NATURAL PRODUCT COMMUNICATIONS
An International Journal for Communications and Reviews
Covering All Aspects of Natural Products Research
Intended for healthcare professionals

Account Administrators: Review your remote access options for SAGE Journals

Natural Product Communications

Editorial Board

Editor-in-Chief

Dr. Pawan K. Agrawal
Natural Product, Inc

Honorary Editor

Professor Gerald Blunden
University of Portsmouth, UK

Editors

Professor Vladimir I. Kalinin
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russia

Professor Phan Van Kiem
Vietnam Academy of Science and Technology (VAST), Vietnam

Professor Carmen Martin-Cordero
University of Seville, Spain

Professor Manfred G.
Texas Christian University, USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinecke</td>
<td>Texas Christian University, USA</td>
</tr>
<tr>
<td>Professor Sergio Rosselli</td>
<td>Università Degli Studi di Palermo, Italy</td>
</tr>
<tr>
<td>Professor Tadaaki Satou</td>
<td>International University of Health and Welfare, Japan</td>
</tr>
<tr>
<td>Professor William N. Setzer</td>
<td>University of Alabama in Huntsville, USA</td>
</tr>
<tr>
<td>Professor Ping-Jyun Sung</td>
<td>National Museum of Marine Biology and Aquarium</td>
</tr>
<tr>
<td>Professor Yasuhiro Tezuka</td>
<td>Hokuriku University, Japan</td>
</tr>
<tr>
<td>Professor David E. Thurston</td>
<td>King's College London, UK</td>
</tr>
</tbody>
</table>

**Coordinating Editor**

Chandan Agrawal
Natural Product, Inc

**Advisory Editorial Board**

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Giovanni Appendino</td>
<td>Università del Pimonte Orientale, Italy</td>
</tr>
<tr>
<td>Professor Yoshinori Asakawa</td>
<td>Tokushima Bunri University, Japan</td>
</tr>
<tr>
<td>Professor Vassya Bankova</td>
<td>Bulgarian Academy of Science, Bulgaria</td>
</tr>
<tr>
<td>Professor Anna R. Bilia</td>
<td>University of Florence, Italy</td>
</tr>
<tr>
<td>Professor Maurizio Bruno</td>
<td>University of Palermo, Italy</td>
</tr>
<tr>
<td>Professor Geoffrey Cordell</td>
<td>Natural Products Inc.</td>
</tr>
<tr>
<td>Professor Fatih Demirci</td>
<td>Anadolu University, Turkey</td>
</tr>
<tr>
<td>Professor Francesco Epifano</td>
<td>D'Annunzio University of Chieti-Pescara, Rovigo, Italy</td>
</tr>
<tr>
<td>Professor Antonio Evidente</td>
<td>University of Naples &quot;Federico II&quot;, Napoli, Italy</td>
</tr>
<tr>
<td>Professor Ana Cristina</td>
<td>Universidade de Lisboa, Portugal</td>
</tr>
</tbody>
</table>
Professor Mary J. Garon
The University of Queensland, Australia

Professor Cristina Gracia-Viguera
CEBAS-CSIC, Spain

Dr. Christopher Gray
University of New Brunswick, Canada

Professor Dominique Guillaume
Université de Reims-Champagne-Ardenne, France

Professor Hisahiro Hagiwara
Niigata University, Japan

Professor Judith Hohmann
University of Szeged, Hungary

Professor Tsukasa Iwashina
National Museum of Nature and Science, Japan

Professor Niel A. Koobanally
University of KwaZulu-Natal, South Africa

Professor George A. Kraus
Iowa State University, USA

Professor Chiaki Kuroda
Rikkyo University, Japan

Professor M. A. Lacaille-Dubois
Université de Bourgogne, France

Professor Shoei-Sheng Lee
National Taiwan University

Professor Yoshihiro Mimaki
Tokyo University of Pharmacy and Life Sciences (TUPL), Japan

Professor Robert W. Owen
German Cancer Research Centre, Germany

Professor M. Soledade C. Pedras
University of Saskatchewan, Canada

Professor Luc Pieters
University of Antwerp, Belgium

Professor Phila Raharivelomanana
Université de la Polynésie Française, French Polynesia

Professor Jesús M. Rodilla
Universidade da Beira Interior, Covilhã, Portugal

Professor Stefano Serra
C.N.R.-Istituto di Chimica del Riconoscimento Molecolare, Italy

Dr. Bikram Singh
CSIR-Institute of Himalayan Bioresource, India

Professor Alexios-Leandros
Skaltsounis
Professor John L. Sorensen
Professor Marina Stefova
Professor Valentin Stonik
Professor Félix Tomi
Professor Karin Valant-Vetschera
Professor Johannes van Staden
Dr. Alessandro Venditti
Assoc. Professor Yasunori Yaoita
University of Athens, Greece
University of Manitoba, Canada
Saints Cyril and Methodius University of Skopje, Macedonia
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russia
Université de Corse-CNRS, France
University of Vienna, Austria
University of KwaZulu-Natal, South Africa
Università di Roma “La Sapienza”, Roma, Italy
Tohoku Medical and Pharmaceutical University, Japan

More about this journal

Description
Aims and Scope
Abstracting/Indexing
Submit Paper
Natural Product Communications

Table of Contents
Volume 10 Issue 9, September 2015

Article

Alarm Pheromone Activity of Nymph-specific Geraniol in Chrysanthemum Lace Bug Corythucha marmorata against Adults and Nymphs

Kisaki Watanabe, Nobuhiro Shimizu

First Published September 1, 2015

Abstract
> Preview

One New Conjugate of a Secoiridoid Glucoside with a Sesquiterpene Glucoside from the Flower Buds of Lonicera japonica

Biao Yang, Zhaoqing Meng, Yimin Ma, Zhenzhong Wang, Gang Ding, Wenzhe Huang, Lin Sun, Yumei Hu, Wenjun Liu, Chunxiao Zhang, Zeyu Cao, Jiachun Li, Yan Zhong, Wei Xiao

First Published September 1, 2015

Abstract
> Preview
Anti-malarial Activity of Isoquinoline Alkaloids from the Stem Bark of *Actinodaphne macrophylla*


First Published September 1, 2015

Abstract

Effects of Berberine on Adipose Tissues and Kidney Function in 3T3-L1 Cells and Spontaneously Hypertensive Rats

Aya Kishimoto, Shi-fen Dong, Hiroko Negishi, Naomi Yasui, Jian-ning Sun, Katsumi Ikeda

First Published September 1, 2015

Abstract

Sagitol D, a New Thiazole Containing Pyridoacridine Alkaloid from a Vietnamese Ascidian

Natalia K. Utkina

First Published September 1, 2015

Abstract

A New Terminal Cyano Group-containing Benzodiazepine Alkaloid from the Mangrove Endophytic Fungus *Penicillium* sp

Jing Li, Yi-sheng Zhong, Jie Yuan, Xun Zhu, Yong-jun Lu, Yong-cheng Lin, Lan Liu
Antischistosomal and Cytotoxic Effects of the Essential Oil of *Tetradenia riparia* (Lamiaceae)


First Published September 1, 2015

Abstract

> Preview

Biological Activity and Chemical Constituents of Essential Oil and Extracts of *Murraya microphylla*

Hai-Ning Lv, Ke-Wu Zeng, Bing-Yu Liu, Yun Zhang, Peng-Fei Tu, Yong Jiang

First Published September 1, 2015

Abstract

> Preview

Chemical Constituents and Activity of *Murraya microphylla* Essential Oil against *Lasioderma serricorne*

Chun-Xue You, Shan-Shan Guo, Wen-Juan Zhang, Kai Yang, Cheng-Fang Wang, Zhu-Feng Geng, Shu-Shan Du, Zhi-Wei Deng, Yong-Yan Wang

First Published September 1, 2015

Abstract

> Preview
Natural Product Communications

Country: United States

Subject Area and Category:
- Agricultural and Biological Sciences
- Plant Science
- Medicine
- Complementary and Alternative Medicine
- Medicine (miscellaneous)
- Pharmacology, Toxicology and Pharmaceutics
- Drug Discovery
- Pharmacology

Publisher: Sage Publications

Publication type: Journals

ISSN: 15559475, 1934578X

Coverage: 2006-2019

Scope: Natural Product Communications (NPC) is an open access, peer reviewed journal bringing studies on all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation into one journal. It publishes communications, full papers, accounts and reviews covering the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products. Readership includes: Academic and Industrial Scientists working in all aspects of Organic, Pharmaceutical, Medicinal, Bioorganic and Analytical Chemistry, Biotechnology, Biodiversity and Chemotaxonomy.

Homepage
How to publish in this journal
Contact

Join the conversation about this journal
Impact Factor
Seminars in Respiratory and Critical Care Medicine is a topic driven review journal

Quartiles

SJR

Citations per document

Total Cites  Self-Cites

External Cites per Doc  Cites per Doc  % International Collaboration
Impact Factor

Seminars in Respiratory and Critical Care Medicine is a topic driven review journal

ti
e.com

Metrics based on Scopus® data as of April 2020

Unang Supratman 1 year ago

I try to submit but can not entrance due to incorrect username and password. Can you give me a new username and password?

I waiting for your further information

reply

Melanie Ortiz 1 year ago

Dear Unang,
thank you for contacting us.
Anti-malarial Activity of Isoquinoline Alkaloids from the Stem Bark of *Actinodaphne macrophylla*

Mehran Fadaeinasab, Hairin Taha, Putri Narrima Mohd Fauzi, Hapipah Mohd Ali and Aty Widyawaruyanti

*Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia*
*Centre for Research in Biotechnology for Agriculture (CEB4R), University of Malaya, 50603 Kuala Lumpur, Malaysia*
*Faculty of Pharmacy, Universitas Airlangga, Jalan Darmawangsa Dalam, Surabaya 60286, Indonesia*

mehranfadaei@um.edu.my

Received: March 3rd, 2015; Accepted: May 15th, 2015

Seven isoquinoline alkaloids isolated from the bark of *Actinodaphne macrophylla* in this study demonstrated *in vitro* antiplasmodial activities against *Plasmodium falciparum* 3D7 with IC_{50} values of 0.08 µM, 0.65 µM, 1.18 µM, 3.11 µM, 0.65 µM, 0.26 µM, and 1.38 µM for cycleanine, 10-demethoxylycorine, reticuline, laurotetamine, bicuculine, α-hydrastine and anolobine, respectively, which are comparable with the reference standard, chloroquine. 10-Demethoxylycorine was found to be the most active of these compounds.

**Keywords:** *Actinodaphne macrophylla*, Lauraceae, Isoquinoline alkaloids, Antiplasmodial activity, *Plasmodium falciparum* 3D7.

Malaria is a disease caused by a parasite, transmitted by the bite of infected mosquitoes. Malaria produces recurrent attacks of fever and kills an estimated 1 million people each year worldwide [1a]. Plants of *Actinodaphne* are widely used traditionally for treating stomach-ache, rheumatism, inflammation and disorders of the urinary tract in many countries from South East Asia, India and China [1b]. In Malaysia, apart from treating general ailments, the leaves are also used as a mosquito repellent due to their fragrant smell [1c]. The main chemical constituents of these plants are isoquinoline alkaloids, which are clinically responsible for their pharmacological activities such as the well-known narcotic analgesics, morphine and codeine, apomorphine (a derivative of morphine) used in Parkinson’s disease, the muscle relaxant papaverine, and the antimicrobial agents sanguinarine and berberine [1d]. Most interestingly, several plant extracts and isolated compounds from the Lauraceae family have been reported to have anti-malarial activity [1e]. In fact, several species in tropical regions have been identified to be potent against human malaria parasites [2a]. Malaysia is known for its vast tropical forest and green vegetation. Its diverse nature and multiple uses include medicinal values. The Malaysians also utilize traditional and herbal remedies as an alternative choice of treating malarial infection [2b].

The present study examined *Actinodaphne macrophylla* (Blume) from Lauraceae family to determine its anti-malarial activity by focusing on isoquinoline alkaloids: cycleanine (1), 10-demethoxylycorine (2), reticuline (3), laurotetanine (4), bicuculine (5), α-hydrastine (6), and anolobine (7) which could not be obtained as a pure compound and anolobine (8) (Figure 1). These isolated compounds were elucidated by spectroscopic methods [3-10] and the seven pure alkaloids were used to study their *in vitro* activity against *Plasmodium falciparum*. Isoquinoline alkaloids from different plant families have been used widely for anti-malarial activity, such as protopine and corexine form *Corydalis crispa* [11]. Results showed that the alkaloid crude extract has an IC_{50} value of 0.5 ppm, which is considered active if less than 50 ppm [12a]. Table 1 shows the *in vitro* antiplasmodial activity against *P. falciparum* 3D7 of the isolated isoquinoline alkaloids. According to the antimalarial activity criteria [12b], all of the tested compounds were active. In comparison with chloroquine, 10-demethoxylycorine (2), a protoberberine type alkaloid, was found to be the most active (IC_{50} 0.05 ± 0.04 µM), followed by cycleanine (1), α-hydrastine (6), bicuculine (5), reticuline (3), anolobine (8) and laurotetanine (4). The potential of isoquinoline alkaloids as antimalarial agents has gained interest among natural product scientists for further study of these compounds [12c]. A previous report demonstrated that crude alkaloids of Brazilian plant species containing isoquinoline alkaloids had anti-malarial activity, but there was no further evaluation of the isolated alkaloids [13]. A recent study also reported the antimalarial activity of the crude alkaloid extract of *A. macrophylla* with an IC_{50} of 0.1 ppm, but the compounds responsible for the bioactivity were not determined [12b].

**Experimental**

**Plant materials:** The stem bark of *Actinodaphne macrophylla* was collected from Johor in 2012. The botanical identification (voucher specimen KL 4940) was made by Mr Teo Leong Eng, Faculty of Science, University of Malaya.

**Extraction and isolation:** The dichloromethane (CH_{2}Cl_{2}) alkaloid crude extract of *A. macrophylla* bark (2.7 kg) was obtained by using
an acid and base extraction method. The crude extract (6.2 g) was fractionated on a silica gel column (CH4:CH2=MeOH:100:0 → 50:50), followed by a Si-amine silica gel column (CH2=C:MeOH:100:0 → 50:50) and finally purified by preparative HPLC (50-100% MeOH-CH2=H2O with detection at 248 and 283 nm, and a flow rate of 7 mL/min C18 Column) to yield cycloence (1) (13 mg. 0.00048 %); 10-dimethylhydroquinone (3) (8 mg. 0.00029 %); reticuline (3) (11 mg. 0.0044 %); laurotretamine (4) (10 mg. 0.00037 %); bicusculine (5) (8 mg, 0.00029 %); o-hydrastine (6) (10 mg. 0.00037 %); parfumine (7), (7 mg. 0.00025 %); and anaboline (8) (8 mg. 0.00029 %).

**Antiplasmodial activity:** Continuous in vitro cultures of axenical erythrocyte stages of *Plasmodium falciparum 3D7*, a chloroquine sensitive strain, were maintained following the methods of Trager and Jensen [14], on glucose-enriched RPMI 1640 medium, supplemented with 10% human serum at 37°C. The alkaloid crude extracts and pure compounds were tested against *P. falciparum* 3D7 [15]. The antimalarial activity of the isolated compounds and crude extracts was determined by the procedure described as follows. In brief, 1 mg of each sample was separately dissolved in DMSO and kept at -20°C until used. The stock samples were further diluted tenfold as required with RPMI 1640 medium. The final concentrations of samples were: 10, 1, 0.1, 0.01 and 0.001 μg/mL, respectively. The malarial parasite *P. falciparum* 3D7 was propagated in a 24-well culture plate with a wide range of concentrations for each sample. The growth of the parasite was monitored by performing blood smears. The percentage of growth inhibition was expressed according to the following equation: Growth inhibition % = 100 − (test parasitemia/control parasitemia) × 100. Antimalarial activity of each sample was expressed as an IC50 value, defined as the concentration of the sample causing 50% inhibition of parasite relative to an untreated control. Probit analysis with SPSS was used as statistical analysis to determine the IC50 value [16]. Compounds or isolates that had an IC50 value < 1.5 μM were considered active [12b].

**Acknowledgements** - The authors express their utmost gratitude and appreciation to University of Malaya and Ministry of Higher Education UM-MOHE UM.C/625/1/HIR/MOHE/SC/09 and PG 064-2012B for financial support. This paper is dedicated to the memory of the late Prof. Datuk Dr. Amid Hamid A. Hadi for all his full support and encouragement for this project.

<table>
<thead>
<tr>
<th>Alkaloids</th>
<th>IC50 (μM)</th>
<th>% Inhibition at concentration (μg/mL)</th>
<th>IC50 + SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100 ± 0.3</td>
<td>100 ± 1</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>98.8 ± 0.05</td>
<td>51.9 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>58.0 ± 0.04</td>
<td>37.5 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>35.7 ± 0.03</td>
<td>21.9 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
<td>25.7 ± 0.03</td>
<td>14.5 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>0.00001</td>
<td>21.1 ± 0.02</td>
<td>12.9 ± 0.02</td>
</tr>
</tbody>
</table>

References


