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Abstract. We revisit the properties of Bessel-Riesz operators and present a different
proof of the boundedness of these operators on generalized Morrey spaces. We also obtain
an estimate for the norm of these operators on generalized Morrey spaces in terms of the
norm of their kernels on an associated Morrey space. As a consequence of our results,
we reprove the boundedness of fractional integral operators on generalized Morrey spaces,
especially of exponent 1, and obtain a new estimate for their norm.
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1. INTRODUCTION

Integral operators such as maximal operators and fractional integral operators have
been studied extensively in the last four decades. Here we are interested in Bessel-
Riesz operators, which are related to fractional integral operators. Let 0 < a < n
and v 2 0. The operator I, , which maps every f € LT (R"), 1< p < o0, to

loc
I3 J (&) := L Koz —y)fly)dy = Koy * f(2), =R,

where K, o (x) = |2[*"™(1 + |z[)”7, is called Bessel-Riesz operator, and the kernel
Ko~ is called Bessel-Riesz kernel. The boundedness of these operators on Morrey
spaces and on generalized Morrey spaces was studied in [8] and [9].
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Let 1 < p < oo and p: RT — R be of class G, that is, ¢ is almost decreasing
(there exists C' > 0 such that @(r) = Cg(s) for r € s) and ¢P(r)r™ is almost
increasing (there exists G > 0 such that ?(r)r" < Cy¢P(s)s™ for r < 5). Clearly
if  is of class G, then  satisfies the doubling eondition, that is, there exists C' = 0
such that C~! < ¢(r)/¢(8) < C whenever 1 < rs™! < 2. We define the generalized
Morrey space LP#(R™) to be the set of all functions f € LY (R™) for which

loc

1 1 1/p
Bz = BB —(— ] )P tlr) .
B=Ba,r) e(r)\|B| /s

where | B| denotes the Lebesgue measure of B. (Recall that the Lebesgue measure of
B = B(a,r) is |B(a,r)| = Cpr™ for every @ € R" and r > 0, where C,, > 0 depends
only on n.)

If1 <p<q<ocand @(r) := Cpr~™49, ¢ > 0, then LP¥(R") is the classical
Morrey space LP9([R™), which is equipped with

1/p
| fllera:= sup |B|l'{q_lfp([ [f{z)[" (lr) ]
) B

B=B(a,r
Particularly, for p = q, LPP(R") is the Lebesgue space LP(R™).

In [9], we know that for v > 0, K,, - is a member of L'(R™) spaces for some values
of t depending on « and -y. It follows from Young’s inequality (see [3]) that

oy fllpe < 1Koy

|l fllee,  f € LP(R™)

whenever 1 < p < t', 1/qg = 1/p— 1/t' (where #' denotes the dual exponent of £) and
nf(n+v—a) <t <nf(n—«). This tells us that I, - is bounded from LF(R") to
LYR™) with |[[Io~|lor—pe < || Ka~|r:. In [8], it is also shown that I, - is bounded
on generalized Morrey spaces but without a good estimate for its norm as on Morrey

spaces. We shall now refine the results by estimating the norms of the operators
more carefully through the membership of K, in Morrey spaces.

Note that for v = 0, I,0 = I, is the fractional integral operator with kernel
Kq(x) := |x|*~™. Hardy and Littlewood [6], [7] and Sobolev [13] proved the bound-
edness of I, on Lebesgue spaces, The boundedness of [, on Morrey spaces is proved
by Peetre [12], and improved by Adams [1] and Chiarenza and Frasca [2]. Later,
Nakai [11] obtained the boundedness of I, on generalized Morrey spaces, which can
be viewed as an extension of Spanne’s result. In 2009, Gunawan and Eridani [4]
proved the boundedness of I, on generalized Morrey spaces which extends Adams’
and Chiarenza-Frasca’s results.
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In this paper, we give a new proof of the boundedness of I, . on generalized
Morrey spaces. At the same time, an upper bound for the norm of the operators is
obtained. As a consequence of our result, we have an estimate for the norm of [,
(from a generalized Morrey space to another) in terms of the norm of K, on the
associated Morrey space. A lower bound for the norm of the operators is discussed
in Section 3.

2. THE BOUNDEDNESS OF [, . ON GENERALIZED MORREY SPACES

We begin with a lemma about the membership of K, in some Morrey spaces.
Note that throughout this paper, the letters C' and ), denote constants which may

change from line to line.

Lemma 2.1. If 0 < o < n, then K, € L**(R"), where 1 < s <t =n/(n — a).

Proof. Let 0 < a < n. Take an arbitrary B = B(a, R), where a € R" and
R >0. For 1 < s <t=n/(n— «) we observe that

|BJ#/t-! f K*(2) dz < |B(0, R)|*/t! / fo](@=m)s gy
B B(0,R)

5: CI Iﬂ(&f!'-—l]}?lﬂ(l—&ft] =C.

By taking the supremum over B = B(a,R) we obtain [|K,|[j.. € C. Hence
K. € L¥'(R™). (]

Remark 22, For 0 < a < n and v > 0 we know that K, € LYR") for
nfn+y—a) < t < nf(n—a), see [9]. By the inclusion property of Morrey
spaces (see [5]) we have K, € L*(R") = L**(R") C L*(R") for 1 < s < ¢t
and n/(n +7v—a) <t <n/(n—a). Moreover, because K, ,(x) < K,(x) for every
x € R", K, - is also contained in L**(R") for 1 £ s <t =n/(n— a).

As a counterpart of the results in [8] and [9], we have the following theorem on the
boundedness of I, ., on Morrey spaces. Note particularly that the estimate holds for
m = 1.

Theorem 2.3. If 0 < a < n and v = 0, then I, is bounded from L9 (R"™)
to LP2%2(R™) with

Manfllzraem < ClEKanllollflznn, f€ LR

whenever 1 < p1 € 1 < nfa, 1/ps = 1/py — 1/8', and 1/qs = 1/qn — 1/t', with
l€<s<t=nf/ln—a)foryz0orl<s<tandn/in+vy—a)<t<n/(n-a)
for ~ = 0.

Online first 3




Theorem 2.3 is in fact a special case of the boundedness of I, . on generalized
Morrey spaces, which is stated in the following theorem.

Theorem 2.4. Let 0O<a<nandy 20. If o: RY — R* is of class Gy, such
that [ @(r)r et =Ldr < Cp(R)R™YY for every R > 0, then I, ., is bounded from
LPu#(R™) to LP2¥(R™), where ¥(r) := @(r)r™* | with

ey fllpezvs € CliEaqllpet|fllLere, fe LPP#(RY)

whenever 1 < py < nfa and 1/p; = 1/py —1/¢', with 1 < 8<% = n/(n— a) for
zl0orl<s<tandn/(n+v—a)<t<nf/(n—a) forvy>0.

Proof. Suppose that v > 0 and all the hypotheses hold. For f € LP*¥(R") and
B = B(a, R), where a € R™ and R > 0, write

f=h+fa:=Frs+ Iz

where B = B(a,2R) and B€ denotes its complement. To estimate I~ f1, we observe
that for every & € B, Holder's inequality gives

Tar fi( / Kan(z — )| f()]dy

= [ Kl =l @I K- ) )]0 dy
1/p2
< ( [ Kaala -l dy)
I5)

1/p
(ﬁ[{{i’z 2= (3 _ 4| f ()| (P2 —P1)/ (P2 =1) (ly) 2_

B

Meanwhile, we have

fﬁ{m —8)/(pa— 1{ y|f(y }|(m—p1}/(m—l] dy
153

pa(l/s—1/p2) pa/s
Urma.— ) ([_uwnmdy) |
B
Therefore we obtain

1/pa
| an fi( ([ K3, ¥ (x = y)| f()” dy)

« ([ Koo =n) dy)m_m ([ 1w dy)w
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(/ Ki (@ =ylfw)™ dy)”m

% CRn (1=s/t)(1/s=1/pa)+n/s p /s’ (QR)HKﬂ "='||i, Hhm”f”ilpf,{.‘;-

We then take the pyth power and integrate both sides over B to get
f |Itl’.'}‘fl (-'-'.?.J'Ipl'i dx
B
[ f K, x(z = y)|f{y)" dydz
x (CRr=#/00/s=3p)+nts Gpr/5 (R Ko o122 £330 ).

By Fubini’s theorem we have

] II(t_.'}'fl ('T'HI{'.2 dx
B

< fyror (s Ly

x (CRM(QR/Oq e Yeatnle oo /e QO R) K o 1ot I F e )
< CRMD|Kq [l fﬁ |f()I™ d

x (Rr-sQ Vel il ol Oy B NP I )
< CRM/OHRP QR) | Kot 1 F o1 e

“ (Rn{1—.%/t}[1fs—1,’;)z}+njs’d).js’(gR)HKa THL -‘Th’z||f||ili£-'_i:]i’:i

C|Bly"* (R) | Kan T I IS

whence

1 1 1;;[)2
—_— — A% Pz E < g =4 P
'ffllz":}?) (lBI L IIrx_.’}'fi{T” (IT) - C”‘h €, ”L ”f”L

Next, we estimate I, , f2. For every x € B = B(a, R) we observe that

s b2 @I < [ Kasle =)l f)]dy

< f Koz —y)|f(y)ldy
le—y|=R

e )
= 2/ Kan(@ -y f@)|dy
=0 /2t RS|z—yl<2v+1R

< Bl K./ (2°R) [f(y)| dy

= FRg |w—y|<2FTIR
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= 5]

1/m
< O3 Kep@m Ry | i ay)
pise? 2% RS |z —y|<25+1R

< Clfllene Y Kany(2*R)(2*R)"0(2"R).
k=0

For every k € Z we have

1/s
o g T ) ( [ K (z—y) dy)
2k R |r—y|<2k+1 R

< C@*R) ™| Kaylzes.

Since [, e(r)r™/* =1dr < Cp(R)R™" | we get

= ]

oy fo(@)| € ClKaqllpell fllzoe Y (2R o(2*R)

=0
lx £
CllK ol ool fllre [ o) =L dr
R

CllKanllzosl e o(R) R
Cll Kol ol fllim e w(R).

P/

M

Raising to the poth power and integrating over B we obtain

/B oy f2(2)|P d2 < C(||[ Kaqyllpaell fll oo )24 (R)| B,

whence
1 1 14;??2
g (ﬁ [ Vs st 1) < CllKargllzoel fllzrie.
Combining the two estimates for I, - f; and I, - fo we obtain

1 1 1/pa
1] . S 3 £ ra M g Fﬂ_ A 8,t PL¥ .
5 (5 [ @i de) < Ol

Since this inequality holds for every a € R™ and R > 0, it follows that

oy fll r2w € CllEaqyllpeellfllLore,
as desired.
We may repeat the same argument and use Lemma 2.1 to obtain the same in-
equality for the case where y =0 and 1 € s <t =n/(n — a). O
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Remark 2.5, Theorems 2.3 and 2.4 give us upper estimates for the norm of
the Bessel-Riesz operators (from one Morrey space to another). In particular, for
v = 0 we have an estimate for the norm of the fractional integral operator I, in
terms of the norm of its kernel (on the associated Morrey space), which follows from
the inequality

Mafllras < CllEallgedllfllzos

for 1 <p; <nf/aand 1/ps=1/p; —1/s', with 1 < s <t=n/(n—a).

In the following section, we discuss lower estimates for the norm of the operators
in terms of the norm of the Bessel-Riesz kernel (on some Morrey spaces).

3. AN BSTIMATE FOR THE NORM OF THE OPERATORS

Recall that if (X, ||-||x) and (Y, ||-||y) are normed spaces and if T: (X, ||-||x) —
(N,

|-]lv) is a linear operator, then the norm of T (from X to ¥') is defined as

'11
Ty o= sup LAY
0 IIfllx

Knowing that the Bessel-Riesz operator [, - is a linear operator on Morrey spaces,
we would like to estimate the norm of I, . from a (generalized) Morrey space to
another. We obtain the following result.

Theorem 3.1. Let 0 < o < mn, ¥ 2 0, and ¢ be of class G, where 1 < p; < n/a.
If o(r)r™ is almost increasing and for every R > 0 we have
(i) [r et ~1dr < C1p(R)R™Y,

(ii) fn” P (r)r 1t dr € CoP' (R)R™, and

(iii) [T 0% (P dr < C3R™ /¢ (R)R™', where 1 < py < tand 1 < s <
t=nf/n—a)foryz0orl<mst,l<s<standn/inty—a)<i<
nf(n — a) for vy > 0,

then we have

C"-’l”‘r{ﬂ-‘r”L“l-' < ||In.~;||g,:r| W Lp2t S Cs

.1

FAN

whenever 1/ps = 1/p1 — 1/s' and ¢(r) = @(r)r/t.

l<ppr<tandl<s<t=n/f(n—a)we have

In particular, for v = 0,

Cfl”ir{ﬂ”lﬁ’l-‘ < ”Jtr”LPl--;_.Lp-.a-t" < C,'}”I{w”bc.:
whenever 1/ps = 1/p1 — 1/s" and (r) := @(r)r™/t .
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Proof. Suppose that 4 > 0 and all the hypotheses hold. By Theorem 2.4 we
already have
e

|eovwszosw €Ol gglpon.

To prove the lower estimate, put g(r) := @(r)r". Let B = B(a, R), where a € R"

and R > 0. By our assumptions on ¢ we have

1/s" R = 1/s
IBy(R)( = [ o= (jz)dz) < Co(R)R™ [ " a) <e
' |B| Jg o Jo ¥ (r)rme o

Now take fo(x) := @(|z|). Here || fol|ps:1.» = 1. Moreover, one may compute that

Loy folz) 2 [B{ N Koq(@ = y)foly) dy = CKa 5 (22)p(|2)|2]" = Col|]) Ko,y (x)

for every x € R™. It follows that

le(l- DKo llLezv < Clllayfollpres < ClllaqllLee—przs-

Next, by Holder’s inequality we have

( aswrae) ™ < ([ oaiae) " (s as)

whence

1/m
IB|lff.—1.;‘p| ([ I{zl.\.(mj dm) S:__ |B|1ftd}(R)(L[ g_s (lx”dﬂ:)
B 1B| /s

1 1 i . 1/p2
x W(ﬁ [ (ella K ) iT)

Sé CHIH‘_-}-”LH[N’_;LHQ.L-.

1/

By taking the supremum over B = B(a, R) we conclude that
C||I(r.'z.,"y||i.f’l-‘ = ||Iﬁ1'}’||L?’L-¢—1LF’2-".~

as desired. The same argument applies for the case where v = 0 with 1 < p; < t and
l<s<t=nf(n—a). O

Remark 3.2. One may observe that the constants C; and C5 in Theorem 3.1
depend on p, n, p1, s, and £, but not on a and ~. Although the lower and the upper
bound are not comparable, we may still get useful information from these estimates,
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especially for the norm of the operator I, from LP*¢(R™) to LP2*(R"). Observe
that for 1 < p1 <t = n/(n — a) we have | K,|[}},.. = C/{(a—n)p1+n) = C/e.
Hence, if all the hypotheses in Theorem 3.1 hold for the case where v = (), then we
obtain |[Is || Ls1 v —raw = C/ay, which blows up when a — 0%, For ¢(r) := r~"/
with 1 € p1 < 1 < min{s,n/a} and 1 < s < n/(n — a), our result reduces to the
estimate ||Io|lLri-a1 —prza2 2 C/oy, where 1/ps = 1/p1—1/s" and 1/g2 = 1 /g1 — /.
A similar behavior of the norm of I, from LP'(R") to LP2(R™) for 1/ps = 1/p1—a/n
when o — 0% is observed in [10], Chapter 4.
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