plant nectar, which processed by bees and stored in honeycomb cells⁴. The high concentration of sugar in honey, which is 38.5% fructose, can cause hypertonic condition that promotes bacterial cell plasmolysis. It results inhibiting bacterial growth and promoting bacterial cell death⁶. The carbohydrates in honey are in the form of reducing sugars, which are glucose and fructose, with minimum content is 65%⁷.

Both probiotic milk and honey have antibacterial activity with different mechanism⁸. Probiotic milk *Lactobacillus paracasei* contains hydrogen peroxide (H₂O₂), organic acids, and peptide compounds namely bacteriocin which are active as antibacterial⁹. Honey also has ability to inhibit the growth of pathogenic bacteria, such as *E. coli*, *Listeria monocytogenes*, and *S. aureus*, which is influenced by the concentration of reducing sugars and high concentration of sucroses in honey⁸.

Probiotic milk *Lactobacillus paracasei* and honey of mango *Mangifera indica* have a different ingredient, which is active as antibacterial. This study will observe the antibacterial activity of combination of probiotic milk *Lactobacillus paracasei* and honey of mango *Mangifera indica* in various ratio, then it will be found the combination of both ingredients in certain ratio which has maximum antibacterial activity¹⁰. The purpose of this study is to observe the best ratio of mango honey and probiotic milk to impede the growth of *mutans*.

Materials and Method

Materials: The samples include, *Lactobacillus paracasei* ATCC BAA52 honey mangoes and *Streptococcus mutans*. The media was de Man Ragosa Sharpe Agar (MRS) (Himedia Lab), Müller Hinton Agar (OXOID), NaCl (Pa Merck), clindamycin antibiotic (p.g) as positive control group, and sterile distilled water from the Microbiology Laboratory.

Equipment: The equipment that used in this study were analytic scales (Sartorius BL10S), incubator (Mennerti), Öse (Sengkelit), ring (Silinder), vernier caliper (Jason), vortex (Maxi Mix II Type 37600), micro pipette (Socorex), autoclaf (Huxley HL-340), spectrophotometer (Parkin Elmer Lambda EZ201), ependorf, shaker, colony counter, centrifuge (EBA 20), Oswald viscosity-meter, *Cup and Bob* viscosity meter, pH meter (Schott glass mainz type CG 842), *laminar air flow cabinet*, petri dish and the other laboratory glassware.

Results

Table 1: The minimum inhibitory concentration of probiotic *Lactobacillus paracasei* against *Streptococcus mutans* in various concentrations (% v/v)

<table>
<thead>
<tr>
<th>Probiotic Milk Concentration (% v/v)</th>
<th>The diameter of inhibitory zone against Streptococcus mutans (mm)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replication 1</td>
<td>Replication 2</td>
</tr>
<tr>
<td>100</td>
<td>15,35</td>
<td>16,40</td>
</tr>
<tr>
<td>90</td>
<td>14,10</td>
<td>14,95</td>
</tr>
<tr>
<td>80</td>
<td>11,75</td>
<td>12,05</td>
</tr>
<tr>
<td>70</td>
<td>11,60</td>
<td>11,85</td>
</tr>
<tr>
<td>60</td>
<td>11,05</td>
<td>11,75</td>
</tr>
<tr>
<td>55</td>
<td>11,00</td>
<td>10,50</td>
</tr>
<tr>
<td>Control (+)</td>
<td>26,70</td>
<td>27,20</td>
</tr>
</tbody>
</table>

The results showed the minimum inhibitory concentration of probiotic milk *Lactobacillus paracasei* against *Streptococcus mutans* is 10.65 + 0.30 mm at concentration 55%. It can be interpreted if the concentration of probiotic milk *Lactobacillus paracasei* was less than 55%, so it could not inhibit the growth of *Streptococcus mutans*.
Table 2: The minimum inhibitory concentration of honey of mango in various concentrations (% v/v)

<table>
<thead>
<tr>
<th>Concentration of honey of mango (% v/v)</th>
<th>The diameter of inhibitory zone against Streptococcus mutans (mm)</th>
<th>Mean + SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replication 1</td>
<td>Replication 2</td>
</tr>
<tr>
<td>50</td>
<td>14.80</td>
<td>16.55</td>
</tr>
<tr>
<td>25</td>
<td>13.50</td>
<td>13.20</td>
</tr>
<tr>
<td>12.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Control (+)</td>
<td>26.75</td>
<td>26.70</td>
</tr>
</tbody>
</table>

The result shows that the minimum inhibitory concentration of honey of mango was 10.40 ± 0.96 mm at concentration 17.5% against the growth of Streptococcus mutans. It can be interpreted if the concentration of honey of mango solution that was less than 17.5%, could not inhibit the growth of Streptococcus mutans.

Table 3: The minimum inhibitory concentration of honey of mango in various concentrations (% v/v)

<table>
<thead>
<tr>
<th>Concentration of honey of mango (% v/v)</th>
<th>The diameter of inhibitory zone against Streptococcus mutans (mm)</th>
<th>Mean + SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replication 1</td>
<td>Replication 2</td>
</tr>
<tr>
<td>22.5</td>
<td>11.95</td>
<td>11.80</td>
</tr>
<tr>
<td>20</td>
<td>11.50</td>
<td>11.20</td>
</tr>
<tr>
<td>17.5**</td>
<td>9.50</td>
<td>11.40</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Control positive</td>
<td>26.75</td>
<td>26.70</td>
</tr>
</tbody>
</table>

The measurement diameter of inhibitory zone of combination honey of mango and probiotic milk Lactobacillus paracasei against tested bacterial in various concentration is displayed in Table 5 and Figure 4. The test of antibacterial activity of the combination honey of mango and probiotic milk Lactobacillus paracasei was conducted at ratio 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1. The antibacterial activity was determined by the clear zone around hole, that could be measured. To obtain the combination which had maximal antibacterial activity could be done by measuring the diameter of inhibitory zone using Varnier Caliper(9).

Table 4. The antibacterial activity of the combination honey of mango and probiotic milk Lactobacillus paracasei against Streptococcus mutans at various ratio (% v/v)

<table>
<thead>
<tr>
<th>The ratio of (% v/v) honey of mango solution 50% : probiotic milk</th>
<th>Diameter of Inhibitory Zone (mm)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replication 1</td>
<td>Replication 2</td>
<td>Replication 3</td>
</tr>
<tr>
<td>1:9</td>
<td>15.75</td>
<td>14.50</td>
<td>15.40</td>
</tr>
<tr>
<td>2:8</td>
<td>14.10</td>
<td>16.35</td>
<td>14.20</td>
</tr>
<tr>
<td>3:7</td>
<td>15.15</td>
<td>15.65</td>
<td>15.30</td>
</tr>
<tr>
<td>4:6</td>
<td>12.50</td>
<td>12.90</td>
<td>13.50</td>
</tr>
<tr>
<td>5:5</td>
<td>14.80</td>
<td>14.10</td>
<td>16.10</td>
</tr>
<tr>
<td>7:3</td>
<td>16.05</td>
<td>15.95</td>
<td>16.35</td>
</tr>
<tr>
<td>8:2**</td>
<td>17.35**</td>
<td>16.90**</td>
<td>17.10**</td>
</tr>
<tr>
<td>9:1</td>
<td>15.30</td>
<td>16.85</td>
<td>17.50</td>
</tr>
<tr>
<td>Honey of mango solution 50%</td>
<td>14.80</td>
<td>16.55</td>
<td>17.35</td>
</tr>
<tr>
<td>Probiotic milk L. paracasei 100%</td>
<td>12.95</td>
<td>14.50</td>
<td>14.15</td>
</tr>
<tr>
<td>Control positive</td>
<td>18.15</td>
<td>18.10</td>
<td>18.10</td>
</tr>
</tbody>
</table>
Discussion

The result of this research shows the positivity. The combination of honey of mango and probiotic milk *L. paracasei* at the ratio 8:2 showed the optimum antibacterial activity against *S. mutans*, with diameter of inhibitory zone as 17.12 ± 0.22 mm. Based on statistical analysis using one way ANOVA, the combination honey of mango and probiotic milk *L. paracasei* at the ratio of 8:2 did not show a significant difference in antibacterial activity compared to the inhibition zone of 50% honey of mango solution. Despite the diameter of inhibition zone of probiotic milk *L. paracasei* is greater than the diameter of inhibition zone of a honey of mango solution. However, when compared to the inhibitory zone of probiotic milk *L. paracasei*, there were significant differences in antibacterial activity (11).

The result shows that there was a decrease in the diameter of the inhibition zone along with the decreasing concentration of honey of mango. It can be seen from the diameter of the inhibition zone produced by 50% and 25% honey of mango of 13.03 ± 0.15 mm and 13.03 ± 0.57 respectively. While the concentration honey of mango below 25% did not produce antibacterial activity. The test results showed that the MIC of mango honey solution to *S. mutans* was at a concentration of 17.5% with a inhibition zone diameter of 10.40 ± 0.96 mm.

After that, the determination of MIC in probiotic milk *L. paracasei* was carried out at various concentrations, namely at concentrations of 100%, 90%, 80%, 70%, 60%, 55%, 50%, 45%, 25%, 12.5%, 6.2%, 3.1% and 1.6%. In the result it was found that the MIC of probiotic milk *L. paracasei* against *S. mutans* was at a concentration of 55%, with a inhibition zone diameter of 10.65 ± 0.30 mm. By knowing the MIC of probiotic milk *L. paracasei* at a concentration of 55%, it proved that probiotic milk *L. paracasei* has a smaller antibacterial activity compared to honey of mango which has MIC at a concentration of 17.5% (12).

The result showed the combination honey of mango and probiotic milk *L. paracasei* at the selected ratio was 25% with inhibition zone diameter 13.03 ± 0.57 mm against *S. mutans*. When compared to MIC each sample of honey of mango and probiotic milk *L. paracasei*, it can be said that the combination of honey of mango and probiotic milk *L. paracasei* at the selected ratio has a minimum inhibitory concentration greater than honey of mango (13). But it is lower than the concentration minimum inhibition of probiotic milk *L. paracasei*. Then the optimum combination characterization was carried out, which included organoleptic (color, taste odor), pH, viscosity and specific gravity (14). Based on the results of the selected combination characterization it has a pH of 3.89 ± 0.00, the viscosity is 5.33 ± 0.390 cps and the specific gravity is 1.096 ± 0.000 g/mL.

In the combination of honey of mango and probiotic milk *L. paracasei* at the optimum ratio 8:2, there was a synergistic effect even though the concentration of probiotic milk was less than honey of mango (14). It caused by honey of mango containing more sources which can be used as an energy for probiotic bacteria *L. paracasei*. In a combination honey of mango and probiotic milk *L. paracasei*, honey of mango can play a role in two things, namely as an energy source for probiotic milk bacteria *L. paracasei* or can inhibit the growth of probiotic milk bacteria *L. paracasei* (15). This study examines the effect honey of mango on the growth of probiotic bacteria *L. paracasei*, proved that mango honey did not inhibit the growth of probiotic bacteria *L. paracasei*.

The analysis of antibacterial activity in this study using diffusion method, because of its advantages. This method is quite simple, does not require long time and preparation, and can also be used to see the sensitivity of antibacterial samples at certain concentrations of various types of tested bacteria (16). The standard solution used in this study was clindamycin with a concentration of 0.01 ppm which was previously optimized for the antibacterial activity of clindamycin with various concentrations of *S. mutans* (13). A concentration of 0.01 ppm was chosen because at concentrations above 0.01 ppm clindamycin produced a diameter of the inhibition zone that was too large which could lead to difficulty of measuring the diameter of the sample inhibition zone. Clindamycin is chosen as a standard solution or positive control because it is an effective antibacterial used to cure tooth damage due to the growth of Streptococci bacteria (17).

Conclusion

Based on the results of this study, it can be concluded that the Minimum Inhibitory Concentration (MIC) of probiotic milk *Lactobacillus paracasei* ATCC BAA52 on *Streptococcus mutans* was 55%, with inhibition zone diameter of 10.65 ± 0.30 mm. Minimum Inhibitory Concentration (MIC) of honey of mango solution against *Streptococcus mutans* was 17.5%, with inhibition zone diameter 10.40 ± 0.96 mm.
Minimal Inhibition Concentration (MIC) combination of honey of mango (Mangifera indica) and probiotic milk Lactobacillus paracasei ATCC BAA52 at a ratio of 8:2 to Streptococcus mutans by 25% with inhibition zone diameter 13.03 ± 0.57 mm.

Ethical Clearance: This research process did not involve any participant in the survey, but instead using agar diffusion method in laboratory in accordance with the ethical research principle based on the regulation of research ethic committee. The present study was carried out in accordance with the research principles. This study implemented the basic principle ethics of respect, beneficence, non-maleficenct, and justice.

Conflict of Interest: There is no report about any conflict related with this author’s research.

Source of Funding: This study is funded by the author self only.

References

