International Journal of Pharmacy Teaching & Practices Vol 4, issue 1 March, 2013 ISSN: 1986-8111 www.ijptp.iomcworld.com contact us: ijourptp@gmail.com Published by: DRUNPP Association of Sarajevo, Bosnia & Herzegovinc Click to enable Adobe Flash Player Click to enable Adobe Flash Player Any questions or comments may be address to official email ijourptp@gmail.com #### Vol 4, Issue 1, 2013 March #### PHARMACY EDUCATION #### Glimpse of Pharmaceutical Education in Nepal Dibyajyoti Saha*, Swati Paul (pp. 438-441) Awareness of Pictograms among the Undergraduate Pharmacy Students in a Pharmacy College in Karnataka, India: A Preliminary Study Banstola A* (pp. 442-4446) #### PHARMACEUTICAL TECHNOLOGY Anti Salmonella activity of nitric oxide donor and antibiotic: In vitro studies S.S.Haque (pp. 447-4450) Antioxidant enzyme activities assay and thiobarbituric acid reactive substances concentration following administration of ghrelin in the rat kidney Shima Neamati *1, Masoud Alirezaei ², Arash Kheradmand ³, Marzieh Rashidipour ⁴, Mohammad Reza Saki ⁵ (pp. 451-457) Extraction, Pharmacological Evaluation and Formulation of Selected Medicinal Herbs for Antidiabetic Activity R.Margret Chandira*, B.Jaykar. (pp. 458-482) In vitro Culture and Agrobacterium Mediated Transformation in High Altitude Tomato (Lycopersicon esculentum Mill.) Cultivar Shalimar C. Janani¹, Dr. S. Girija², Dr. B. D. Ranjitha Kumari^{3*} (pp. 483-488) Distribution Coefficient of Coumarin-Based Compounds Containing a Chalcone Moiety Selma ŠPIRTOVIĆ-HALILOVIĆ* 1, Davorka ZAVRŠNIK1, Belma IMAMOVIĆ2, Ervina BEČIĆ2 (pp. 489-491) #### PUBLIC HEALTH The Effect of Regular Human Insulin and Glulisine Insulin on Blood Glucose Concentration in Diabetic Nephropathy Patients with Hyperglycemia ¹Budi Suprapti, ²agung Pranoto, ¹ardian Avrilena Mp., ¹sumarno, ¹samirah, ¹wenny Putri Nilamsari (pp. 492-497) #### Knowing about Ewing Sarcoma Diana Laila Ramatillah^{1*}, Syed Wasif Gillani² (pp. 498-503) Prevalence of self-medication of antibiotics among people in Bangladesh Nishat Chowdhury* , Mohammad Rashedul Islam, Md. Mehedi Hasan, Md. Mahmudur Rouf (pp. 504-510 Assessment of Engxaparin anti-Xa activity and Treatment Efficacy's Evaluation Guy-Armel Bounda*, Hao Zhi Hui, GE Wei Hong, YU Feng (pp. 511-515) ### <u>Skills Acquired during Baccalaureate Degree: Evaluation Study among Practicing Pharmacists in Sudan.</u> Abuabker Elbur *, Yousif MA. Elbur Al, Bin Shahna M, Izham MI, Elmustafa MO, Abdoon S. Ibrahim M. (pp. 516-521) #### PHARMACEUTICAL CHEMISTRY #### Anti-Diabetic Activity of Aqueous and Methanolic Extract of Abutilon Muticum Girendra Kumar Gautam*¹, G. Vidhyasagar², S. C. Dwivedi³ and Sumeet Dwivedi⁴ (pp. 522-526) ## Screening Angiotensin Converting Enzyme (ACE) Inhibitor Activity of Antihypertensive Medicinal Plants from Indonesia Aprilita Rinayanti 1*, Maksum Radji², Abdul Mun'im ²and F.D. Suyatna³ (pp. 527-532) All rights reserved, Copyright © 2010-2013 International Journal of Pharmacy Teaching & Practices ® DRUNPP Association of SARAJEVO & HERZEGOVINA, BOSNIA # The Effect of Regular Human Insulin and Glulisine Insulin on Blood Glucosa Concentration in Diabetic Nephropathy Patients with Hyperglycemia ^{1*}Budi Suprapti, ²Agung Pranoto, ¹Ardian Avrilena Mp., ¹Sumarno, ¹Samirah, ¹Wenny Putri Nilamsari ¹Clinical Pharmacy Department, Faculty of Pharmacy Airlangga University Surabaya Indonesia, ²Internal Medicine Department, Dr.Soetomo Hospital, Surabaya Indonesia #### Research Article Please cite this paper as: ¹Budi Suprapti, ²Agung Pranoto, ¹Ardian Avrilena Mp., ¹Sumarno, ¹Samirah, ¹Wenny Putri Nilamsari. The Effect of Regular Human Insulin and Glulisine Insulin on Blood Glucosa Concentration in Diabetic Nephropathy Patients with Hyperglycemia. IJPTP, 2013, 4(1), 492-498. #### Corresponding Author: Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: budiprapti@yahoo.co.id #### Abstract Objectives: This study was done to compare the effect of RHI 15 minutes before meal and glulisine insulin on blood glucose (BG) achievement and frequency of hypoglycemia in hospitalized Diabetic Nephropathy (DN) patients with hyperglycemia. Method: Subjects were hospitalized DN patient with inclusion criteria: man/woman with DN stage 3-5 with or without hemodyalisis, 18-65 year old, BMI 18-35 kg/m2, glucose concentration within 200-400 mg/dl, provide written informed consent. Subject randomly divided into RHI and glulisine group. RHI was given 15 minutes before meal and glulisine insulin given 2 minutes before meal. Every subject was examined for preprandial BG (morning, afternoon, and night), 2 hour postprandial BG (morning, afternoon, and night) and bedtime BG concentration for three sequential observation, 24 hours each. Analysis BG data was done to see BG target achievement based on American Diabetes Association (ADA) target. **Result**: From the total samples 30 patients (RHI: n=15; insulin glulisine: n=15) the results showed that on 1^{st} observation, preprandial, 2 hour post prandial, and bedtime BG had not reached ADA target. However, on the 2^{nd} and 3^{rd} observation, 2hpp blood glucose of both group had reached ADA target, but preprandial and bedtime still had not reached ADA target, the achievement less than 50% patients. The target achievement of preprandial, 2hPP and bedtime BG between RHI and glulisine insulin group was not significantly different. During study, there was no incidence or risk of hypoglycemia in both groups. **Conclusion**: There was not significantly different in preprandial, 2hPP and bedtime glucose achievement between group RHI 15 minutes before meal and group glulisine insulin. There was no incidence or risk of hypoglycemia in both groups. **Keywords:** Diabetes Mellitus, Diabetic Nephropathy, Regular Human Insulin, Glulisine Insuline, Blood Glucose, Hypoglycemia #### Introduction Diabetic nephropathy (DN) is a kidney disorder such as the condition of kidney failure caused by diabetes mellitus (DM). DN is defined as a clinical syndrome characterized by persistent albuminuria (> 300 mg/24 hours or> 200 mcg / min) at least in two measurements within 3-6 months ^{1, 2}. DN clinical criteria are defined if there are persistent albuminuria, duration of diabetes more than 10 years, suffering from DN without any disease in the kidney and renal tract. DN is associated with increase of blood pressure and decrease of glomerular filtration rate (GFR) ³. Glycemic control is the most important management to prevent and treat DN. Glycemic control also reduces the risk of macrovascular and microvascular complications in other organs. Poor glycemic control will accelerate loss of renal function in DN ⁴. Decrease of renal excretion causing DN patients are contraindicated a lot of oral antidiabetic (OAD) or they require dose adjustment ⁵. It also causes decrease of insulinase which will extend the half-life of insulin, thereby increase insulin concentration in the systemic circulation and then causes the DN patients at greater risk of hypoglycemia. Therefore, dose titration using insulin is easier than using OAD, particularly insulin bolus given at mealtime (prandial insulin) ⁶. Among all types of insulin, regular human insulin (RHI) and insulin glulisine are most often used. International Journal of Pharmacy Teaching & Practices 2013, Vol.4, Issue 1, 492-498. Most of RHI is in hexamer complexes (6 insulin molecules) and in smaller proportion as monomers and dimers. When injected subcutaneously, RHI needs a lot of time to dissociate into dimers and monomers before it is absorbed into the systemic circulation, therefore RHI has onset of action around 30 to 60 minutes. RHI reach peak concentration at 2.5 to 5 hours after administration and has duration of action 6-8 hours. All of those pharmacokinetic profiles make RHI need at least 30-60 minutes to work. In addition, RHI may cause post-prandial hyperglycemia and then followed by hypoglycemia if there is no meal at 3-4 hours after subcutaneous injection ^{7,8,9,10}. At Dr. Soetomo Hospital RHI has been given to patients 15-30 minutes before meal. Giving RHI 30 minutes before eating will prevent increase of postprandial glucose concentration. While, if it is injected 15 minutes before meal, it will lead to postprandial hyperglycemia since onset of action has not been achieved. and will cause hypoglycemia at 4-8 hours after injection of RHI ^{6,7,11}. Insulin glulisine is an endogenous insulin analogue that is modified by replacing the asparagine into lysine at position B3 and lysine to glutamic acid at position B29 which increases the solubility of insulin glulisine at physiological pH 10,12. Compared with RHI, glulisine insulin absorption after subcutaneous injection is faster (10-15 minutes) than that of RHI. Moreover, peak effect of glulisine insulin is reached more quickly (<1 hour) and duration of action is shorter (4-6 hours) than those of RHI $^{10,\,13}$. Pharmacokinetic profile of glulisine insulin is more similar to physiological insulin than those of RHI. In addition, the onset of action of insulin glulisine which is faster than that of RHI will make patients more convenient since they shouldn't wait for 60 minutes before taking meal $^{10, \ 14, \ 15}$. The duration of action of glulisine insulin is about 4 hours and it is not dose-dependent, while RHI has longer duration of action when given in larger doses. Thereby, glulisine insulin is more beneficial than RHI as glulisine insulin has a lower risk of hypoglycemia. Several studies showed that glulisine insulin was as effective as RHI, even there was one study that showed glulisine insulin was more effective than that of RHI in decreasing HbA1c 10. Based on that background, we will conduct an observational cross-sectional study comparing the effect
of RHI given 15 minutes and glulisine insulin given 2 minutes before meal on blood glucose concentration and frequency of hypoglycemia in hospitalized DN patients with hyperglycemia. #### **Material and Method** This study was randomized control trial to compare BG concentration and target achievement of RHI and glulisine insulin in hospitalized ND patients with hyperglycemia at Internal Medicine Department, Dr. Soetomo Hospital, Surabaya Indonesia and the research design was approved by Ethic Committee. Inclusion criteria were man/woman with DN stage 3-5 with or without hemodyalisis, 18-65 years old, BMI 18-35 kg/m2, glucose concentration within 200-400 mg/dl, provide written informed consent. Patients who have other comorbids (for instance: stroke, chronic heart failure, acute myocardial infarction (AMI)) hiperosmolar, ketoacidosis diabetic, sepsis, pregnant) are excluded. Dropped out criteria were patients who die or decide to finish therapy before 3 sequential observation, suffer from severe hypoglycemia causing withdrawal of insulin, suffer from hypersensitive, and decide to resign from study. Subject randomly divided into RHI and glulisine group. RHI was given 15 minutes before meal and glulisine insulin given 2 minutes before meal. Insulin dose given was adjusted in accordance with CBG level. Patients who have CBG level in the range 200-300 mg / dL received maintenance dose 3x4 UI daily, while patients in the range of 300-400 mg / dL received 3x6 UI daily. In the time course of observation, insulin dose will be adjusted, dose escalation performed if the patient does not respond to previous insulin dose, whereas dose reduction was done if patients blood glucose had achieved the target and to avoid the risk of hypoglycemia. Every subject was examined for preprandial BG (morning, afternoon, and night), 2 hour postprandial BG (morning, afternoon, and night) and bedtime BG concentration for three sequential observation, 24 hours each. Blood glucose was assayed by glucostick. Analysis was done to compare (1) target glucose achievement recommended by ADA including preprandial, 2 hour postprandial and bedtime between group receiving glulisine insulin 2 minutes before meal and group receiving RHI 15 minutes before meal, (2) the incidence of hypoglycemia and hypoglycemia risk between groups. #### Results There were 32 patients meeting the inclusion criteria obtained (RHI: n = 16; insulin glulisine: n = 16) but two patients drop out (one patient in RHI group because of hematemesis that caused hypoglycemia; one patients in insulin glulisine group because of the forced discharge/suboptimal discharge). Therefore, total samples were 30 patients (RHI: n = 15; insulin glulisine: n = 15). Patient demographic data of both groups are relatively similar either in age, BMI and the degree of ND (Table 1). At admission, casual blood glucose (CBG) level (Table 2) was examined. Besides being used to determine the maintenance dose of insulin, the initial casual plasma glucose (CBG) levels were also analyzed to see the homogeneity of the distribution of the initial CBG levels between groups to avoid bias. Test of independent sample t-test showed no International Journal of Pharmacy Teaching & Practices 2013, Vol.4, Issue 1, 492-498. significant difference in the distribution of initial CBG level between groups (p = 0.590). **Table 1** Patient demographic data of RHI group and glulisine insulin group | Demographic data | | RHI Group Glulisine insulin g n = 15 n = 15 Number of Number of Patients (%) (%) | | |------------------|------------|--|------------| | Sex | | | Tuble 3 | | • | Male | 5 (33.33) | 6 (40,00) | | • | Female | 10 (66.67) | 9 (60,00) | | Age | | | | | • | 30-39 year | 0 | 1 (6.66) | | • | 40-49 year | 6 (40,00) | 4 (26.67) | | • | 50-59 year | 6 (40,00) | 6 (40,00) | | • | 60-65 year | 1 (20,00) | 4 (26.67) | | BMI (kg | /m²) | | | | • | 18-20 | 0 | 1 (6.67) | | • | 20-25 | 14 (93.33) | 11 (73.33) | | • | 25-30 | 1 (6.67) | 3 (20,00) | | Staging | | | | | • | DN III | 3 (20,00) | 4 (26.67) | | • | DN IV | 5 (33.33) | 5 (33.33) | | • | DN V | 7(46.67) | 5 (40,00) | Three series of BG observations were revealed in observations 1, 2, and 3. Mean Blood Glucose (BG) for preprandial, postprandial and bed time in RHI and Glulisine insulin group at observation 1, 2 and 3 with its statistic analysis listed in Table 3 Table 2 Initial casual blood glucosa (CBG) level at admission in RHI group and Glulisine insulin | group |) | Verenius de la companya compan | |------------------------------|--|--| | Initial CBG
level | RHI Group
(n = 15)
Number of
Patients (%) | Glulisine insulin group (n = 15) Number of Patients (%) | | 200-219 | 4 (26.67) | 4 (26.67) | | 220-239 | 3 (20,00) | 1 (6.67) | | 240-259 | 6 (40,00) | 5 (33.33) | | 260-279 | 2 (13.33) | 4 (26.67) | | >280 | 1 (6,67) | 1 (6,67) | | Mean
initial CBG
level | 244.87 ± 24.77 | 87 ± 34.67 | Table 4 shows comparison target achievement between 2hPP BG morning, noon and night on the observation 1,2 and 3 and its statistical analysis (chi square) for inter - intra group of RHI and glulisine. Comparison target achievement of preprandial and bed time BG in RHI group and glulisine group listed in Table 5 and 6, respectively. #### Discussion In this study RHI and glulisine insulin were administered by subcutaneous injection, were carried out entirely on the arm to avoid the variability of insulin absorption from the injection site. Subcutaneous injection in the arm gives the moderately absorption rate, slower than the abdomen, but faster than the hips and thighs ^{10, 16}. Mean Blood Glucose (BG) in RHI and Glulisine insulin groups at observation 1, 2 and 3 $\,$ Table 3: Mean Blood Glucose (BG) in RHI and Glulisine insulin g observation 1, 2 and 3 Rload Glucase (ma/dl) #### **OBSERVATION** 1 | Morning 176,50 ± 165,10 ± 0,486 preprandial BG 28,85 41,69 0,771 BG 36,64 63,30 0,771 BG 36,64 63,30 0,614 preprandial BG 43,94 41,63 0,614 preprandial BG 43,94 41,63 0,594 Noon 2hPP BG 174,13 ± 205,71 ± 0,120 S1,73 54,30 0,594 preprandial BG 37,43 56,99 Night 2hPP BG 191,13 ± 197,60 ± 0,742 46,10 59,73 59,64 Bedtime BG 181,73 ± 187,87 ± 0,750 OBSERVATION 2 140,73 ± 0,170 Preprandial BG 44,34 21,53 0,170 Morning 2hPP BG 33,32 27,27 0,279 Preprandial BG 26,02 20,20 Noon 2hPP BG 33,32 27,27 0,584 Preprandial BG 37,51 <th></th> <th colspan="3">Blood Glucose (mg/dL)</th> | | Blood Glucose (mg/dL) | | |
--|----------------|-----------------------|-----------|-------| | Morning 176,50 ± 165,10 ± 0,486 preprandial BG 28,85 41,69 Morning 2hPP 182,08 ± 188,00 ± 0,771 BG 36,64 63,30 Noon 178,56 ± 166,83 ± 0,614 preprandial BG 43,94 41,63 Noon 2hPP BG 174,13 ± 205,71 ± 0,120 51,73 54,30 Night 187,27 ± 198,15 ± 0,594 preprandial BG 37,43 56,99 Night 2hPP BG 46,10 59,73 Bedtime BG 44,34 21,53 Morning 158,67 ± 140,73 ± 0,750 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 Morning 2hPP 147,80 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 37,51 34,33 Night 2hPP BG 37,32 27,34 Bedtime BG 30,61 14,58 Morning 2hPP 141,53 ± 156,50 ± 0,087 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 152,22 27,03 Night 141,33 ± 149,20 ± 0,433 Bedtime BG 32,48 20,32 Night 2hPP BG 32,48 20,32 Night 2hPP BG 32,48 20,32 Night 141,53 ± 144,50 ± 0,479 Breprandial BG 32,48 20,32 Night 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 Bedtime BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | | DUI Croum | Glulisine | P | | preprandial BG 28,85 41,69 Morning 2hPP 182,08 ± 188,00 ± 0,771 BG 36,64 63,30 Noon Noon 2hPP BG 174,13 ± 205,71 ± 0,120 Night 187,27 ± 198,15 ± 0,594 preprandial BG 37,43 56,99 0,594 Night 2hPP BG 191,13 ± 197,60 ± 0,742 46,10 59,73 181,73 ± 187,87 ± 0,750 Bedtime BG 181,73 ± 187,87 ± 0,750 OBSERVATION 2 2 Morning 158,67 ± 140,73 ± 0,170 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 20,20 20,20 20,20 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 27,70 | | Kni Group | Group | | | Morning 2hPP 182,08 ± 188,00 ± 0,771 BG 36,64 63,30 Non Noon 178,56 ± 166,83 ± 0,614 preprandial BG 43,94 41,63 Noon 2hPP BG 174,13 ± 205,71 ± 0,120 51,73 54,30 56,99 Night 187,27 ± 198,15 ± 0,594 preprandial BG 37,43 56,99 0,742 Night 2hPP BG 191,13 ± 197,60 ± 0,742 46,10 59,73 8 9 Bedtime BG 35,60 59,64 OBSERVATION 2 140,73 ± 0,750 A4,34 21,53 140,73 ± 0,400 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 20,32 Noon 2hPP BG 35,86 20,34 20,20 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 1,76 1,43,33 | Morning | 176,50 ± | 165,10 ± | 0,486 | | BG 36,64 63,30 Noon 178,56 ± 166,83 ± 0,614 preprandial BG 43,94 41,63 Noon 2hPP BG 174,13 ± 205,71 ± 0,120 Si,73 54,30 56,99 Night 187,27 ± 198,15 ± 0,594 preprandial BG 37,43 56,99 0,742 Night 2hPP BG 46,10 59,73 59,64 Bedtime BG 181,73 ± 187,87 ± 0,750 Bedtime BG 43,60 59,64 59,64 OBSERVATION 2 0,750 BG 35,86 20,34 0,750 BG 35,86 20,34 0,603 BG 35,86 20,34 0,603 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 0,00 Noon 2hPP BG 37,51 34,33 131,47 ± 158,14 ± 0,045 Night 2hPP BG 37,51 34,33 143,33 | preprandial BG | 28,85 | 41,69 | | | Noon 178,56 ± 166,83 ± 0,614 preprandial BG 43,94 41,63 Noon 2hPP BG 174,13 ± 205,71 ± 0,120 51,73 54,30 Night 187,27 ± 198,15 ± 0,594 preprandial BG 37,43 56,99 Night 2hPP BG 46,10 59,73 Bedtime BG 43,60 59,64 OBSERVATION 2 | Morning 2hPP | 182,08 ± | 188,00 ± | 0,771 | | Noon 2hPP BG | BG | 36,64 | 63,30 | | | Noon 2hPP BG 174,13 ± 51,73 205,71 ± 54,30 0,120 Night preprandial BG 37,43 56,99 0,742 Night 2hPP BG 191,13 ± 197,60 ± 46,10 59,73 0,750 Bedtime BG 181,73 ± 187,87 ± 0,750 0,750 OBSERVATION 2 2 0,170 Morning 158,67 ± 140,73 ± 0,170 0,170 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 0,603 BG 35,86 20,34 Noon 162,67 ± 153,27 ± 0,279 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 33,32 27,27 Night 160,93 ± 153,67 ± 0,584 156,40 ± 153,20 ± 0,776 37,32 27,34 Preprandial BG 37,51 34,33 Night 2hPP BG 37,32 27,34 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 OBSERVATION 3 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 2hPP BG 25,22 | Noon | 178,56 ± | 166,83 ± | 0,614 | | Night 187,27 ± 198,15 ± 0,594 preprandial BG 37,43 56,99 Night 2hPP BG 46,10 59,73 Bedtime BG 181,73 ± 187,87 ± 0,750 43,60 59,64 OBSERVATION 2 | preprandial BG | 43,94 | 41,63 | | | Night 187,27 ± 198,15 ± 0,594 preprandial BG 37,43 56,99 Night 2hPP BG 46,10 59,73 Bedtime BG 181,73 ± 187,87 ± 0,750 43,60 59,64 OBSERVATION 2 | Name 2500 DC | 174,13 ± | 205,71 ± | 0,120 | | Preprandial BG 37,43 56,99 Night 2hPP BG 191,13 ± 197,60 ± 0,742 46,10 59,73 Bedtime BG 181,73 ± 187,87 ± 0,750 43,60 59,64 OBSERVATION 2 Worning 158,67 ± 140,73 ± 0,170 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 Bedtime BG 137,79 ± 156,50 ± 0,087 OBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 | NOON ZNPP BG | 51,73 | 54,30 | | | Night 2hPP BG 46,10 59,73 Bedtime BG 181,73 ± 187,87 ± 0,750 59,64 OBSERVATION 2 Morning 158,67 ± 140,73 ± 0,170 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 27,50 OBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Bedtime BG 147,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG | Night | 187,27 ± | 198,15 ± | 0,594 | | Night 2hPP BG | preprandial BG | 37,43 | 56,99 | | | Night 2nPP BG | N:-L+ 2LDD DC | 191,13 ± | 197,60 ± | 0,742 | | Morning 158,67 ± 140,73 ± 0,170 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 33,32 27,27 Night 160,93 ± 153,67 ± 0,045 28,25 27,50 Noon 2hPP BG 37,32 27,34 Sedtime BG 28,25 27,50 Noon 2hPP BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 33,50 20,28 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Bedtime 32,0 | Night ZhPP BG | 46,10 | 59,73 | | | Morning 158,67 ± 140,73 ± 0,170 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 33,32 27,27 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 37,32 27,34 Sedtime BG 28,25 27,50 OBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,48 20,32 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Redtime BG 22,09 21,31 Redtime BG 32,09 21,31 Redtime BG 32,09 21,31 Redtime BG 32,09 21,31 Redtime BG 32,09 21,31 Redtime BG 147,54 ± 141,33 ± 0,479 | Dadkima DC | 181,73 ± | 187,87 ± | 0,750 | | Morning 158,67 ± 140,73 ± 0,170 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 33,32 27,27 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 37,32 27,34 Sedtime BG 28,25 27,50 OBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 12,92 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Bedtime BG 32,09 21,31
Bedtime BG 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 Bedtime BG 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | Beatime BG | 43,60 | 59,64 | | | Morning 158,67 ± 140,73 ± 0,170 preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 0,584 preprandial BG 37,51 34,33 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 156,50 ± 0,087 Bedtime BG 137,79 ± 156,50 ± 0,087 DSERVATION 3 30,61 14,58 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 25,22 27,03 | OBSERVATION | | | | | preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 Noon Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 20,77 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 37,32 27,34 Bedtime BG 137,79 ± 156,50 ± 0,087 DSERVATION 3 30,61 14,58 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± <td>2</td> <td></td> <td></td> <td></td> | 2 | | | | | preprandial BG 44,34 21,53 Morning 2hPP 147,80 ± 142,20 ± 0,603 BG 35,86 20,34 20,29 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 20,20 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 0,087 Bedtime BG 137,79 ± 156,50 ± 0,087 BERVATION 3 30,61 14,58 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ±< | Morning | 158,67 ± | 140,73 ± | 0,170 | | BG 35,86 20,34 Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 0,584 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 37,32 27,34 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 27,50 0 0 OBSERVATION 3 30,61 14,58 0,757 preprandial BG 30,61 14,58 0,757 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 0,099 Noon 2hPP BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 0,433 preprandial BG 32,48 20,32 Night 2hPP BG < | preprandial BG | 44,34 | | | | Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 0,776 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 0,584 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 0,045 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 0,087 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 27,50 0 0 OBSERVATION 3 30,61 14,58 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 0,709 BG 27,90 18,56 0 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± | Morning 2hPP | 147,80 ± | 142,20 ± | 0,603 | | Noon 162,67 ± 153,27 ± 0,279 preprandial BG 26,02 20,20 0,776 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 0,584 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 37,32 27,34 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 27,50 0 0 OBSERVATION 3 30,61 14,58 0,757 preprandial BG 30,61 14,58 0,757 preprandial BG 30,61 14,80 ± 0,709 BG 27,90 18,56 0 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,0 | BG | 35,86 | 20,34 | | | preprandial BG 26,02 20,20 Noon 2hPP BG 156,40 ± 153,20 ± 0,776 33,32 27,27 0,584 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 156,50 ± 0,087 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 27,50 0 0 OBSERVATION 3 30,61 14,58 0,757 preprandial BG 30,61 14,58 0,757 preprandial BG 30,61 14,80 ± 0,709 BG 27,90 18,56 0,099 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 | Noon | 162,67 ± | | 0,279 | | Noon 2NPP BG 33,32 7,27 Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 37,32 27,34 Bedtime BG 131,47 ± 158,14 ± 0,045 37,32 27,34 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 27,50 OBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | preprandial BG | 26,02 | | | | Night 160,93 ± 153,67 ± 0,584 preprandial BG 37,51 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 27,50 OBSERVATION 3 | Name of DD DC | 156,40 ± | 153,20 ± | 0,776 | | preprandial BG 37,51 34,33 Night 2hPP BG 131,47 ± 158,14 ± 0,045 37,32 27,34 156,50 ± 0,087 Bedtime BG 137,79 ± 156,50 ± 0,087 28,25 27,50 27,50 OBSERVATION 3 30,61 154,13 ± 0,757 preprandial BG 30,61 14,58 0,709 BG 27,90 18,56 0,709 BG 27,90 18,56 0,891 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 147,54 ± 141,33 ± 0,479 | Noon 2npp BG | 33,32 | | | | Night 2hPP BG | Night | 160,93 ± | 153,67 ± | 0,584 | | Night 2nPP BG 37,32 27,34 Bedtime BG 137,79 ± 28,25 156,50 ± 27,50 0,087 OBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 0,709 BG 27,90 18,56 146,07 ± 0,891 Noon 144,67 ± 146,07 ± 0,891 142,57 ± 136,87 ± 0,462 preprandial BG 33,50 20,28 20,28 Night 141,33 ± 149,20 ± 0,433 0,462 preprandial BG 32,48 20,32 20,32 Night 2hPP BG 32,09 21,31 147,54 ± 136,93 ± 0,654 Bedtime BG 147,54 ± 141,33 ± 0,479 | preprandial BG | 37,51 | 34,33 | | | Bedtime BG 137,32 137,79 ± 156,50 ± 0,087 28,25 27,50 OBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | Niel+ al-pp pc | 131,47 ± | 158,14 ± | 0,045 | | 28,25 27,50 OBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | MBUL SULL PR | 37,32 | 27,34 | | | DBSERVATION 3 Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | Padtima DC | 137,79 ± | 156,50 ± | 0,087 | | Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | весите вс | 28,25 | 27,50 | | | Morning 151,40 ± 154,13 ± 0,757 preprandial BG 30,61 14,58 144,80 ± 0,709 BG 27,90 18,56 0,891 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | OBSERVATION | | | | | preprandial BG 30,61 14,58 Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | 3 | | | | | Morning 2hPP 141,53 ± 144,80 ± 0,709 BG 27,90 18,56 0,891 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | Morning | 151,40 ± | 154,13 ± | 0,757 | | BG 27,90 18,56 Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | preprandial BG | 30,61 | 14,58 | | | Noon 144,67 ± 146,07 ± 0,891 preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | Morning 2hPP | 141,53 ± | 144,80 ± | 0,709 | | preprandial BG 33,50 20,28 Noon 2hPP BG 142,57 ± 136,87 ± 0,462 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | BG | 27,90 | 18,56 | | | Noon 2hPP BG 142,57 ± 25,22 136,87 ± 27,03 0,462 Night 141,33 ± 149,20 ± 0,433 0,433 preprandial BG 32,48 20,32 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | Noon | 144,67 ± | 146,07 ± | 0,891 | | Night 2hPP BG 25,22 27,03 Night 141,33 ± 149,20 ± 0,433 preprandial BG 32,48 20,32 Night 2hPP BG 141,54 ± 136,93 ± 0,654 32,09 21,31 Bedtime BG 147,54 ± 141,33 ± 0,479 | preprandial BG | 33,50 | 20,28 | | | Night
141,33 ± 149,20 ± 0,433
preprandial BG 32,48 20,32
Night 2hPP BG 141,54 ± 136,93 ± 0,654
32,09 21,31
Bedtime BG 147,54 ± 141,33 ± 0,479 | Noon 2hDD BG | 142,57 ± | 136,87 ± | 0,462 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | NOON ZIPP BO | 25,22 | 27,03 | | | Night 2hPP BG 141,54 ± 136,93 ± 0,654
32,09 21,31
147,54 ± 141,33 ± 0,479 | Night | 141,33 ± | 149,20 ± | 0,433 | | 32,09 21,31
Bedtime BG 147,54 ± 141,33 ± 0,479 | preprandial BG | 32,48 | 20,32 | | | 32,09 21,31
Bedtime BG 147,54 ± 141,33 ± 0,479 | Night 2hDD RG | 141,54 ± | 136,93 ± | 0,654 | | Begume BG | MIGHT ZHEF DO | 32,09 | 21,31 | | | 25,79 19,89 | Redtime RG | 147,54 ± | 141,33 ± | 0,479 | | | Jedunie BO | 25,79 | 19,89 | | Insulin used in patients with DN are expected to control the 2hPPG, preprandial glucose, and bedtime glucose without causing hypoglycemia. Based on ADA, desired target levels of 2hPPG range from 70-179 mg/dL and target of preprandial and bed time glucose level range from 70-130 mg/dL ¹⁷. Table 4 Comparison achievement 2hPP glucose level in RHI group and glulisine insulin groups | Obser | T | % target | % target 2hPP glucose ^(*) | | | | |---------------------|----------------|-------------|--------------------------------------|--------------|-----------|-------------------------------| | vation | Time | RHI | Glulisin | Intergr | Intra gro | up | | | | (%) | e (%) | oup | RHI | Glulisine | | 1 | Morning | 46,15 | 50,00 | 0,842 | | | | | Noon | 46,67 | 35,71 | 0,461 | 0.500 | 0.724 | | | Night | 33,33 | 40,00 | 0,705 | 0,589 | 0,734 | | | Total | 42,05 | 41,90 | 0,600 | | | | 2 | Morning | 86,67 | 100,00 | 0,143 | | | | | Noon | 66,67 | 93,33 | 0,068 | 0,355 | 0.581 | | | Night | 80,00 | 92,86 | 0,512 | 0,333 | 0,381 | | | Total | 77,78 | 95,40 | 0,048 | | | | 3 | Morning | 93,33 | 100,00 | 0,309 | | | | | Noon | 100,00 | 100,00 | | 0,411 | 0,360 | | | Night | 100,00 | 93,33 | 0,343 | | | | | Total | 97,78 | 97,78 | 0,947 | | | | Total 2h
glucose | | 72,54 | 78,36 | 0,367 | | | | (*) | % tar
of pa | atients who | | the target o | | om the number
he number of | | (**) | | _ | | | | total patients ation (1,2,3) | Table 5 Comparison achievement preprandial glucose in RHI group and glulisine insulin group | Obse
rvati
on | time | %target
preprandial
glucose ^(*) | | P value | | | |---------------------------|---------------|--|------------|-----------|-------------|---------------| | | | RHI (%) Glulis
(%) | Glulicino | Intergrou | Intra group | | | | | | | p | RHI | Glulisi
ne | | 1 | mornin
g | 0 | 20,00 | 0,136 | | | | | noon
night | 11,11
0 | 33,33
0 | 0,292 | 0,29
9 | 0,115 | | | Total | 3,33 | 13,79 | 0,149 | | | | 2 | mornin
g | 33,33 | 26,67 | 0,690 | 0,18
9 | 0,659 | | | noon | 6,67 | 13,33 | 0,543 | | | | | night | 20,00 | 20,00 | 1,000 | | | | | Total | 20,00 | 20,00 | 1,000 | | | | 3 | mornin
g | 26,67 | 0 | 0,032 | 0,72
4 | 0,146 | | | noon | 26,67 | 20,00 | 0,666 | | | | | night | 26,67 | 6,67 | 0,177 | | | | | Total | 26,67 | 8,89 | 0,047 | | | | Total
prepra
glucos | ndial | 18,33 | 14,29 | 0,414 | | | (*) % target achievement preprandial glucose obtained from the number of patients who achieved the target divided by the number of patients each observation (**) % target achievement 2hPP total obtained from total patients who achieved the target divided by total observation Observation 1 results (Table 3) shows that only noon 2hpp mean BG levels of the RHI group reached the ADA target. There were no significant differences in morning, noon and night of preprandial, 2hpp and bedtime glucose level between insulin glulisine and RHI groups (p> 0.05). While observation 2 shows morning, noon, and night 2hpp mean BG levels both groups had reached the target. In contrast to 2hpp levels, mean of preprandial BG for all time and bedtime BG levels both groups did not reach the target. At observation 3 morning, noon and night 2hpp mean BG levels both groups reached the ADA target, but the mean levels of all preprandial BG levels both groups did not reach the target. There was no significantly difference of all glucose types (morning, noon and night 2hpp, preprandial, and bedtime BG) between RHI and insulin glulisine group (p>0.05). Table 6 Comparison bedtime level in RHI group and | Observ | at Target be | Target bedtime glucose(*) | | | |----------|---|---------------------------|------------|--| | ion | RHI (%) | Glulisine (%) | chi square | | | 1 | 13.33 | 20,0 | 0,624 | | | 2 | 35,70 | 14,29 | 0,424 | | | 3 | 30,77 | 26,67 | 0,811 | | | Total (* | *) 26,29 | 20.45 | 0,529 | | | (*) | % target achievement bedtime glucose
obtained from the number of patients who
achieved the target divided by the number
of patients each observation | | | | | (**) | % target achievement bedtime total | | | | obtained from total patients who achieved the target divided by total observation Table 4 shows comparison target achievement between 2hPP morning, noon and night on the observation 1,2 and 3 and its statistical analysis (chi square). There was an increase in the percentage of patients, observation 1 -3, who achieved the target. The percentage of total patients who achieved 2hpp target at observations 1, 2, and 3 for the RHI group.was 42.05%, 77.78% and 97.78% respectively, while, the insulin glulisine group were 41.90%, 95.40% and 97.78% respectively. The percentage of patients who achieved 2hpp target at observation 1 was not significantly different in both groups (p = 0.600). At observation 2, the percentage of patients who achieved 2hpp target in the insulin glulisine group was higher than RHI group which were 95.40% vs. 77.78% (p = 0.048) and had similar achievement (97.78%) at observations 3 (p = 0.947). Several studies showed that glulisine insulin is as effective as RHI, even there is one study that showed glulisine insulin is more effective in International Journal of Pharmacy Teaching & Practices 2013, Vol.4, Issue 1, 492-498. decreasing HbA1c levels ^{9, 10, 15}. Comparative clinical study of efficacy and safety of insulin glulisine and RHI (both combined with NPH insulin) conducted in patients with type 2 diabetes for 26 weeks showed there was a higher decrease in HbA1c levels in the glulisine insulin group than RHI group. That study also shows the results of self-monitoring blood glucose (SMBG) at 7 points which was lower in the glulisine insulin group than RHI group ¹¹. Results obtained from this study also showed that the 2hpp achievement in glulisine insulin group was better than RHI group, especially at observation 2, although not significantly different (p> 0.05). RHI is in hexamer complex, thus when injected subcutaneously, RHI takes time for dissociating into dimers and monomers before it is absorbed into the systemic circulation, whereas insulin glulisine has been in monomer form. This slow dissociation of RHI causes slower absorption compared to insulin glulisine (30 min vs. 15 min) and when administered subcutaneously, RHI achieves peak time slower than insulin glulisine (2.5 - 5 hours vs. <1 hour). Thus. at 2 hour post meal, RHI has not reached the peak of action, resulting in postprandial hyperglycemia. That factor causes insulin glulisine is able to control postprandial glucose levels better than RHI ⁸, 9,10 Based on ADA, target of preprandial glucose level range from 70-130 mg / dL. The results (Table 5) shows at observation 1, insulin glulisine group reached the percentage of preprandial target higher than RHI group which were 17.78% vs. 3.70% (p = 0.249) respectively. But at observations 2 both group had similar achievement and at observation 3, group of insulin glulisine reached the percentage of reprandial target lower than RHI group which were 8.89% vs. 26,67 (p = 0.047). Overall, the percentage of preprandial glucose target was still low (less than 50%) and there was no significant difference between groups RHI and insulin glulisine group at observations 1, 2, and 3 (p = 0.414). Bedtime glucose target in this study is the same as ADA recommendations, which range from 70-130 mg/dL. Table 5 showed at observation 1 group glulisine insulin reached the percentage of bedtime target higher than RHI group which were 20% vs. 13.33% (p = 0.624), respectively. However, at observations 2 and 3, group insulin glulisine reached the percentage of preprandial target lower than RHI group which were 14.29% vs. 35.7% (at observation 2) (p = 0.424) and 26.67% vs. 30.77% (at the observations 3) (p = 0.811). Overall there was no significant difference between RHI group and insulin glulisine group at observations 1, 2, and 3 (p = 0.529). The duration of action of glulisine insulin is shorter than that of RHI (4-5 hours vs. 6-8 hours), no dose-dependent $^{8, 9, 10}$. This factor explain why insulin glulisine group achieved preprandial and bedtime glucose target lower than RHI did, although not significantly different (p> 0.05). In this study frequency of hypoglycemia and the risk of hypoglycemia were observed. Patients at risk of hypoglycemia if preprandial glucose, 2hpp, and bedtime glucose between 6069 mg/dL. RHI is stated to have a greater risk of hypoglycemia because RHI has a peak time (2-5 hours) and a longer duration (6-8 hours) than glulisine insulin especially if patients do not take meal 3-4 hours after subcutaneous injection ^{8,9,10}. The results showed, during study, there was no incidence of hypoglycemia or hypoglycemia risk in both groups. This research was conducted without the use of basal insulin. As discussed previously, there were poor achievements in the preprandial and bedtime BG levels in RHI group which were 18,33% and 26,29% respectively and in glulisine insulin group 14,29% and 20,45%
respectively. The administration of bolus insulin (RHI or glulisine) was able to achieved 2hpp target according to ADA, but not for preprandial and bedtime glucose level. Therefore, it is recommended to add basal insulin in the management of therapy. #### Conclusion There was not significantly different in preprandial, 2hPP and bedtime glucose achievement between RHI group and glulisine insulin group, but with poor target achievement of preprandial and bedtime in both groups (less than 50%). There was no incidence of hypoglycemia or hypoglycemia risk in both groups. #### References - 1. Powers, A.C. Diabetes Mellitus. *In:*Kasper, D. L., Braunwald, E., Fauci, A. S., Hauser, S. L., Longo, D. L., and Jameson, J. L. (Eds.). **Harrison's Principles of Internal Medicine**, 17th Edition, New York: The McGraw–Hill Companies, Inc. ., 2008: 2275–2304. - 2. Triplitt, C.L., Reasner C.A., Isley W.L. Diabetes Mellitus. *In*:Dipiro, J.T., Talbert, R.L., Yee, G.C., Matzke, G.R., Wells, B.G., Posey, L.M. (Eds.). **Pharmacotherapy a Pathophisiologic Approach**, 7th Edition. New York: The McGraw–Hill Co., Inc. ., 2008: 1205–1241. - 3. Vora, J.P., Chattington, P.D., Ibrahim, H. Clinical Manifestation and Natural History of Diabetic Nephropathy. *In:* Johnson, R.J., Feehally, J. (Eds.). **Comp Clin Nephrol**. 1999: 34.1–34.12. - 4. Brownlee, M., Alello, L.P., Cooper, M.E., Vinik, A.I., Nesto, R.W., Boulton, A.J.M.. Complication of Diabetes Mellitus. *In:* Kronenberg, H.M., Melmed, S., Polonsky, K.S., Larsen, P.R. (Eds.). **Kronenberg:** Williams Textbook of Endocrinology, 11th Edition. Philadelphia: Elsevier, Inc., 2008: 1417–1431, 1443–1449. - 5. Simonson, D.C. Insulin Resistance and Diabetes in Chronic Renal Disease. *In:* Singh, A.J., Williams, G.H. (Eds.). **Textbook of Nephro-Endocrinology**. Philadelphia: Elsevier, Inc. 2009: 385 409. - International Journal of Pharmacy Teaching & Practices 2013, Vol.4, Issue 1, 492-498. - 6. Duckworth, W.C., Bennet, R.G., Hamel, F.G. Insulin Degradation: Progress and Potential. **Endocrine Rev.** ,1998: 19(5): 608–624. - 7. Wittlin, S.D., Woehrle, H.J., Gericah, J.E. Insulin Pharmacokinetics, in Leahy, J.L., Cefolu, W.T. Insulin Therapy. Marcel Dekker, Inc., New York; 1998: 73-85. - 8. Garg, S.K., Ellis, S.L., Ulrich, H. Insulin Glulisine: a new rapid—acting insulin analogue for the treatment of diabetes. **Expertt Opin Pharmacother**; 2005: 6 (4): 643–651. - 9. Becker, R.H.A., Frick, A.D.V. Clinical Pharmacotkinetics and Pharmacodynamics of Insulin Glulisine. **Clin Pharmacokinet**; 2005; 47 (1): 7–20. - 10. Garnock–Jones, K.P., Plosker, G.L. Insulin Glulisine a Review of its Use in the Management of Diabetes Mellitus. **Drugs**; 2009; 69 (8): 1035–1057. - 11. Dailey, G., Rosenstock, J., Moses, R.G., Ways, K. Insulin Glulisine Provides Improved Glycemic Control in Patients With Type 2 Diabetes. **Diab Care**; 2004; 27: 2363–2368. - 12. Rolla, A. Pharmacokinetics and Pharmacodynamic Advantages of Insulin Analogues and Premixed Insulin Analogues Over Human Insulins: Impact on Efficacy and Safety. **The Am J Med**; 2008; 121: S9-S19. - 13. Becker, R.H.A., Frick, A.D., Clinical Pharmacokinetics and Pharmacodynamics of Insulin Glulisin. Clin Pharmacokinet. 2008; 47(1(:7-20 - 14. Pranoto, A.X. Better Glucose Profile in Glucose Control of T2DM: the role of basal insulin glargine. *In:* Adi, S., Tjokroprawiro, A., Sutjahjo, A., Nasronudin, Soeroso, J., Pranoto, A., Baskoro, A., Aditiawadana (Eds.). **Pendidikan Kedokteran Berkelanjutan Ilmu Penyakit Dalam XXIV–2009**: 78–104. - 15. Masharani, U. Diabetes Mellitus and Hypoglycemia. *In:* McPhee, S.J., Papadakis, M.A., **Current Medical Diagnosis and Treatment**, 49th Edition, New York; 2010: The The McGraw–Hill Co., Inc. p. 2782–2859. - 16. Kroon, L.A., Assemi, M., Carlisle, B.A. Diabetes Mellitus. *In:* Koda-Kimble, M.A., Young, L.Y., Alldredge, B.K., Corelli, R.L., Guglielmo, B.J., Kradjan, W.A., Williams, B.R. (Eds.). **Applied Therapeutics : The Clinical Use of Drugs**, 9th Edition, New York : Lippincott Williams & Wilkins. 2009: 50p2–50p86. - 17. American Diabetes Association. Standards of Medical Care in Diabetes. **Diab Care** 2010; 2010: 33 (Suppl 1): S11-S61 #### **AUTHORS' CONTRIBUTIONS** Authors contributed equally to all aspects of the study. #### **PEER REVIEW** Not commissioned; externally peer reviewed. #### **CONFLICTS OF INTEREST** This research is founded by Grant of Indonesia Managing Higher Education for Relevancy and Eficiency (IMHERE) Project, Directorate of Higher Education, Indonesian Government Click to enable Adobe Flash Player Click to enable Adobe Flash Player #### **Editorial Committee** #### **Editor in Chief** Syed Wasif Gillani, Assistant Prof. Dr Azmi Sarriff, Assoc. Prof. Dr #### **Executive Editor** Syed Azhar Syed Suleiman. (Malaysia) Prof. Dr Mostafa Nejati (Iran) Wafaa Mohamed El-Anor Ahmed Rashed (Egypt), Dr Mark Raymond (USA) Prof. Dr Robert Hougland (USA) #### **Editorial Team Members** Jasmin Musanovic (Bosnia Harzegovina), Dr. Mensura Kudumovic (Bosnia Harzegovina), Dr. Monica Gaidhane (USA), Dr. Mok T. Chong (USA), Assoc. Prof. Dr. Syed Tajuddin Syed Hassan (Malaysia) Dr. Aleth Therese L. Dacanay (Philippine) Dr. Atif Ameen (Pakistan), Dr. Hadzliana Zainal (Malaysia) Ms. Nur Hafzan Md Hanafiah (Malaysia) Ms. Sabariah Ngor Harun (Malaysja) Ms. Nabiel Khan (Saudi Arabia) Mr. Amin Saburi, (Tehran, Iran) M.D. Suzana Tasic Otasevic. (Siberia) Prof. Dr Roberto Frontini (Germany) Dr. Aida Batista (Portugal) Dr. Tony West (UK) Dr. Francesca Venturini (Italy) Dr. Petr Horák (Czech Republic) Dr. Joan Peppard (Ireland) Dr. Peter Halstead (Australia) Dr. Linda Suveges. (Cannada) Dr Carmen Vezina, (Cannada) Prof, Dr Pierre Moreau, (Cannada) Dr Anita Hardon. (Amsterdam, Holland) Prof. Dr Siti Mahsarah Sheikh Ghadzi (Malaysia) Ms. Fatimatuzzahra Abd Aziz (Majaysia) Ms. Adriana Rolim (Brazil), Dr. Ajit S. Kulkarni (India), Dr. V. Sivajothi (India), Dr. Gajana S. Sanap (India) Dr. Mithun Singh Rajput (India) Dr. Jimmy Jose (Oman), Dr. Vibhor Kumar Jain (India) Dr. Jagdale Swati Changdeo (India), Dr. Kartikeyan, M (India) Ms. Chakraborthy. G. S (India), Dr. MD, Faiyazuddin (India) Dr. Pathirage Kamal Perera (Sri Lanka), Dr. Vijay Kumar (India) Mr. Beduin Mahanti (India) Dr. Dibyajyoti Saha (Bangladesh) Dr. Ranin Magdi Mohamed Ibrahim Soliman (Egypt) Mr. Sumeet Dwivedi (India) Assistant Prof. Dr. Kyi Kyi Tha (Malaysia) Dr. Diana Laila Rahmatillah (Indonesia) Ms. #### Re: question for article corrections Dari: Pharmacy teaching (ijourptp@gmail.com) Kepada: budiprapti@yahoo.co.id Tanggal: Selasa, 8 Januari 2013 10.34 WIB #### Dear Author We would like to inform you that our journal have finally achieve the online submission status.. check upload your manuscripts to the following link within 72 hours to get included in our online December issue. #### http://iomcworld.com/journals Authors are required to register to submit articles and it would help us better for the traceability. Looking forward for the article submission. Regards Admin IJPTP On Wed, Nov 7, 2012 at 10:50 AM, Budi Suprapti < budiprapti@yahoo.co.id > wrote: Dear admin IJPTP, In responds to your acceptance letter (September 4, 2012) for my article with the title "The Effect of Regular Human Insulin and Glulisine Insulin on Blood Glucosa Concentration in Diabetic Nephropathy Patients ith Hyperglycemia", on September 11, 2012 I have sent email and question for correction but till now I have not get your responds. My questions are: - (1) for gramatical correction may I get the file of paper that has been reviewed? - (2) about the copyright form to IJPTP, how to get it? or I make it by my self? Thanks, I hope I get your answer as soon as possible. Regards Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: budiprapti@yahoo.co.id ---- Pesan yang Diteruskan ----- Dari: Budi Suprapti < budiprapti@yahoo.co.id > Kepada: Pharmacy teaching <ijourptp@gmail.com> Dikirim: Selasa, 11 September 2012 6:18 Judul: Bls: article corrections Dear admin IJPTP, Thanks for the acceptance our paper to be published in IJPTP. To make correction, I have questions: - (1) for gramatical correction may I get the file of paper that has been reviewed? - (2) about the copyright form to IJPTP, how to get it? or I make it by my self? Thanks, I am waiting your answer Regards Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: budiprapti@yahoo.co.id **Dari:** Pharmacy teaching <<u>ijourptp@gmail.com</u>> **Kepada:** Budi Suprapti <<u>budiprapti@yahoo.co.id</u>> Dikirim: Selasa, 4 September 2012 9:25 Judul: article corrections #### **Dear Author** We are pleased to inform you that your both article has been accepted in IJPTP, Please see the corrections as follow; Please recheck the following corrections: - 1. Grammatical errors - 2. article format must according to the journal style... please follow authors guidelines - 3. Referencing style: (is has been suggested that author have to cite at least 2 papers from journal previous issues article) - 4. Abstract should be comprehensive - 5. Provide detail information about corresponding author - 6. signed and scan the copyright form to IJPTP. #### If you have any queries please don't hesitate to contact us. Regards Admin LIPTP -- #### DISCLAIMER This email is confidential and intended only for the use of the individual or entity named above and may contain information that is privileged. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this email is strictly prohibited. If you have received this email in error, please notify us
immediately by return email or telephone and destroy the original message. Please report abuse/misuse to: <u>ijourptp@gmail.com</u>. Actions can be taken to further improve the service. On Thu, Jun 28, 2012 at 11:54 PM, Budi Suprapti < budiprapti@yahoo.co.id> wrote: Dear IJPTP Editor in chief, I Have attached an article with the title "THE EFFECT OF REGULAR HUMAN INSULIN AND GLULISINE INSULIN ON BLOOD GLUCOSA CONCENTRATION IN DIABETIC NEPHROPATHY PATIENTS WITH HYPERGLYCEMIA", hopefully could be considered to be published in IJPTP. I hope I get a notification if you have receive this email/article. Regards, Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: <u>budiprapti@yahoo.co.id</u> #### DISCLAIMER This email is confidential and intended only for the use of the individual or entity named above and may contain information that is privileged. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this email is strictly prohibited. If you have received this email in error, please notify us immediately by return email or telephone and destroy the original message. Please report abuse/misuse to: <u>ijourptp@gmail.com</u>. Actions can be taken to futher improve the service. #### Bls: article corrections Dari: Budi Suprapti (budiprapti@yahoo.co.id) Kepada: ijourptp@gmail.com Tanggal: Selasa, 11 September 2012 06.18 WIB #### Dear admin IJPTP, Thanks for the acceptance our paper to be published in IJPTP. To make correction, I have questions: - (1) for gramatical correction may I get the file of paper that has been reviewed? - (2) about the copyright form to IJPTP, how to get it? or I make it by my self? Thanks, I am waiting your answer #### Regards Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: <u>budiprapti@yahoo.co.id</u> **Dari:** Pharmacy teaching <ijourptp@gmail.com> **Kepada:** Budi Suprapti <budiprapti@yahoo.co.id> Dikirim: Selasa, 4 September 2012 9:25 Judul: article corrections #### **Dear Author** # We are pleased to inform you that your both article has been accepted in IJPTP, Please see the corrections as follow; Please recheck the following corrections: - 1. Grammatical errors - 2. article format must according to the journal style... please follow authors guidelines - 3. Referencing style: (is has been suggested that author have to cite at least 2 papers from journal previous issues article) - 4. Abstract should be comprehensive - 5. Provide detail information about corresponding author - 6. signed and scan the copyright form to IJPTP. #### If you have any queries please don't hesitate to contact us. Regards Admin IJPTP _ #### **DISCLAIMER** This email is confidential and intended only for the use of the individual or entity named above and may contain information that is privileged. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this email is strictly prohibited. If you have received this email in error, please notify us immediately by return email or telephone and destroy the original message. Please report abuse/misuse to: <u>ijourptp@gmail.com</u>. Actions can be taken to further improve the service. On Thu, Jun 28, 2012 at 11:54 PM, Budi Suprapti < budiprapti@yahoo.co.id > wrote: Dear IJPTP Editor in chief, I Have attached an article with the title "THE EFFECT OF REGULAR HUMAN INSULIN AND GLULISINE INSULIN ON BLOOD GLUCOSA CONCENTRATION IN DIABETIC NEPHROPATHY PATIENTS WITH HYPERGLYCEMIA", hopefully could be considered to be published in IJPTP. I hope I get a notification if you have receive this email/article. Regards, Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: <u>budiprapti@yahoo.co.id</u> #### article corrections Dari: Pharmacy teaching (ijourptp@gmail.com) Kepada: budiprapti@yahoo.co.id Tanggal: Selasa, 4 September 2012 09.25 WIB #### **Dear Author** We are pleased to inform you that your both article has been accepted in IJPTP, Please see the corrections as follow: Please recheck the following corrections: - 1. Grammatical errors - 2. article format must according to the journal style... please follow authors guidelines - 3. Referencing style: (is has been suggested that author have to cite at least 2 papers from journal previous issues article) - 4. Abstract should be comprehensive - 5. Provide detail information about corresponding author - 6. signed and scan the copyright form to IJPTP. #### If you have any queries please don't hesitate to contact us. Regards Admin IJPTP --- #### **DISCLAIMER** This email is confidential and intended only for the use of the individual or entity named above and may contain information that is privileged. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this email is strictly prohibited. If you have received this email in error, please notify us immediately by return email or telephone and destroy the original message. Please report abuse/misuse to: ijourptp@gmail.com. Actions can be taken to further improve the service. On Thu, Jun 28, 2012 at 11:54 PM, Budi Suprapti < budiprapti@yahoo.co.id > wrote: Dear IJPTP Editor in chief, I Have attached an article with the title "THE EFFECT OF REGULAR HUMAN INSULIN AND GLULISINE INSULIN ON BLOOD GLUCOSA CONCENTRATION IN DIABETIC NEPHROPATHY PATIENTS WITH HYPERGLYCEMIA", hopefully could be considered to be published in IJPTP. I hope I get a notification if you have receive this email/article. Regards, Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: <u>budiprapti@yahoo.co.id</u> #### acknowledgement Dari: Pharmacy teaching (ijourptp@gmail.com) Kepada: budiprapti@yahoo.co.id Tanggal: Jumat, 29 Juni 2012 07.53 WIB #### Dear Author We hereby acknowledge the receipt of your manuscript. you will hear once again from us once the review process will be done. Meanwhile if you have any questions or queries please don't hesitate to contact us. Regards Admin IJPTP -- #### DISCLAIMER This email is confidential and intended only for the use of the individual or entity named above and may contain information that is privileged. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this email is strictly prohibited. If you have received this email in error, please notify us immediately by return email or telephone and destroy the original message. Please report abuse/misuse to: <u>ijourptp@gmail.com</u>. Actions can be taken to further improve the service. On Thu, Jun 28, 2012 at 11:54 PM, Budi Suprapti < budiprapti@yahoo.co.id > wrote: Dear IJPTP Editor in chief, I Have attached an article with the title "THE EFFECT OF REGULAR HUMAN INSULIN AND GLULISINE INSULIN ON BLOOD GLUCOSA CONCENTRATION IN DIABETIC NEPHROPATHY PATIENTS WITH HYPERGLYCEMIA", hopefully could be considered to be published in IJPTP. I hope I get a notification if you have receive this email/article. Regards, Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: <u>budiprapti@yahoo.co.id</u> #### Bls: [IJPTP] Submission Acknowledgement Dari: Budi Suprapti (budiprapti@yahoo.co.id) Kepada: ijourptp@gmail.com Tanggal: Jumat, 26 April 2013 07.39 WIB Dear Syed Wasif Gillani Editor of IJPTP I have question about the editorial process of my paper that has been submitted on Januari 10, 2013. From online management system from Januari 23, 2013 till now there is no progression status, it said still in editing process. Are there any information needed for completion? When this paper will be included in publication? I am looking forward your answer Regards, Budi Suprapti Department of Clinical Pharmacy Faculty of Pharmacy Airlangga University Surabaya, East Java, Indonesia **Dari:** Syed Wasif Gillani <ijourptp@gmail.com> **Kepada:** Mrs budi suprapti <budiprapti@yahoo.co.id> Dikirim: Kamis, 10 Januari 2013 8:17 Judul: [IJPTP] Submission Acknowledgement Mrs budi suprapti: Thank you for submitting the manuscript, "THE EFFECT OF REGULAR HUMAN INSULIN AND GLULISINE INSULIN ON BLOOD GLUCOSA CONCENTRATION IN DIABETIC NEPHROPATHY PATIENTS WITH HYPERGLYCEMIA" to International Journal of Pharmacy Teaching and Practices (IJPTP). With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site: Manuscript URL: http://iomcworld.com/journals/index.php/ijptp/author/submission/15 Username: budiprapti If you have any questions, please contact me. Thank you for considering this journal as a venue for your work. Syed Wasif Gillani International Journal of Pharmacy Teaching and Practices (IJPTP) International Journal of Pharmacy Teaching and Practices (IJPTP) http://ijptp.iomcworld.com/ #### **IJPTP** article submission Dari: Budi Suprapti (budiprapti@yahoo.co.id) Kepada: ijourptp@gmail.com Tanggal: Kamis, 28 Juni 2012 22.54 WIB Dear IJPTP Editor in chief, I Have attached an article with the title "THE EFFECT OF REGULAR HUMAN INSULIN AND GLULISINE
INSULIN ON BLOOD GLUCOSA CONCENTRATION IN DIABETIC NEPHROPATHY PATIENTS WITH HYPERGLYCEMIA", hopefully could be considered to be published in IJPTP. I hope I get a notification if you have receive this email/article. Regards, Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: budiprapti@yahoo.co.id IJPTP insulin Budi Suprapti Indonesia.doc 208.5kB #### question for article corrections Dari: Budi Suprapti (budiprapti@yahoo.co.id) Kepada: ijourptp@gmail.com Tanggal: Rabu, 7 November 2012 09.50 WIB #### Dear admin IJPTP, In responds to your acceptance letter (September 4, 2012) for my article with the title "The Effect of Regular Human Insulin and Glulisine Insulin on Blood Glucosa Concentration in Diabetic Nephropathy Patients ith Hyperglycemia", on September 11, 2012 I have sent email and question for correction but #### till now I have not get your responds. My questions are: - (1) for gramatical correction may I get the file of paper that has been reviewed? - (2) about the copyright form to IJPTP, how to get it? or I make it by my self? Thanks, I hope I get your answer as soon as possible. #### Regards Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: <u>budiprapti@yahoo.co.id</u> #### ---- Pesan yang Diteruskan ----- **Dari:** Budi Suprapti

 Sudiprapti@yahoo.co.id>
 Kepada: Pharmacy teaching <ijourptp@gmail.com> Dikirim: Selasa, 11 September 2012 6:18 Judul: Bls: article corrections #### Dear admin IJPTP, Thanks for the acceptance our paper to be published in IJPTP. To make correction, I have questions: - (1) for gramatical correction may I get the file of paper that has been reviewed? - (2) about the copyright form to IJPTP, how to get it? or I make it by my self? Thanks, I am waiting your answer #### Regards Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: <u>budiprapti@yahoo.co.id</u> **Dari:** Pharmacy teaching <ijourptp@gmail.com> **Kepada:** Budi Suprapti <budiprapti@yahoo.co.id> Dikirim: Selasa, 4 September 2012 9:25 Judul: article corrections #### **Dear Author** We are pleased to inform you that your both article has been accepted in IJPTP, Please see the corrections as follow; Please recheck the following corrections: - 1. Grammatical errors - 2. article format must according to the journal style... please follow authors guidelines - 3. Referencing style: (is has been suggested that author have to cite at least 2 papers from journal previous issues article) - 4. Abstract should be comprehensive - 5. Provide detail information about corresponding author - 6. signed and scan the copyright form to IJPTP. #### If you have any queries please don't hesitate to contact us. Regards Admin IJPTP -- #### **DISCLAIMER** This email is confidential and intended only for the use of the individual or entity named above and may contain information that is privileged. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this email is strictly prohibited. If you have received this email in error, please notify us immediately by return email or telephone and destroy the original message. Please report abuse/misuse to: <u>ijourptp@gmail.com</u>. Actions can be taken to further improve the service. On Thu, Jun 28, 2012 at 11:54 PM, Budi Suprapti < budiprapti@yahoo.co.id> wrote: Dear IJPTP Editor in chief, I Have attached an article with the title "THE EFFECT OF REGULAR HUMAN INSULIN AND GLULISINE INSULIN ON BLOOD GLUCOSA CONCENTRATION IN DIABETIC NEPHROPATHY PATIENTS WITH HYPERGLYCEMIA", hopefully could be considered to be published in IJPTP. I hope I get a notification if you have receive this email/article. Regards, Dr. Budi Suprapti, Apt., MSi Clinical Pharmacy Department Faculty of Pharmacy Airlangga University Campus B Jl. Darmawangsa Dalam, Surabaya, Indonesia Office phone: +62-031-5033710 Fax number: +62-031-5020514 Mobile: +62-08155086694 Email: budiprapti@yahoo.co.id #### [IJPTP] Submission Acknowledgement Dari: Syed Wasif Gillani (ijourptp@gmail.com) Kepada: budiprapti@yahoo.co.id Tanggal: Kamis, 10 Januari 2013 08.16 WIB #### Mrs budi suprapti: Thank you for submitting the manuscript, "THE EFFECT OF REGULAR HUMAN INSULIN AND GLULISINE INSULIN ON BLOOD GLUCOSA CONCENTRATION IN DIABETIC NEPHROPATHY PATIENTS WITH HYPERGLYCEMIA" to International Journal of Pharmacy Teaching and Practices (IJPTP). With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site: #### Manuscript URL: http://iomcworld.com/journals/index.php/ijptp/author/submission/15 Username: budiprapti If you have any questions, please contact me. Thank you for considering this journal as a venue for your work. Syed Wasif Gillani International Journal of Pharmacy Teaching and Practices (IJPTP) International Journal of Pharmacy Teaching and Practices (IJPTP) http://ijptp.iomcworld.com/