Finger Movement Recognition
based on Muscle Synergy using
Electromyogram

by Prihatini Widiyanti

Submission date: 29-Nov-2020 09:45PM (UTC+0800)

Submission ID: 1459135784

File name: C44. Fulltext IEEE_article_Prihartini_Widiyanti_3032020.pdf (391.91K)
Word count: 4623

Character count: 25278



2019 IEEE Region 10 Humanitarian Technology Conference
Depok, Indonesia | November 12-14, 2019

Finger Movement Recognition based on Muscle Synergy using
Electromyogram

Prastuti Shivam', Nayan M. Kakoty', MB Malarvili%, Prihartini Widiyanti®
'Embedded Systems and Robotics Laboratory, Tezpur University, INDIA

2 Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
3 Faculty of Bioscience and Technology, Universitas Airlangga, Indonesia

Abstract— Motor functions of human hand during daily
living activities involve multiple finger movements, which has
not yet been fully explored for electromyogram (EMG) based
prosthesis control. This paper presents a framework based on
forearm muscle synergy for recognition of finger movement
using four channel EMG. With five normal-limbed subjects,
synergy of four forearm muscles was estimated for five finger
movements through non-negative matrix factorization of EMG
feature. Using leave-one-patient-out cross-validation, radial ba-
sis function support vector machine was implemented for
recognition of finger movements. The framework exhibited an
average recognition rate of 97%. This study offers feasibility of
a finger movement recognition framework based on the inherent
physiological mechanism of muscle synergy, which has potential
for dexterous finger movement control in prosthetic hands.

I. INTRODUCTION

Current prosthetic hands have multiple fingers with higher
degrees of freedom (DoF) [1]. Higher DoF increases the
functionality of prosthetic hands which otherwise have been
one of the reasons for loss of interest in prosthetic hands by
the amputees [2]. However, electromyogram (EMG) based
control systems do not have comparable controllability [3],
which is another one of the major causes for amputees to
not use prosthetic hands regularly [2]. Machine learning
techniques have made significant advances in recognition
of hand movements [4], [5], [6]. [7]. [8] and grasping
operations [9], [10], [11], [12] for EMG based prosthesis
control. Although EMG based control for multiple DoF has
been attempted in recent years, the number of simultaneously
activated DoF is still limited to three [13].

For prosthetic hands with higher controllability, EMG
based recognition of finger movements based on the inherent
physiological mechanism is one of the important aspects
in the area of rehabilitation robotics. Peleg et al. [9] are
amongst the pioneers to report classification of finger move-
ments for pressing a switch. Recognition of thumb, index,
middle finger flexion and hand close movements with a
recognition rate of 93% have been reported by Tsenov et
al. [14]. Using envelop detection of EMG, classification of
five finger movements with a recognition rate of 80-92%
have been reported by Sebelius et al. [15]. Efforts have been
made for continuous decoding of finger position using 15-
channel EMG and it achieved a recognition rate of 90% [16].
Experiments with EMG collected from transradial amputees
for 10-class finger movement classification with an accuracy
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of 93% have been reported by Tenore et al. [17]. Cipriani
et al. [1] have reported continuous EMG based control of a
dexterous hand prosthesis by transradial amputees through
classification of finger movements. In [18], experiments for
finger movement classification, with post-stroke subjects,
using 89-channel EMG achieved an average recognition rate
of 95%. Gijsberts et al. [19] have reported a recognition
rate of 90% for classification of five finger movements using
time domain features from 12-channel EMG. Although high
recognition rate was a success of these experiments, these
were subjected to the use of higher dimensional feature
vectors for classification.

More recently, investigations of muscle synergy for recog-
nition of EMG based hand gestures have appeared as one of
the promising methods for prosthesis control. Ma et al. [20]
suggested a muscle synergy model to transform commands of
the central nervous system to realize the proportional control
of multiple DoFE In this study, four hand/ wrist movements
of the prosthesis: open, close, pronate, and supinate have
been controlled. Muscle synergy based characterization and
clustering of post-stroke patients in reaching movements
have been reported in [21]. Five basic clusters were iden-
tified successfully as a function of shoulder elevation, elbow
extension and normalized jerks. A case study on synergy
based EMG controlled prosthetic hand has been reported in
[22]. The experiments have been accomplished to control a
robotic hand for grasping objects. Although classification of
18 finger movement tasks using muscle synergy have been
reported by [23], it was using 32-channel EMG; which is
higher in number and will lead to complex control systems.
Synergistic EMG activities of forearm muscles have been
explored for recognition of five gestures: pinch, fist, open
hand, grip, and extension [24]. However, there is little
research considering finger movement recognition with the
inherent physiological mechanism of muscle synergy.

Following our continuous effort for an EMG based pros-
thetic hand with higher controllability [11], [25], this paper
presents a framework for finger movement recognition based
on muscle synergy using EMG. Five able-bodied subjects
took part into the experiment. Surface EMG were recorded
for five finger movements using four channel EMG. Non-
negative matrix factorization (NMF) of EMG feature: root
mean square (RMS) have been accomplished to estimate the
muscle synergy. Radial basis function (RBF) kernel support




vector machine (SVM) was used for recognition of finger
movements. Using leave-one-patient-out cross-validation, an
average recognition rate of 97% was achieved.

II. MATERIALS AND METHODS

A. Subject Preparation

Five normal-limbed subjects (mean age: 26+1.5 years,
height: 165410 cm, weight: 63+2 kg) volunteered for the
experiment. Following the case study on myoelectric control
reported in [26], the number of subjects have been kept
five. The consideration of normal-limbed subjects was based
on the fact that amputees are able to generate similar
forearm EMG to that of the healthy subjects [27], [28].
All subjects were informed with the details of experimental
study and they signed an informed consent form before
the experiment. This is in line with the institutional ethical
committee approval. Prior to the start of the experiment, the
participants were asked to be seated comfortably. Subjects
were seated with the forearm extended at the side; palm
facing upward and wrist placed on the arm rest of the
chair. The forearm skin of the participants was cleaned with
alcohol pad followed by the placement of EMG electrode.
Ag/AgCl button type surface floating EMG electrodes were
used. They typically consist of a metal or conductive polymer
disc of diameter 5-30 mm with adhesives. Surface elec-
trodes measure the potential of the muscles available from
the surface of the skin. Table I shows the placement of
EMG electrodes on the specific muscles and the muscle
compartments on the forearm. The distance between the
center of the electrodes were 1-2 cm and the electrodes were
arranged along the longitudinal midline of the muscles to
detect improved superimposed EMG [29].

TABLE
PLACEMENT OF FOUR CHANNEL EMG ELECTRODES ON THE
SUBIECTS' FOREARM FOR EMG ACQUISITION

Electrodes Muscles Muscle Compartment
Channel 1 Brachioradialis Posterior
Channel 2 Extensor Digitorium Posterior
Channel 3 | Flexor Carpi Radialis Anterior
Channel 4 | Flexor Carpi Ulnaris Anterior
Reference Ulnar Styloid

B. Experimental Protocol

On preparation of the subjects, they were instructed to
perform the flexion-extension movement by the thumb, in-
dex, middle, ring, little fingers with intermediate relaxing
period. The subjects performed the tasks following the visual
instruction on a computer screen. The time-line activities of
the experimental protocol is as tabulated in Table II. EMG
were recorded for 10 trials of each movement in two sessions.
Fig. 1 shows the finger movement during the acquisition of
EMG following the experimental protocol.

C. EMG Acquisition and Data Set

EMG generated following the experimental protocol in
section II-B were acquired using AD Instruments power
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TABLE I
TIME-LINE ACTIVITIES OF THE EXPERIMENTAL PROTOCOL

Enumeration Activity Duration
MO Hand Relax 10 seconds
MI Thumb Flexion-Extension 2 seconds
M2 Hand Relax 10 seconds

M3 - MIl4 Repeat MO to M2 for Index (M3-M35), | 88 seconds
Middle (M6-M8), Ring (M9-M11)
and Little (M12-14)
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Fig. 1. Schematic of Experimental Protocol Time Line Activities
lab 4/26T bio-amplifier. The specification settings of the

bio-amplifiers during EMG acquisition was as tabulated in
Table IIL

TABLE III
SPECIFICATIONS OF THE SETTINGS OF THE EMG UNIT DURING
ACQUISITION

Parameter value

High Cut-oft Frequency 500 Hz

Low Cut-off Frequency 10 Hz

Notch Cut-off frequency 50Hz
Amplification range +5

Common Mode Rejection Ratio 110 db

A total of (5 subjects x 5 finger movements x 10 trials x
2 sessions =) 500 four-channel EMG have been collected for
the experiment. The EMG were sampled at 1 kHz. Sufficient
relaxation time between each session (=30 minutes in total)
was allowed. EMG during hand relaxation was recorded as
relaxing EMG in a different class.

ITII. PROPOSED FRAMEWORK

Fig. 2 shows the framework of finger movement recogni-
tion based on muscle synergy using EMG.
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Fig. 2. Schematic of Finger Movement Recognition based on Muscle
Synergy using EMG

A. EMG Pre-processing

On acquisition, EMG were subjected to onset detection.
EMG acquired during hand relaxation have very small am-
plitude and do not carry any information about the finger




movements [30]. EMG onset detection technique extracts
the EMG generated during the individual finger movements.
During onset detection, EMG with amplitude less than three
times of the standard deviation of the EMG at rest position
were removed. This threshold was following the discussion
in [31]. In line with [32], a Hamming window of size 100
samples was used on the onset detected EMG. This size
of Hamming window was to meet the real-time constraint
of myoelectric control system [33]. Fig. 3 shows the four
channel pre-processed EMG generated during one trial of
five finger movements.
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Fig. 3. Four channel pre-processed EMG generated dunng one trial of five

finger movements. The four EMG channels are in Y-axis with amplitude in
milliVolt and five fingers are in X-axis with the number of EMG samples

The EMG activity intensity was estimated through RMS
value of the pre-processed EMG. It is related to the muscle
force involved during the movements [34] and was calculated
as:

RMS:V!ﬁ):xE (1)

i=1

where x; represents the i sample of EMG with N as the
total number of samples in each EMG trial during flexion-
extension movement.

B. Non-negative Matrix Factorization

NMF algorithm is one of the many methods used for

extraction of muscle synergy along with their corresponding
activation coefficients. This synergy matrix is the result of
decomposition of the selected EMG time-domain feature.
The decomposition method was carried out as follows:
Let V be the RMS feature matrix of size rxs where r is the
number of muscles involved (i. e. r = 4) and s is the number
of trials for which each movement have taken place (i. e. s
= 10). V is decomposed into two non-negative matrices:

Vises = Wik X Hies (2)

W is the synergy matrix of size rxk with k being the
number of muscle synergies (1<k<4). It represents synergy
pattern of the four muscles. H is the ks matrix representing
the activation weights of the specific muscle synergy. The

NMF decomposition for the middle finger flexion-extension
movement 1s shown in Fig. 4. Fig. 4(a) shows the pre-
processed EMG for one trial flexion-extension movement of
the middle finger. Fig. 4(b) represents the RMS feature vector
of EMG. Fig. 4(c) shows the normalized synergy of the
four muscles (1: Brachioradialis, 2: Extensor Digitorium, 3:
Flexor Carpi Radialis, 4: Flexor Carpi Ulnaris). It represents
the co-activation of the four muscles during the middle finger
flexion-extension movement. Fig. 4(d) shows the activation
function representing weights of the synergy.
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Fig. 4. Non-Negative Matrix Factorization of EMG (a) pre-processed EMG
during one trial of flexion-extension movement (b) RMS value of EMG
during each tnal of movement (c) Normalized synergy representing the
co-activation of four muscles during the middle finger flexion-extension
movement (d) Activation co-efficient pattern of the muscle synergy during
the middle finger flexion-extension movement

1) Selection of optimal number of synergies: The op-
timal number of synergies to be selected was determined
by calculating a parameter called Variance Accounted For
(VAF) [24]. VAF between the RMS feature matrix V and
the reconstructed matrix (WxH) was calculated using the
following equation:

(V= (W x H))?
V2
For keeping information regarding the movements in
original form, the optimum number of synergies can be
determined when the minimum number of synergies satisfied
the two main criteria:

VAF = (1 — ) % 100% (3)

e Criterion 1: VAF > 95%
e Criterion 2: VAF increases by less than 1% when one
synergy is added.

C. EMG Feature Matrix and Recognition

Finger movements were characterized by a synergy feature
matrix i. e. A. This was comprised of the co-activation of the
muscles in the synergy matrix for each finger movement and
is represented as follows:

A=W “4)

where W = Synergy matrix representing the co-activation of
four muscles

i=1,2, 3, 4,5 representing five finger movements
J=1,2,3, 4 representing the four muscles




RBF kernel SVM was used for recognition of finger move-
ments. SVM regularization constant (c) and kernel parameter
(1) were found through grid search [35] and set as ¢ =274
and y = 2*2. The choice of RBF kernel was based on the fact
that it can map features into infinite spaces, simultaneously
controlling the training error, and computational complexity
of classifier is based on a fewer number of hyper-parameter
as compared to the limited feature spaces in polynomial
kernel [35]. [36].

To make the experimental results clinically applicable,
leave-one-patient-out cross-validation was used for recogni-
tion of finger movements. Accordingly, the SVM classifier
was trained with EMG feature matrix from four subjects
and tested with remaining one subject. This is repeated for
each subject as test subject and the average of all the test
results have been estimated as the average recognition rates
[37]. The splitting of the data being accomplished in a way
independent of the data, the recognition results avoid any
effect of bias or over-fitting [38].

IV. EXPERIMENTAL RESULTS
A. Optimal Number of Muscle Synergies

Fig. 5 shows three sets of muscle synergy patterns while
adding one synergy each time for the middle finger move-
ment of one subject. Each time a set of synergy is added,
new synergy patterns were observed with new activation
coefficients. To estimate the optimal number of synergy sets
to be used for recognition of finger movements, criteria
mentioned in section III-B.1 was followed.

Table IV through VIII shows the VAF for three sets of
synergy during five finger movements for 10 trials across
the five subjects.

TABLE IV
VAF IN % FOR THREE SETS OF SYNERGY DURING FIVE FINGER
MOVEMENTS OF SUBJECT 1

Index | Middle | Ring | Little | Thumb
k=1 | 98.7 98.6 98.1 983 98.8
=2 | 989 98.8 98.5 | 98.6 99.1
k=3 | 99.5 99.9 99.6 | 998 99.9
k=4 100 100 100 100 100

TABLE V
VAF IN % FOR THREE SETS OF SYNERGY DURING FIVE FINGER
MOVEMENTS OF SUBJECT 2

Index | Middle | Ring | Little | Thumb
k=1 | 984 98.8 979 | 971 98.5
k=2 | 98.7 99.1 98.4 [ 977 99.2
k=3 | 99.9 99.9 99.9 1 999 99.9

k=4 100 100 100 100 100

The VAF corresponding to Fig. 5 is shown in Fig. 6. As in
Fig 5, the synergy pattern is consistent with k = 1 for all the
finger movements. Further, observing the VAF in Table IV
through VIII; it has been found that the VAF is more than
95% for all the finger movements across all the subjects
satisfying criterion 1 mentioned in section III-B.1. While

1- Brachioradialis
2-Extensor Digitorium
3-Flexor Carpi Radialis
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Fig. 5. Muscle Synergy Patterns and Activation Co-efficients for the Middle
Finger Movement of One Subject as the Number of Synergies Increase from
k= 1to k=3 (sub-figure (a) for k=1, sub-figure (b) for k=2 and sub-figure
(c) for k=3)

2 3
Number of synergies

Fig. 6. Relationship between mean VAF of Five Finger Movements and
Number of Muscle Synergy (k= 1, 2, 3)

TABLE VI
VAF IN % FOR THREE SETS OF SYNERGY DURING FIVE FINGER
MOVEMENTS OF SUBIECT 3

Index | Middle | Ring | Little | Thumb
k=1 | 984 98.5 985 | 98.1 98.7
k=2 | 988 98.9 98.8 | 987 99.2
=3 | 999 99.9 99.9 | 999 99.9
k=4 100 100 100 100 100

analyzing the second criterion, it has been found that for
k = 1, VAF increases by less than 1% when one synergy is
added. According to [24], the minimum number of synergy
should be selected when the above two criteria are satisfied.
Accordingly, synergy with k = 1 was selected for recognition
of finger movements.

Fig. 7 shows the individual muscle synergy patterns for




TABLE VII

VAF IN % FOR THREE SETS OF SYNERGY DURING FIVE FINGER
MOVEMENTS OF SUBJECT 4

Index | Middle | Ring | Litle | Thumb
k=1 98.4 987 98.3 984 8.8
k=2 | 98.8 949.1 98.7 | 989 949.3
k=3 | 99.9 99.9 99.9 | 999 99.9
k=4 100 100 100 100 100

TABLE VIII

VAF IN % FOR THREE SETS OF SYNERGY DURING FIVE FINGER
MOVEMENTS OF SUBJECT 5

Index | Middle | Ring | Litle | Thumb
k=1 98.1 956 989 @ 963 95.2
k=2 | 8.7 962 9492 | 968 95.7
k=3 | 999 4.8 go.8 | 996 4.8
k=4 100 100 100 100 100

for the respective subjects. An average recognition rate of

97% was achieved across all the subjects.
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each finger movement for five subjects. The sub-figure (a),
(b), fc), (d) and (e) in Fig. 7 represent the synergy values
of thumb, index, middle, ring and little fingers respectively.
Each sub-figure consists of the synergy patterns of the four
groups of muscles for five subjects. These synergy patterns
are the coordination among the muscles while performing
finger flexion-extension movement. It can be observed that
the normalized synergy of the extensor digitorium muscle
is maximum followed by the flexor carpi ulnaris muscle
over the other two. It complies with the physiological fact
that extensor digitorium and flexor carpi ulnaris muscles are
mostly involved in finger extension and flexion movement
respectively [39].
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Fig. 7. Muscle Synergy Patterns of Five Finger Movements of Five
Subjects. Muscle synergy of (a) thumb (b) index (c) middle (d) ring (e)
little finger

B. Recognition Performance

EMG feature matrices of muscle synergy as in Fig. 7 were
used as input to the RBF kernel SVM. The recognition results
through leave-one-patient-out cross-validation are shown in
Fig. 8 It shows the recognition results for each finger
movement across 10 trials with the average recognition rate

Recognition Rate (%)
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Fig. 8. TFinger Movement Recognition Rates for (a) Subject 1 with an
average recognition rate 96.5% (b) Subject 2 with an average recognition
rate 97 5% (c) Subject 3 with an average recognition rate Y8.0% (d) Subject
4 with an average recognition rate 96.0% (e) Subject 5 with an average
recognition rate 97.0% through leave-one-patient-out cross-validation

V. CONCLUSIONS

We presented a framework for finger movement recog-
nition based on muscle synergy using EMG. Non-negative
matrix factorization was applied on the EMG feature for
estimating co-activation of forearm muscles during finger
movements. RBF kernel SVM was used as the classifier.
Leave-one-patient-out cross-validation was applied to avoid
any overfitting in the recognition results. An average recog-
nition rate 97% was achieved. The present study suggested
that, by means of the mechanism of muscle synergy, finger
movement recognition can be achieved with lower feature
vector dimensionality 1. e. only with RMS of EMG as feature.
The muscle activity contribution to the finger movements
as depicted by the synergy patterns are in line with the
physiological evidence. A recognition rate of 97% using
minimum EMG feature offers potential for robust finger
movement control in prosthetic hands.

The limitation of the presented work is that off-line
recognition of finger movements is presented. The focus of
our future work will lead to real-time implementation of the
presented finger movement recognition results for control of
prosthetic hands.
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