Editorial Board

Editor-in-Chief

Dr. Srisailam Keshtla, Ph.D
University College of Pharmaceutical Sciences,
Satavahana University, Karimnagar, INDIA

Associate Editors

Subhash Kumar Middha, Ph. D.
DBT-BIF facility
MLACW, Bangalore

Dr. T.S. Mohamed Saleem, Ph.D.
Head, Department of Pharmacology & Pharmacy Practice
Annamacharya College of Pharmacy
New Boyanapalli
Rajampet-516126, A.P. India

Dr. Tosea Sar
Head, Department of Veterinary Pharmacology and Toxicology
West Bengal University of Animal and Fishery Sciences
37, K. B. Sarani, Kolkata - 700037

Ho Yen Fong
Kuala Lumpur, Malaysia.

Asst. Editor

Ms. Madhuri P
Phcog.Net
17, II Floor, Buddha Vihar Road,
Cox Town, Bengaluru,
Karnataka, INDIA

Editorial Board

Dr. Cidde Veeresiah, Ph.D.
Professor of Pharmacy,
University College of Pharmaceutical Sciences,
Karativy University, Warangal, Telangana 506009 India,

Dr. R.M. Dharmadasa, Ph.D.
Research Fellow, Herbal Technology Section,
Indusitalis Technology Institute,
363, Baudhahaska Mawatha, Colombo 7,
Sri Lanka

Dr. Mohd Sajjad Ahmad Khan, Ph.D.
Department of Biology, College of Medicine,
University of Dammam,
Dammam 31452, Saudi Arabia.

Dr. A. Rajasekaran, Ph.D.
Principal and Professor,
KMCH College of Pharmacy,
Koval Estate, Kalapatti Road,
Coimbatore- 641 048, Tamil Nadu, India

Dr. Mohamed A. Farag, Ph.D.
Alexander von Humboldt fellow,
Professor, Chemistry Department
American University in Cairo, Cairo, Egypt
Dr. Anindya Bose, Ph.D.
Associate Professor.
Department of Pharmaceutical Analysis,
School of Pharmaceutical Sciences,
Siksha O Anusandhan (Deemed to be University),
Bhubaneswar, Odisha, India

Masfin Yismam, (DVM, MS)
Director, Pre-Clinical Development, Unigen Pharmaceuticals
2121 South State Street
Suite 400
Tacoma WA-98405, USA

Dr. Sami A. Gabr, Ph.D.
Rehabilitation Research Chair,
College of Applied Medical Sciences,
King Saud University P.O. Box 10219
Riyadh 11433, KSA

Prof. Mohammad Azadbakht
Department of Pharmacognosy,
Faculty of Pharmacy,
Mazandaran University of Medical Sciences, Sari, Iran

Lai-Choon Sheen
Centre for Drug Research,
Universiti Sains Malaysia,
11800 USM, Penang, Malaysia.

Prof. (Dr.) Vimal Kumar, Ph.D.
Principal, ITM School of Pharmacy,
ITM Universe, Dhanora Tank Road,
Off Halol Highway, Near Jarod, Paldi,
Vadodara, Gujarat 391510

Dr. Venkata Ramreddy Narasim, M.Sc., Ph.D.
Department of Animal Sciences (Zoology)
Yogi Vemana University
KADAPA-516003, INDIA

Dr. Gazi Mohammad Salid Jamal, Ph.D.
Assistant Professor and Co-ordinator,
Bioinformatics Unit,
Department of Health Information Management,
College of Applied Medical Sciences,
Bursaydah Colleges, Al Qassim-Buraydah King Abdul Aziz Road,
East Qassim University, Kingdom of Saudi Arabia

Dinithi Peiris, Ph.D.
Professor in Zoology,
Faculty of Applied Sciences,
University of Sri Jayewardenepura,
Gangodawilla,
Nugegoda, Sri Lanka

Dr. Kornal Kumar Javarappa, MSc, PhD, FBSS
Postdoctoral Scientist,
Institute for Molecular Medicine,
Finland, University of Helsinki Fin-00710,
Helsinki, Finland

Dr. Gyan Singh Shekhawat
Centre for advanced studies in Botany,
Jai Narain Vyas University, New Campus
Jodhpur-342001, Rajasthan, India.

Newman Oaso, Ph.D.
Department of Pharmacology,
K.N.U.S.T. Kumasi,
Ghana.

Dr. Sandeen Ramchandra Pai, Ph.D.
Assistant Professor,
AMITY Institute of Biotechnology (AB),
Amity University, Mumbai - Pune
Maharashtra, India
Dr. Christian Agyepong
Faculty of Pharmacy and Pharmaceutical Sciences
College of Health Sciences
Kwame Nkrumah University of Science and Technology
Kumasi
Ghana

Dr. Gabriel Kigen
Department of Pharmacology and Toxicology,
Moi University School of Medicine
Eldoret, Kenya

Prof. Dejun Zhang
Vice Dean of Ecology and Environment Engineering college,
Qinghai University,
China

José Carlos Tavares Carvalho
Universidade Federal do Amapá,
Colégio de Ciências Farmacêuticas,
Laboratório de Pesquisa em Farmacos,
Rodovia Juscelino Kubitschek - de 1670/1671 ao fim
Universidade
68903419 - M acapá, AP - Brasil

Fausto Pierdoná Guzen,
Laboratory of Experimental Neurology,
Department of Biomedical Sciences,
Health Science Center,
State University of Rio Grande do Norte,
Mossoró-RN, Brazil

Patricia Rijo, PhD
CBIOS-Scientific Director for Communication and External Relations
Food Sciences and Phytochemistry (FSP) Group Coordinator - CBOS
Escola de Ciências e Tecnologias da Saúde
Universidade Lusófona
Campo Grande, 378
1749-024 Lisboa - Portugal

Consuelo Regaza, Ph.D
De La Salle University | DLSU
Department of Chemistry
Manila, Philippines

Dr. Kumarapani, PhD,
Professor (Assistant)
Department of Pharmacology & Toxicology,
School of Pharmacy
King Khalid University,
Abha 62529, Saudi Arabia

To join editorial board, you may send your online (ORCID ID, Researchgate, Loop, SCOPUS ID, Researcher ID) profile along with list of Publications to EB Selection Committee: ebscom@phcog.net
Table of Contents

2017
Volume 9 | Issue 5 (Supplement)
Page Nos. 1-109
Online since Tuesday, December 12, 2017
Accessed 12,092 times.

PDF access policy
Full text access is free in HTML pages; however the journal allows PDF access only to subscribers.

EPub access policy
Full text in EPub is free except for the current issue. Access to the latest issue is reserved only for the paid subscribers.

ORIGINAL ARTICLES

Antinociceptive and anti-inflammatory effects of triterpenes from Pluchea quitoec DC. aerial parts
Francisco Alcione Nobre da Silva, Sônia Maria de Farias Freire, Marlene Oliveira da Rocha Borges, Francisco Ervisto Vital Barron, Maria da Glória Teixeira de Sousa, Maria Nilo de Sousa Ribeiro, Giselle Maria Schilding Pinheiro Guilhon, Adolfo Henrique Müller, Antonio Carlos Romão Borges
DOI:10.4103/pr.pr_51_17 PMID:29333034
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [PubMed] [Sword Plugin for Repository]

The activity of immunoglobulin Y anti-Mycobacterium tuberculosis on proliferation and cytokine expression of rat peripheral blood mononuclear cells
Sr Agus Sudjana, Kremiasan Ersaka, Gifarna Wardani Sudjana, Kremiasan
DOI:10.4103/pr.pr_66_17 PMID:29333035
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [PubMed] [Sword Plugin for Repository]

Autonomic receptors and nitric-oxide involvements in mediating vasorelaxation effect induced by Syzygium polyanthum leaves extract
Azlini Ismail, Wan Amri Nizam Wan Ahmad
DOI:10.4103/pr.pr_69_17 PMID:29333036
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [PubMed] [Sword Plugin for Repository]

Curcumin and natural derivatives inhibit Ebola viral proteins: An In silico approach
Shruti Balikerkar
DOI:10.4103/pr.pr_30_17 PMID:29333037
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [PubMed] [Sword Plugin for Repository]

Antihyperglycemic potential of saponin-enriched fraction from Pithecellobium dulce Benth. seed extract
Mahesh Kumar, Jayabalan Govindraj, Narendra Kumar Nylas
DOI:10.4103/pr.pr_18_17 PMID:29333038
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [PubMed] [Sword Plugin for Repository]

Pharmacognostic assessment of the endemic and vulnerable medicinal climber-Cayratia podata (Lam.) Gagnep., var. glabra Gamble and its antibacterial activity
S Sharma, K Kalachithi, SM Dhivy, P Premamalini, P Abrami, G Jayanthi
DOI:10.4103/pr.pr_25_17 PMID:29333039
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [PubMed] [Sword Plugin for Repository]

Pharmacological screening of Trachyspermum ammi for antihyperlipidemic activity in Triton X-100 induced hyperlipidemia rat model
p. 23
p. 27
p. 34
Pharmacological evaluation of hepatoprotective activity of AHPL/AYTAB/0613 tablet in carbon tetrachloride, ethanol, and paracetamol-induced hepatotoxicity models in Wistar albino rats
Sanjay U Nipanikar, Sohan S Chilamge, Dheeraj Nagore
DOI:10.4103/pr.pr_44_17 PMID:29333041

Gas chromatography mass spectrometry profiling in methanolic and ethyl-acetate root and stem extract of Corbicula decumbens (Forsk.) excell from Thar Desert of Rajasthan, India
Sumita Arora, Manju Saini
DOI:10.4103/pr.pr_62_17 PMID:29333042

Picroside I and picroside II from tissue cultures of Picrohiza kurroa
Yamjala Dinesh Kumar, Ajmera Ramasaw, Ciddi Veerasham
DOI:10.4103/pr.pr_89_17 PMID:29333043

Antiplasmodial activity of isolated polyphenols from Alactyron serratus leaves against 3D7 Plasmodium falciparum
Uswatan Khasam, Ajay Wijeyamunypsy, Achmad Fuad Hafid, Mulyadi Tanjung
DOI:10.4103/pr.pr_39_17 PMID:29333044

In vitro antiproliferative effect of earthworm coelomic fluid of Eudrilus eugeniae, Eisenia fetida, and Perionyx excavatus on squamous cell carcinoma-9 cell line: A pilot study
Dormic Augustine, Ritsupa S Rao, Jayaraman Anbu, KN Chidambaram Murthy
DOI:10.4103/pr.pr_52_17 PMID:29333045

Development and validation of high-performance thin-layer chromatography method for simultaneous determination of polyphenolic compounds in medicinal plants
CV Jayeshchandran Nar, Sayeed Ahmad, Wasiim Khan, Varisha Anjum, Rajani Mathur
DOI:10.4103/pr.pr_122_16 PMID:29333046

Assessment of nutritional quality and global antioxidant response of banana (Musa sp. CV. Nanjangud Rasa Bale) pseudostem and flower
Ramth Ramu, Prithvi S Shrithatti, KR Anilakumar, Shivasharanappa Nayakavadi, Farhan Zameer, BL Dhananjaya, MN Nagendra Prasad
DOI:10.4103/pr.pr_87_17 PMID:29333047

Astaxanthin ameliorates hepatic damage and oxidative stress in carbon tetrachloride-administered rats
DOI:10.4103/pr.pr_26_17 PMID:29333048

Marine-derived fungi extracts enhance the cytotoxic activity of doxorubicin in nonsmall cell lung cancer cells A549
Bruno Castro-Carvalho, Alice A Ramos, Maria Prata-Sera, Fernanda Malhão, Mário Moreira, Daniela Gargiulo, Tida Dethou, Sunetul Nutischoh, Anake Ikiyo, Eduardo Rocha
DOI:10.4103/pr.pr_57_17 PMID:29333049

Improvement of insulin secretion and pancreatic β-cell function in streptozotocin-induced diabetic rats treated with Aloe vera extract
Ayesh Noor, S Gunasekaran, MA Vijayakumar
DOI:10.4103/pr.pr_75_17 PMID:29333050
Therapeutic significance of Loligo vulgaris (Lamarck, 1798) ink extract: A biomedical approach
Sri Kumaran Nadarajah, Radha Vijayan, Jayaprakash Mani
DOI:10.4103/pr.pr_51_17 PMID:29333651
[ABSTRACT] [HTML Full text] [PDF] [Mobile Full text] [EPub] [PubMed] [Sword Plugin for Repository]
International Journal of Pharmaceutical Research

Country: India
Subject Area and Category: Pharmacology, Toxicology and Pharmaceutics
 Pharmaceutical Science
 Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
Publisher: Advanced Scientific Research
Publication type: Journals
ISSN: 09752366
Coverage: 2010-2020

Scope: International Journal of Pharmaceutical Research (IJPR) is an intentional Journal which is published quarterly in English. Journal publishes papers, review articles, and short communications dealing with drug controlled release systems, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering and materials science. Pharmaceutical Chemistry, Pharmaceutical Technology, pharmacogony, natural product research, pharmaceutics, novel drug delivery, pharmaceutical & medicinal chemistry, computational chemistry and molecular drug design, pharmacology, pharmaceutical analysis, pharmacy practice, clinical and hospital pharmacy etc. IJPR would take much care in making your article published without much delay with your kind cooperation. IJPR hopes that Researchers, Research scholars, Academician, Industrialists etc. would make use of this research publications for the development of pharmaceutical science and technology.

Homepage
How to publish in this journal
Contact

Join the conversation about this journal

Impact factor 7.97, low cost
research journal, Call for Paper, paper Publication, Research I Review Paper

jetir journal
Impact factor 7.97, low cost

research journal, Call for Paper, paper Publication, Research I
Review Paper

jetir journal
Doodle Video Creation Software

Professional whiteboard, blackboard doodle videos in seconc

Doodly

Metrics based on Scopus® data as of April 2020

M Mykhailo Anishchenko 2 weeks ago

Dear editorial board! Please give information on how you can get an article from your journal in pdf format?

Best regards, Mykhailo Anishchenko

reply

M Melanie Ortiz 2 weeks ago

Dear Mykhailo,

thank you for contacting us.

We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus.

Unfortunately, we cannot help you with your request, we suggest you contact the journal's editorial staff, so they could inform you more deeply.

Best Regards, SCImago Team

N Nada 2 weeks ago
Antiaplasmodial Activity of Isolated Polyphenols from Alectryon serratus Leaves Against 3D7 Plasmodium falciparum

Us Watun Khasanah1,2, Aty Widya Waruyanti1,3, Achmad Fuad Hafid4, Mulyadi Tanjung5

1 Post Graduate Program, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 2 Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang, 3 Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, 4 Institute of Tropical Disease, Universitas Airlangga, 5 Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

ABSTRACT

Background: Alectryon serratus was selected from a screening program devoted to search naturally occurring antimalarial compound from plants in Alas Purwo National Park, Banyuwangi, East Java, Indonesia. The previous studies showed that ethanolic extract of A. serratus leaves contains some polyphenol compounds. Objective: This study was designed to isolate and investigate antimalarial activity of polyphenol compounds. Material and Methods: The ethanoic extract of A. serratus seeds was fractioned using liquid-liquid fractionation and column chromatography. Isolated compounds were identified using High-performance liquid chromatography, ultraviolet-visible, nuclear magnetic resonance, and compared with references. The isolates were tested in vitro for antimalarial activity against chloroquine-sensitive 3D7 strain of Plasmodium falciparum. Thin blood smears were used to assess the levels of parasitemia and growth inhibition of the isolates. Result: Half maximal inhibitory concentration of Gallic acid (1), methyl gallate (2), and kempferol-3-O-hamnoside (3) were 0.0722 μM, 0.0128 μM, and 3.4595 μM, respectively. Conclusion: The results suggest that gallic acid, methyl gallate, and kempferol-3-O-hamnoside isolated from A. serratus leaves have antimalarial activity and are potential to be developed as antimalarial drugs.

Key words: Alectryon serratus, antimalarial, polyphenol

INTRODUCTION

Malaria is a major parasitic infectious disease in many tropical and subtropical regions. Malaria incidence has been increasing since the emergence of drug-resistant Plasmodium falciparum. According to the WHO, as many as 207 million people suffer from malaria, with up to 627,000 deaths each year.12 Drug-resistant P. falciparum malaria is a major killer and becomes one of the most difficult obstacles to combat. Therefore, a development of a new class drug is an urgent matter. Screening plant extract for antimalarial activity is a useful way for discovering new leads.13 As a part of our study for novel antimalarial agents from plants, a screening program was undertaken on plants of Alas Purwo National Park, Banyuwangi, East Java, Indonesia. In our screening, leaves of Alectryon serratus were selected.14 This plant is widely distributed throughout the tropical region of Southeast Asia, and no traditional uses are reported.15 Ethyl acetate fraction of the leaves was found to exhibit an antimalarial activity (IC50 9.45 μg/mL) on chloroquine-sensitive 3D7 strain of P. falciparum.16 TLC profile of ethyl acetate fraction showed polyphenol compound.17 In this paper, we report the isolation, structure elucidation, and antimalarial activity of polyphenol compounds.

MATERIALS AND METHODS

Collection of plant material

Leaves of A. serratus were collected from Alas Purwo National Park, Banyuwangi, East Java, Indonesia in August 2014. A voucher specimen was identified at Purwomadi Botanical Garden, Pasuruan, East Java, Indonesia, and a voucher specimen was deposited at the herbarium.

Extraction and fractionation

One kilogram of dried powder of A. serratus leaves was macerated using sonication method in ethanol 80% as the solvent. The extract was

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

then removed, and the residue was pressed and dried. The residue was re-macerated twice with ethanol 80%. The dried extract was suspended in distilled water and fractionated. Liquid fractionation was done successively in CH₂Cl₂, EtOAc, and n-butanol.

Isolation of polyphenol compounds

The ethyl acetate fraction (2 g) was separated using a column chromatography method using RP-18 F254 as stationary phase and CH₃CN-MeOH-H₂O (2:1:4 v/v) as the mobile phase to yield 12 subfractions (SF1-SF12). White powder was obtained as a precipitate from SF.2. The precipitate was filtered using Kiyrzya to yield compound 1 (12 mg). SF.4 (30 mg) was purified using TLC preparative with CHCl₃-MeOH (9:1 v/v) as mobile phase and silica gel F₂₅₄ as stationary phase to yield SF.4.1 (4 mg) and SF.4.2 (8 mg). SF.4.2 was identified as compound 2. SF.8 (40 mg) was purified using preparative TLC with CHCl₃-MeOH (8:2 v/v) as mobile phase and silica gel F₂₅₄ as stationary phase to yield SF.8.1 (5 mg), SF.8.2 (7 mg), and SF.8.3 (2 mg). SF.8.3 was identified as compound 3.

Characterization of isolated polyphenols

TLC profiles of SF.2 was done using RP-18 F₂₅₄ as the stationary phase and CH₃CN-MeOH-H₂O (2:1:4 v/v) as the mobile phase. SF.4.2 and SF.8.3 were identified using TLC with silica gel F₂₅₄ as stationary phase and CHCl₃-MeOH (9:1 v/v) as mobile phase. The spots were detected under ultraviolet (UV) (254 and 366 nm) before spraying using 10% H₂SO₄ in EtOH, and followed by heating the plate at 120°C and then detected under UV 366 nm and visible light. High-performance liquid chromatography (HPLC) chromatogram profile was performed using Shimadzu LC-06, with RP Shim-pack column 4.6 mm × 250 mm as stationary phase, and CH₃CN-MeOH (7:3 v/v) as mobile phase with a flow rate of 0.7 ml/min, and was detected using UV detector.

Nuclear magnetic resonance (NMR) spectra were performed using JEOL 400 spectrometer, with tetramethylsilane as internal standard for ¹H, ¹³C NMR, heteronuclear multiple bond correlation (HMBC), and heteronuclear multiple quantum coherence. Compound 1 and 2 were measured using D6 methanol solvent; compound 3 was measured using D6 acetone solvent. The structural determination of compound 1, 2, and 3 was confirmed by comparing the results of NMR and UV data reported in the literature.⁵⁴ ⁶¹

Plasmodium falciparum (3D7 strain) culture and maintenance

P. falciparum 3D7 strain (chloroquine sensitive) was obtained from the Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia. Plasmodium parasites were grown and maintained in culture using Trager and Jensen method with some modifications.⁵² The parasites were bred in vitro in human type O-positive red blood cells in a complete medium (RPMI 1640 supplemented with 5.96 g HEPES, 0.05 g hypoxanthine, 2.1 g NaHCO₃, 50 mg/ml gentamycin, and 10% human O + serum) in Petri dish with modified candle-jar method. The incubation was done at 37°C. The media was routinely changed daily, and the parasite growth was monitored through Giemsa staining in thin blood smears. The culture to be used for the experiment should be dominated by ring forms. Stock parasite cultures were further diluted with uninfected type O + human erythrocytes and complete culture medium to achieve 1% parasitemia and 50% hemocrit. These final parasite cultures were immediately used for the antimalarial assay.⁵³ ⁶²

In vitro antimalarial assay

A stock solution of 10 μg/ml was prepared from the isolated compounds. Four-fold serial dilution was prepared from each stock solution and yielded five serial concentrations (10 μg/ml, 1 μg/ml, 0.1 μg/ml, 0.01 μg/ml, and 0.001 μg/ml). To each microplate well, 500 μl diluted extract solution was added into 500 μl of final parasite culture. The plates were then incubated for 48 h at 37°C. Thin blood smears were prepared on labeled slides and air-dried and fixed with methanol. The dried slides were stained using Giemsa and observed under light microscope at 1,000 times magnification, and parasitemia percentage was calculated.

Statistical analysis of data

Growth percentage was calculated using formula as follows:

\[
\text{Growth percentage (\%growth)} = \frac{D_a - D_b}{D_b}
\]

Inhibition percentage (\% inhibition) was calculated as follows:

\[
\text{Inhibition percentage (\% inhibition)} = 100\% - \left(\frac{X_u}{X_k}\right) \times 100\%
\]

Note:
- \(D_a\) = Parasitemia percentage of infected red blood cell on day 0
- \(X_u\) = Growth percentage of each isolate
- \(X_k\) = Growth percentage of negative control
- \(IC_{50}\) values that represent the concentration required to inhibit 50% of Plasmodium growth were calculated from a calibration curve by linear analysis using SPSS. \(IC_{50}\) values were expressed as mean value (±standard deviation).

RESULTS AND DISCUSSION

TLC profile of SF.2 and SF.4.2 showed the presence of dark fluorescent spots under UV 254 nm and UV 366 nm with RF 0.75 and RF 0.6. Dark spots were also detected on SF.2 and SF.4.2 after being sprayed and observed under UV 366 nm. SF.8.3 also showed dark spot under UV 254 and UV 366 nm with RF 0.48, and yellowish spots after the plate was being sprayed using 10% H₂SO₄ and was detected under UV 366 nm and visible light. Isolation of phenolic compounds was done for SF.2 and SF.4.2.

HPLC chromatogram of SF.2 showed a single peak with Rt 4.5 min with a purity index of 0.98 and UV/Vis λ_{max} (MeOH) at 266 nm. SF.4.2 also showed a single peak with Rt 4.5 min, purity index 0.97 and UV/Vis λ_{max} (MeOH) at 271 nm.

Results of NMR spectra of each isolate are described as follows:

SF.2

1. White powder
 - ¹H NMR (400 MHz, Methanol-d₄): 7.02 (s).
 - ¹³C NMR (100 MHz, Methanol-d₄): 115.6 (C), 103.9 (CH), 140.1 (C), 133.3 (C), 140.1 (C), 164.1 (COOH).

SF.4.2

2. Pale yellow powder
 - ¹H NMR (400 MHz, Methanol-d₄): 7.02 (s), 3.75 (3H, s).
 - ¹³C NMR (100 MHz, Methanol-d₄): 116.0 (C), 104.0 (CH), 140.4 (C), 133.0 (C), 140.4 (C), 164.1 (COOH), 46.2 (OCH₃).

SF.8.3

3. Yellow powder
 - ¹H NMR (400 MHz, Acetone-d₆): 7.83 (2H, dd, J = 8.4), 6.97 (2H, dd, J = 8.4), 6.65 (d, J = 2.4 Hz, 1H), 6.24 (d, J = 2.4 Hz, 1H), 12.69 (1H, s), 5.51 (1H, d, J = 1.6), 3.30-3.60 (3H, m), 4.18 (1H, m), 1.16 (3H, s), CH₃.
 - ¹³C NMR (100 MHz, Acetone-d₆): 178.5 (C = O), 115.4 (CH), 130.1 (CH), 98.7 (CH), 93.5 (CH), 170.3, 164.4, 159.7, 163.8.
156.6 (oxyaryl group), 71.3, 70.6, 70.5, 70.2 (C-2', C-3', C-4', C-5'), 16.9 (CH3).

Antiplasmodial activity of each isolate concentration was shown in Figure 1. Maximum inhibition percentage of 96.7%, 80.9%, and 62.8% were obtained for S.F.2, S.F.4,2, and S.F.8.3 at 10 μg/mL concentration, respectively. Concentration below 10 μg/mL exhibited lower inhibition percentage. The IC50 values of each isolates were calculated and found to be 0.013, 0.0025, and 1.495 μg/mL [Table 1].

S. F.2 was identified as Gallic acid (1) that was isolated as white powder. TLC profile showed that S. F.2 was a phenolic compound. UV spectrum (MeOH)λmax 266 nm showed that S. F.2 had a chromophore group. 1H NMR spectrum showed signal typical to aromatic proton (δH 7.02). 13C NMR spectrum indicated the presence of 7 carbon atoms signals including carboxylic carbon at δC 161.4. Further support for the structure (1) was also obtained from the comparison of NMR data with those reported for gallic acid.[8,9]

S. F.4.2 was identified as methyl gallate (2) that was isolated as yellowish-pale powder. UV spectrum (MeOH)λmax 271 nm showed that S. F.4.2 had a chromophore group. 1H NMR spectrum showed signal typical to aromatic proton (δH 7.07) and methoxy proton (δH 3.75). 13C NMR spectrum indicated the presence of 8-carbon atoms including carboxylic carbon at δC 161.4 and methoxy carbon at δC 46.2. Further support for the structure (2) was also obtained from the comparison of NMR data with those reported for methyl gallate.[10,11]

S. F.8.3 was identified as Kämpferol-3-O-rhamnoside (3) that was isolated as yellow powder. 1H NMR spectrum indicated the presence of 2 aromatic hydrogen signals with "meta-coupling" at δ 6.24 (1H, d, J = 1.6 Hz) and 6.45 (1H, d, J = 2.4 Hz), which were predicted by hydrogen in C-6 and C-8 of the A ring of the flavone skeleton. The signal at δ 12.69 was predicted as hydroxyl group at C-5. Accordingly, this compound was suggested to have a hydroxyl group at C-3 and C-7. Furthermore, 13C NMR spectrum revealed two signals with "ortho-coupling" at δ 6.99 (2H, d, J = 8.4 Hz) and 7.83 (2H, d, J = 8.4 Hz), the signals were predicted as the hydrogen at C-2', C-3', C-5' and C-6' of the B ring. The absence of a specific signal for an olefinic hydrogen at C-3 and the presence of an anomic hydrogen signal at δ 5.51 suggested that the compound was a flavonol glycoside. The appearance of an anomic carbon signal at δ 101.8 in 13C NMR spectrum indicated the presence of sugar moiety. Due to a correlation between the anomic hydrogen signal (δ 5.51) and C-3

carbon signal (δ 141.0) revealed by HMBC spectral data analysis, the position of sugar moiety was assigned to C-3-hydroxyl group. The methyl signal observed at δ 1.16 (3H, s) in 1H NMR spectrum and at δ 16.9 in 13C NMR spectrum indicated that the sugar moiety was rhamnose. Based on the accumulated data above and data comparison, compound (3) was identified as kaempferol-3-O-rhamnoside.[8-13]

Antiplasmodial activity of compound 1 and 2 appeared and was associated with gallate galate.[9] The previous study showed that methyl galate isolated from Swintonia foxworthyi had antimalarial activity against chloroquine-sensitive 3D7 strain of P. falciparum with IC50 3.5 μg/mL.[14]

The result of this study showed that methyl galate exhibited antimalarial activity with IC50 0.0025 μg/mL against chloroquine-sensitive 3D7 strain of P. falciparum. Kämpferol-3-O-rhamnoside isolated from Schima wallichii also showed antimalarial properties with IC50 106 μM.[15] In this study, Kämpferol-3-O-rhamnoside showed antimalarial activity with IC50 3.4595 μM [Table 1]. The difference of IC50 value might be caused by the type of parasite strain. Antimalarial activity of some gallic acid derived from green tea was also tested by Sarmela et al., and the result showed that both epigallocatechin gallate and epigallocatechin have potential antimalarial activity.[16]

Oxidative stress through the generation of reactive oxygen species plays important role in the pathogenesis of malaria infection that causes hemoglobin degradation.[17] As phenolic compounds, gallic acid, methyl gallate, and kampferol-3-O-rhamnoside have antioxidant properties that may be responsible for antimalarial activity. According to Fidock et al., a compound has potential antimalarial activity if IC50 < 5 μM. [18] It can be concluded from the data that A. serratus leaves contain gallic acid, methyl gallate, and kampferol-3-O-rhamnoside that have antimalarial activity against chloroquine-sensitive 3D7 strain of P. falciparum.

Acknowledgement
The authors thank NPMRD (Natural Product Medicine Research and Development), ITD (Institute of Tropical Disease Center) Universitas Airlangga, Surabaya.

Table 1: Antimalarial activity of isolate compounds

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC50 μg/mL</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallic acid</td>
<td>0.013±0.0014</td>
<td>0.0727±0.0078</td>
</tr>
<tr>
<td>Methyl gallate</td>
<td>0.0025±0.0007</td>
<td>0.0128±0.0036</td>
</tr>
<tr>
<td>Kämpferol-3-O-rhamnoside</td>
<td>1.495±0.0077</td>
<td>3.4595±0.0180</td>
</tr>
</tbody>
</table>

SD: Standard deviation

Figure 1: Various concentration of compounds determining the IC50 value against Plasmodium falciparum after 48 h of incubation. Data are the mean value of double-independent experiments.

Figure 2: Chemical structure of the antimalarial polyphenols from Acteyon serratus leaves. (1) Gallic acid; (2) Methyl gallate; (3) Kämpferol-3-O-rhamnoside.
Financial support and sponsorship
This research was supported by Indonesian Directorate General of Higher Education DIPTN BOPTN 2014, contract no 965/UN3/2014

Conflicts of interest
There are no conflicts of interest.

REFERENCES