CONTENTS

		Page
COVER		i
VALIDIT	Y SHEET	ii
DECREE	OF CLOSED EXAMINATION	iii
CONTEN	TS	iv
ACKNOV	VLEDGEMENTS	ix
LIST OF	FIGURES	xi
LIST OF TABLES		xiii
LIST OF ABBREVIATIONS		xiv
LIST OF PUBLICATIONS AND CONFERENCE		xvi
ABSTRACT		xvii
CHAPTE	RI	
INTR	ODUCTION	1
1.1	Background	1
1.2	The Problems of Research	5
1.3	The Purposes of Research	5
1.4	Benefit of Research	5

CHAPTER II

LITERA	TURE REVIEW	6
2.1	The Role of Natural Product Chemistry in Drug Discovery	6
2.2	Introduction to Genus Clausena	6
2.3	Phytochemistry of Clausena	7
2.3.1	Alkaloids	10
2.3.2	Coumarins	11
2.3.3	Flavonoids	12
2.4	Profile of C. excavata; Distribution and Plant Taxonomy	12
2.5	Phytochemistry and Pharmaceutical Aspects of C. excavata	14
2.6	Free Radicals, Antioxidants	19
2.6.1	Determination of antioxidants activity	22

2.6.2	DPPH assay	22
2.7	Antidiabetic Medicinal Plants Used for Diabetes Mellitus	23
2.8	Diabetes and Oxidative Stress	24
2.9	Cancer	24
2.10	Chromatographic Methods	25
2.10.1	Thin layer chromatography (TLC)	25
2.10.2	Column chromatography (CC)	26
2.10.3	Gel permeation chromatography	26
2.11	Structural Elucidation of Isolated Compounds	27
2.11.1	Ultraviolet-visible spectroscopy	27
2.11.2	Nuclear magnetic resonance spectroscopy	27
2.11.2.1	One dimensional (1D) NMR spectra	28
2.11.2.1	.1 ¹ H NMR spectra	28
2.11.2.1	.2 ¹³ C NMR spectra	29
2.11.2.2	Two dimensional (2D) NMR	29
2.11.2.2	.1 ¹ H- ¹ H Correlation spectroscopy (COSY)	30
2.11.2.2	.2 Heteronuclear single quantum correlation (HSQC)	30
2.11.2.2	.3 Heteronuclear multiple bond coherence (HMBC)	30
2.11.2.2	.4 Nuclear overhauser effect spectroscopy (NOESY)	31
2.11.3	Mass spectrometry (MS)	31

CHAPTER III

CONCE	PTUAL FRAMEWORK	32
3.1	Conceptual Framework	32

CHAPTER IV

RESEA	RCH METHODS	36
4.1	Collection and Preparation of Sample	36
4.2	Materials	36
4.3	Extraction, Partition, Fractionation, and Isolation of C. excavat	a 37
4.3.1	Fractionation and isolation of methanol fraction of C. excavata	39

iii

4.4	General Procedure for Modification of TMT-1 with	
	Different Kinds of Benzoyl Chloride by Acylation method	41
4.5	DPPH Scavenging Activity Test	42
4.6	α-Glucosidase Inhibition Activities	42
4.7	MTT assay	43

CHAPTER V

RESULTS	S AND DISCUSSION	45
5.1	Identification of Bioactive Compounds from Extract of	
	C. excavata	45
5.1.1	Spectroscopic data of isolated compounds from C. excavata	45
5.1.1.1	Spectroscopic data of TMT-1, (5-hydroxy-8,8-	
	dimethyl-10-(2-methylbut-3-en-2-yl)-2H,8H-pyrano	
	[3,2-g]chromen-2-one/ Nordentatin)	45
5.1.1.2	Spectroscopic data of TMT-2, (5-methoxy-8,8-dimethyl-	
	10-(2-methylbut-3-en-2-yl)-2H,8H-pyrano[3,2-g]chromen-2	
	-one/ Dentatin)	45
5.1.1.3	Spectroscopic data of TMT-3, (2-hydroxy	
	-1-(3-methylbut-2-en-1-yl)-9H-carbazole-3-	
	carbaldehyde/ Heptaphylline)	46
5.1.1.4	Spectroscopic data of TMT-4	
	(5-hydroxy-8,8-dimethyl-3,6-bis(2-methylbut-3-en-2-yl)-	
	2H,8H-pyrano[2,3-f]chromen-2-one/ Excavatin-A)	46
5.1.1.5	Spectroscopic data of TMT-5, (1-methoxy-9H-	
	carbazole-3-carbaldehyde/ mukonine)	46
5.1.1.6	Spectroscopic data of compound-6 (5-methoxy-8,8-dimethyl-	
	2H,8H-pyrano[3,2-g]chromen-2-one/ xanthoxyletin)	47
5.1.1.7	Spectroscopic data of compound-7(2,7-dihydroxy-1-(3	
	-methylbut-2-en-1-yl)-9H-carbazole-3-carbaldehyde/	
	7-hydroxyheptaphylline)	47

iv

5.2.1	Identification and structural elucidation of TMT-1	
	(Nordentatin)	47
5.2.2	Identification and structural elucidation of TMT-2	
	(Dentatin)	48
5.2.3	Identification and structural elucidation of TMT-3	
	(heptaphylline)	50
5.2.4	Identification and structural elucidation of TMT-4	
	(Excavatin-A)	51
5.2.5	Identification and structural elucidation of TMT-5	
	(Mukonine)	53
5.2.6	Identification and structural elucidation of TMT-6	
	(Xanthoxyletin)	54
5.2.7	Identification and structural elucidation of TMT-7	
	(7-hydroxyheptaphylline)	56
5.3	Semi-Synthesis	57
5.3.1	Spectral data of TMT-1a, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 4-bromobenzoate	57
5.3.2	Spectral data of TMT-1b, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 3-chlorobenzoate	58
5.3.3	Spectral data of TMT-1c, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 2-chloro-4-nitrobenzoate	58
5.3.4	Spectral data of TMT-1d, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 3-chloro-4-fluorobenzoate	58
5.3.5	Spectral data of TMT-1e, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 3-bromobenzoate	59

v

5.3.6	Spectral data of TMT-1f, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 4-butylbenzoate	59
5.3.7	Spectral data of TMT-1g, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 2,4,6-trichlorobenzoate	59
5.3.8	Spectral data of TMT-1h, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 3-(trifluoromethyl) benzoate	60
5.3.9	Spectral data of TMT-1i, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 3,5-bis(trifluoromethyl)benzoate	60
5.3.10	Spectral data of TMT-1j, 2,2-dimethyl-10-(2-	
	methylbut-3-en-2-yl)-8-oxo-2H,8H-pyrano[3,2-g]chromen-	
	5-yl 4-iodobenzoate	61
5.4	Investigation of Antioxidant and α -glucosidase	
	Inhibitions Activities of Isolated Compounds	62
5.4.1	Antioxidant activity of isolated compounds from	
	C. excavata and their structural activity relationship	62
5.4.2	α -glucosidase inhibitions activities activity of	
	isolated and modified compounds from C. excavata	64
5.4.3	Anticancer activity evaluation of isolated and modified	
	compounds from <i>C. excavata</i> on <i>Hela</i> and <i>T47D</i>	71
CHAPER VI		

CONCLUSIONS	75
REFERENCES	77
Supplementary materials	85

DESSERTATION SECONDARY METABOLITES FROM... TIN MYO THANT

vi

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks to the people who have given me the support from the beginning of my study, along the way till the completion of my proposal of dissertation. The success of this thesis would not be realized without the generosity and assistance of some persons and various institutions to whom I would like to express my deepest gratitude.

I would like to gratefully and sincerely thank my supervisor, Dr. Nanik Siti Aminah, M. Si., Faculty of Science and Technology, Universitas Airlangga, for her good guidance, understanding, patience, valuable advice, kindness and encouragement during my plan.

I would like to acknowledge my co-supervisor (1) Dr. Alfinda Novi Kristanti, DEA, Faculty of Science and Technology, Universitas Airlangga as my co-supervisor who helped me develop good ideas, guidance, kindness, valuable suggestions, and support in ways too numerous to mention.

A special acknowledgement to my co-supervisor (2) Dr. Yoshiaki Takaya, Faculty of Pharmacy, Tempaku, Nagoya, Meijo University, Japan, for his patience guidance, valuable suggestions and for helpful assistances in spectroscopic measurements.

I would like to gratefully and sincerely thank to retired Professor, Dr. Myint Myint Sein, Head of Department of Chemistry (retired), Mandalay University, Myanmar for her good guidance, valuable advice, kindness and encouragement during my thesis work.

I would like to express my sincere gratitude to my Teacher, Dr. Hnin Thanda Aung, Associate Professor, Department of Chemistry, Mandalay University, for her supervision, constructive criticism, her scientific support as well as her indefinite motivation throughout this work.

A special thanks to all member of Natural Product Research unit, Mr. Rico Ramdham (lecturer), Ms. Wiwik Agustina, and Mr. Rahmat (lab-assistant) for their kind help and support.

vii

I am grateful to professor, Dr. Soe Myint Aye, Department of Botany, Mandalay University, Myanmar for his identification of plant materials.

Finally I would like to thank to my parents and family for their unconditional love and support.

Moreover, this research would not have been possible without the financial support of Airlangga Development Scholarship Program at Universitas Airlangga, Indonesia for providing the research funds during my doctoral study period in Universitas Airlangga and the financial support.

Surabaya, October 16, 2019

Tin Myo Thant NIM. 081717027308

LIST OF FIGURES

Figure		Page
2.1	Some secondary metabolites reported from C. lansium	7
2.2	Some secondary metabolites reported from C. anisata	8
2.3	Some carbazole alkaloids reported from C. anisum-olens	9
2.4	The appearance of whole plant, flower and roots of C. excavata	13
2.5	Some carbazole alkaloids reported from C. excavata	14
2.6	Some carbazole alkaloids reported from C. excavata	15
2.7	Some coumarins reported from C. excavata	16
2.8	Some coumarins reported from C. excavata	18
2.9	Some coumarins reported from C. excavata	18
2.10	Some binary and dimer compounds reported from the C. excavata	19
2.11	Synopsis free radical formation oxidative stress and pathogenesis of	
	chronic diseases	21
3.1	Scheme of conceptual framework	35
4.1	Scheme for isolation of pure compound from <i>C. excavata</i> and their	
	bioactivities	38
4.2	Extraction, isolation scheme used for the plant material of C. excavata	a 40
4.3	Scheme of modification of TMT-1 by acylation method	42
5.1	Structure of TMT-1	48
5.2	Structure of TMT-2	49
5.3	Structure of TMT-3	50
5.4	Structure of TMT-4	52
5.5	Structure of TMT-5	54
5.6	Structure of TMT-6	55
5.7	Structure of TMT-7	56
5.8	Structure of semi-synthesized compounds from nordentatin (1)	61
5.9	Antioxidant activities of isolated compounds from C. excavata	62
5.10	Comparison of Antioxidant activities of isolated compounds	
	from <i>C. excavata</i>	63

DESSERTATION SECONDARY METABOLITES FROM... TIN MYO THANT

ix

5.11	Inhibition activities of isolated compounds against on maltase	
	α-glucosidase enzymes	65
5.12	Structural-Inhibition activity relationship of isolated compounds	
	from C. excavata against on maltase enzymes	65
5.13	Inhibition activity of isolated compounds from C. excavata against on	
	sucrase enzymes	66
5.14	Inhibition activity of isolated compounds from C. excavata	
	against on sucrase enzymes	66
5.15	Comparison chart for the inhibition activity of	
	isolated compounds against yeast α -glucosidase enzymes	67
5.16	Inhibition activity of isolated compounds from C. excavata	
	against on yeast enzymes	68
5.17	Inhibition activity of modified compounds against on yeast enzymes	69
5.18	Comparison of inhibition activities between modified compounds	
	and parent compound against on yeast α -glucosidase enzymes	70
5.19	Investigation of anticancer activity of modified compounds	
	and TMT-1 against on Hela cell line	72
5.20	Investigation of anticancer activity of modified compounds	
	and TMT-1 against on Hela cell line	72
5.21	Comparison chart for modified and parents compounds	
	for cytotoxicity test against on T47D cell line	73
5.22	Investigation of anticancer activity of modified compounds	
	and TMT-1 against on T47D cell line	73

DESSERTATION SECONDARY METABOLITES FROM... TIN MYO THANT

Х

LIST OF TABLE

Table		Page
5.1	1 H (600 MHz), 13 C (151 MHz) NMR and HMBC spectroscopic data	
	of TMT-1	48
5.2	1 H (600 MHz), 13 C (151 MHz) NMR and HMBC spectroscopic data	
	of TMT-2	49
5.3	1 H (600 MHz), 13 C (151 MHz) NMR and HMBC spectroscopic data	
	of TMT-3	50
5.4	1 H (600 MHz), 13 C (151 MHz) NMR and HMBC spectroscopic data	
	of TMT-4	53
5.5	1 H (600 MHz), 13 C (151 MHz) NMR and HMBC spectroscopic data	
	of TMT-5	54
5.6	1 H (600 MHz), 13 C (151 MHz) NMR and HMBC spectroscopic data	
	of TMT-6	55
5.7	1 H (600 MHz), 13 C (151 MHz) NMR and HMBC spectroscopic data	
	of TMT-7	56
5.8	Investigation of antioxidant activity of isolated compounds	62
5.9	Investigation of inhibition activity of isolated compounds	64
5.10	Investigation of inhibition activity of modified compounds	70
5.11	Investigation of cytotoxic activity of isolated compounds	
	and extracts of C. excavata	71
5.12	Investigation of cytotoxic activity of modified compounds	71

xi

LIST OF ABBREVIATIONS

WHO	=	World Health Organization
¹ H NMR	=	Proton Nuclear Magnetic Resonance
¹³ C NMR	=	Carbon Nuclear Magnetic Resonance
HSQC	=	Heteronuclear Single Quantum Coherence
HMBC	=	Heteronuclear Multiple Bond Coherence
DQF-COSY	=	Double Quantum Filtered Correlation Spectroscopy
NOESY	=	Nuclear Over Hauser Effect Spectroscopy
Hz	=	Hertz
MHz	=	Mega Hertz
δ	=	Chemical shift value
ppm	=	Parts per million
8	=	Singlet
d	=	Doublet
dd	=	Double doublet
t	=	Triplet
m	=	Multiplet
J	=	Coupling constant
CDCl ₃	=	Deuterated chloroform
methanol-d ₄	=	Deuterated methanol
DMSO-d ₆	=	Deuterated dimethylsulfoxide
FT-IR	=	Fourier Transform Infrared
UV	=	Ultraviolet
Vis	=	Visible
cm ⁻¹	=	Reciprocal centimeter
NaCl	=	Sodium Chloride
DART-MS	=	Direct analysismeal time Mass Spectroscopy
m/z.	=	mass by charge
HPLC	=	High Performance Liquid chromatography
DCM	=	Dichloromethane

EtOAc	=	Ethyl Acetate
MeOH	=	Methanol
H_2O	=	Water
$R_{\rm f}$	=	Retardation factor
v/v	=	volume by volume
°C	=	degree Celsius
%	=	Percentage
g	=	gram
mg	=	milligram
kg	=	kilogram
mp	=	Melting point
$[\alpha]_D^{20}$	=	Specific rotation in degrees
TLC	=	Thin-Layer Chromatography
VLC	=	Vacuum liquid chromatography
GCC	=	Gravitational column chromatography
CC	=	column chromatography
Fig.	=	Figure

LIST OF PUBLICATION AND CONFERENCE

List of Publications :

- T. M. Thant, N. S. Aminah, A. N. Kristanti, R. Ramadhan, P. Phuwapraisirisan, Y. Takaya, 2019, A new pyrano coumarin from *Clausena excavata* roots displaying dual inhibition against α-glucosidase and free radical, Nat. Product research. (Online Published)
- T. M. Thant, N. S. Aminah, A. N. Kristanti, R. Ramadhan, H. T. Aung, Y. Takaya, 2019, Antidiabetes and Antioxidant agents from *Clausena excavata* root as medicinal plant of Myanmar, Open Chemistry. (Online Published)
- N. S. Aminah, T. M. Thant, A. N. Kristanti, R. Ramadhan, H. T. Aung, Y. Takaya, 2019, Carbazomarin: A New Potential of α-glucosidase inhibitor from *Clausena excavata* roots, Nat. Product Communications. (Accepted)
- T. M. Thant, N. S. Aminah, A. N. Kristanti, R. Ramadhan, H. T. Aung, Y. Takaya, 2019, Cytotoxic Carbazole Alkaloid from the root of *Clausena* excavata on *Hela* Cell Line, ICOCSTI-2019 USU Medan Conference, Proceeding. (Accepted)

List of Conferences as Presenter :

- 1. Collaboration Seminar of Chemistry and Industry (CoSCI), Universitas Airlangga, Surabaya, Indonesia, October 11-12, 2018.
- International Conference on Chemical Science and Technology Innovation (ICOCSTI), Hotel Grandhika Setiabudi, Universitas Sumatera Utara, Medan, Indonesia, July 18-19, 2019.
- 3. The 13th KOREA-ASEAN Joint Symposium, Universitas Airlangga, Surabaya, Indonesia, August 7-9, 2019.

xiv