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ABSTRACT

Increasing aging population causes an increased prevalence of neurodegenerative diseases such as dementia that is associated
with memory decline. De@Z8ping strategies for the prevention and therapy of age-related dementia is important to reduce the
burden of treatment costs. Physical exercise is known to prevent cognitive decline and improve cognitive abilities. Thus, physical
exercise appears as a simple, inexpensive, and afford¥dle non-pharmacological therapy for most people. The processes of
neurogenesis and neuronal survival involve the role of neurotrophic factors including BDNF, IGF-1 and VEGF, which are the
three main neurotrophic factors that are known to increase after exercise. Many publications discuss about these neurotrophic
factors, but their mechanism of signals and changes related to aging and exercise have not been completely studied.
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Introduction

Aging is unavoidable and unalterable process. The
increasing aging population in the world is caused by
improved medical care and decreased fertility. World
Health Organization reported that there were 9009
million people aged 65 years or above in 2015and the
number was cted to increase up to 2092 million
by 2050." Aging is the major risk factor for
neurodegenerative diseases, such as dementia which
is initially characterized by memory decline.> The
population of dementia will continue to increase
along with the increasing number of aging
population. There are approximately 36.6 million
people suffering from dementia, and it was expected
to double up by 2030. Therefore, one of the greatest
health threats in many countries is aging-related
dementia, which costed US $ 818 billion in 2015
worldwide

Developing strategies for the prevention and
treatment of age-related dementia is important to
reduce the burden of treatment costs. Unfortunately,
until now there has been no effective
pharmacological therapy for aging- related dementia.
Therefore, the development of non-pharmacological
prevention and treatment is a potential alternative
therapy for these neurodegenerative disorders.
Physical exercise can be an inexpensive and
affordable non-pharmacological therapy in
preventing age-related cognitive decline. Prior
studies have revealed that exercise or physical
activity were able to give neurological advantage and

preservative effects on the brain, prevent cognitive
decline and improve cognitive performance.*®
Research using animal models showed that exercise
increased neurotrophic factors, glial cells activity and
cerebral blood flow which led to increased
neurogenesis and neuron cell survival *6-10

Neurotrophic  factors such as brain derived
neurotrophic factor (BDNF), insulin-like growth
factor (IGF-1) and vascular endothelial growth factor
(VEGF) are known to be the main mediators of
neurogenesis in the adult brain. Physical exercise
causes an increased BDNF gene expression in the
hippocampus. In addition, physical exercise also
causes increased levels of IGFa and VEGF in the
peripheral, subsequently enters the brain through the
blood brain barrier and triggers the process of
neurogfllesis, thus maintaining cognitive function.'
These neurotrophic factors including BDNF, IGF-1
and vascular VEGF have been widely studied, with
evidence of the large number of publications
discussing these neurotrophic factors. However, the
mechanism of signals and changes of these
neurotrophic factors related to aging and exercise
have not been completely studied. In this article the
mechanism of signals and changes of these
neurotrophic factors related to aging and exercise are
highlighted.




Neurotrophic Factors, Aging Brain
and Exercise

Neurotrophic factors are proteins that function as
mediators for the neuronal proliferation,
differentiation, and survival. The three main
neurotrophic factors that are known to increase after
exercise and can ger the neuronal growth and
proliferation are brain-derived neurotrophic factor
(BDNF), insulin-like growth factor-1 (IGF-1) and
vascular endothelial growth factor (VEGF)."? The
aging process is associated with a decreased activity
of these neurotrophic factors activity.

BDNF, aging brain and exercise
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Brain-derived neurotrophic factor (BDNF) is a
member of neurotrophin family that is expressed in
the hippocampus, cortex, hypothalamus, septum, and
in adrenergic brain stem nuclei and is highly
concentrated in the hippocampus.'>* BDNF play a
role for neuronal growth, differentiation, and
survival, synaptic plalslicilpr()liferalli()n of dendritic
arbor, axonal sprouting, regulates LTD (long-term
depression) and LTP (long-term potentiaticleys’'*
The expression of this neurotrophic factor in the
peripheral and central nervous systems is influenced
by stress, nutrition, behavior and metabolism.'*

BDNF is derived from pro-isoform BDNF which will
form a mature BDNF protein after undergoing
proteolytic breakdown in neur()nn)r after being
released. BDNF protein will bind to protein-kinase
neurotrophin receptors — tropomyosine-related kinase
(Trk) receptors. The interaction between BDNF and
its receptors causes the activation of several major
signaling pathways that play a role in stimulating
synaptic plasticity, neuronal proliferation,
differentiation and survival, including PI-3 kinase,
MAP kinase and phospholipase-c-y.!>!% The binding
of BDNF with Trlm'ecepl()r subsequently activates
cAMP-responsive element-binding protein (CREB).
CREB is a transcription factor that plays a role in
regulating the process of neuronal proliferation,
differentiation and survival. Therefore, CREB plays
an important role in neuronal plasticity, memory and
learning.'*7-' Contrastingly, pro BDNF binding with
its receptor, p75 neurotrophin receptor (p75 NTR)
activates the apoptotic pathway of neurons and glial
cells."

Petzold and his colleagues found BDNF protein
levels in the hippocampus (without distinguishing
between mature BDNF and pro BDNF) were
relatively stable in mice aged 3,5,7 and 9 months."”
This finding can be explained by research by

Calabrese and colleagues comparing mature BDNF
and pro BDNF levels in mice aged 18 months and 3
months. Based on the study, there were reduced
mature BDNF levels and elevated pro BDNF levels
in the hippocampus and prefrontal cortex of old
mice.” Increased pro-BDNF [fi#els is related to a
decreased  activity of pro-BDNF  cleaving
m'acellular protease plasmin due to decreased
proteolytic activity of tissue type plasminogen
activator (tPA).>' Therefore, the total BDNF protein
in the brain is relatively stable. However, aging will
change the ratio of pro BDNF and mBDNF which
represents the decrease of mBDNF levels and
increase of pro BDNF levels. This resulted in an
increase of apoptotic pathways for neurons and glial
cells and a decrease of neuronal proliferation,
differentiation and survival.

In addition to its influence to the BDNF protein,
aging also affects the TrkB receptor. Research by
Florence and colleagues which observed TrkB
expression in pituitary rats at age of 1 month, 2
months, 4 months, 10 months and 22 months showed
a decrease of TrkB expression along with the
increase of rat age.? Thmu;ls also supported by
other studies that showed a decreased expression of
TrkB in the hippocampus along with the increased
age of mice."”

Exercise causes an increase of BDNF levels. Marlatt
and colleagues showed an increase of neurogenesis
and BDNF levels in female mice (9 months) after
wheel running. The increase of BDNF levels and the
number of new neuron cells causes an improvement
in memory retention and spatial memory. Although
specific molecular mechanisms underlying the
mcreased BDNF gene expression due to exercise
were not clearly elucidated, recent studies showed
that there was a role of ketone body D-p-
hydroxybutyrate (DBHD) in increasing BDNF gene
expression due to exercise. DBHB is a major
metabolite which is increasingly secreted in the liver
after prolonged exercise. DBHB is produced from
acetyl coA derived from the p-oxidation of fatty acids
in the liver. DBHD from the liver enters the blood
circulation and enter the brain to be used as an energy
source. In addition, DBHD 1s known to inhibit
histone deacetylation (HDAC), specifically HDAC2
and HDAC3 that causes an increased BDNF gene
expression.”” Therefore, exercise increases the
expression of BDNF genes through HDAC inhibition
by DBHD.

L}

Exercise is also known to be able to inhibit the
activity of enzymes P and y secretases through
BDNF. These enzymes function to break down




amyloid precursor protein (APP) to produce amyloid which will be secreted outside neuron cells. In
B peptide (Ap), which is a toxic substance that causes addition, P secretase activity will be inhibited by
age-related neurodegenerative diseases, such as sAPPa, thus preventing the formation and
Alzheimer's disease. Exercise and BDNF cause an accumulation of Ap. Therefore, sAPPu is also known
increase in the activity of a secretase. The o secretase as intracellular neuroprotective APP  peptide.
is one of the three types of secretase which functions Therefore, exercise and BDNF have neuroprotective
in breaking down amyloid precursor proteins and effects by increasingo secretase activity.”*

forming sAPPa. sAPPa is a secreted form of APP
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Fig.l. Aging causes (1) an increase of pro-BDNF levels compared to BDNF due to decreased activity of tPA, which results in
increased cell apoptosis and (2) decreased expression of TrkB receptors and decreased signaling pathways that function as
neuronal survival, proliferation and anti apoptotic pathway. Exercise is able to counteract the effects of aging by: (1) increasing
DBHD secretion in the liver which will cause increased BDNF expression, thereby increasing BDNF signaling activity and (2)
increasing u secretase activity by inhibiting the activity of B secretase to form Af.




IGF-1, aging brain and exercise

Insulin-like growth factor-1 (IGF-1) is a major
growth factor and its mducli()n is stimulated by
growth hormone (GH). IGF-1 is mainly produced in
the liver and is subsequently bound to IGF binding
protein (IGFBP) in thfblood circulation before
eventually entering the blood brain barrier into t
central nervous system.>>2" The ability of IGF-1 to
penetrate  the blood-brain barrier explains the
relationship between IGF-1 levels in circulation and
IGF-1 levels in cerebrospinal fluid. Decreased IGF-1
levels in the circulation will cause a decrease of IGF-
1 levels in the cerebrospinal fluid.® IGF-1 can cross
the blood-brain barrier through 3 mechanisms: (1) by
binding to IGF-1 receptors in endothelial cells and
then taken directly by neuron cells or through
alstr@e cells and then transferred to neuron cells;
(2) by binding to l()w-dty lipoprotein receptor-
related protein-2 (LRP2) into the cerebrospinal fluid
(CSF); and (3) by metalloproteinase 9 activity which
will break IGF-1 and IGFBP bonds to form free IGF-
1 that can enter the central nervous system (CNS).
2830 JGF-1 which has crossed the blood-brain
barrier plays a role in increasing BDNF activity,
activating c¢-fos and activating various major
signaling pathways similar to BDNF.'>*! Thus, IGF-1
activity in the brain is important for neuronal
proliferation, differentiation and survival,
neurotransmission,  synaptic  density,  synaptic
plasticity and adult neurogenesis.

Aging causes a decrease of IGF-1 and IGF-1R
levels.’>* Study by Hyun et al. showed a decrease of
IGF-1 and IGF-1 receptor levels in the hippocampus
and somatosensory cortex of mouse at age of 24
months compared to mouse at age of 6 months*
Other studies have shown a decrease of IGF-1 levels
and IGF-1R expression in gerbil olfactory bulbs at
age of 24 months compared to age of 3 and 6
months.”® Thus, a decrease of IGF-1 levels and IGF-
IR expression causes a decreased activity of BDNF
activity and the activity of various major signaling
pathways associated with neuronal survival,
neurogenesis and synaptic plasticity. This results in
decreased cognitive function and memory in the
elderly.

Age-related decrease of IGF-1also causes a decrease
of expression and NMDA mtpl()r activity. NMDA
receptors are receptors that play a role in maintaining
LTP expression and generating action potentials in
neurons which play Bm important role in
hippocampal-dependent learning and memory. The
NMDA receptor is a tetramer that consists of
different subunits. Within the hippocampus, the

NMDA receptor consists of two GluN1 subunits and
two other subunits consisting of GIuN2A or GluN2B.
Aging causes a significant decrease of GIuN2B
expression. This subunit reduction is associated with
age-related cognitive disorders. This is proved by
over expression of GIuN2B correcting cognitive
impairment in old rats. IGF-1 supplementation in
older rats successfully corrected the expression of
GIuN2A/GIuN2B, suggesting that IGF-1 played an
important role in NMDA expression and activity

In addition to its effect to NMDA expression,
decreased IGF-1 levels and age-related Elilular
sensitivity to IGF-1 also play a role in the
accumulation of dangerous compounds such as -
amyloid peptides (BA) in the brain. BA is a
compound that plays a role in age-related dementia,
including alzheimer's and vascular dementia. IGF-1
plays a role in protecting nerve cells from the toxicity
of PA, increasing the release of these compounds
from cells and stimulating the clearance of these
compound in Elil‘] tissues. Another newly revealed
mechanism is IGF-1 increases the entry of fA carrier
proteins, such as albumin, transthyretin and
apolipoprotein J inlmslls, and subsequently binds to
BA and carries BA out of the brain parenchyma into
the blood circulation through cerebrospinal fluid

The specific molecular mechanism underlying the
improvement of memory by IGF-1 is still unknown,
but it is known that IGF-1 corrects age-memory
disorders through synapse formation in the
hippocampus. Studies on the pralc of total synaptic,
postsynaptic density (PSD) and multiple spine bouton
(MSB) complexes in the CAl region in the
hippocampus of rats aged 4, 18 and 29 months
showed that aging caused a decrease of total synapses
but retained the length of PSD and the MSB
complex. IGF-1 infusion for 28 days did not improve
the reduction in total synapses due to aging.
However, it successfully increased the number of
MSD synapses and PSD length.*® This suggested that
both aging and IGF-1 showed complementary
functions and affected different parts of the synapse.

Exercise causes an increase of IGF-1 levels by
mcreasing growth hormone (GH) levels. Plasma GH
levels will inlBase within 10-20 minutes after
exercise, and GH is the m regulator of IGF-1
synthesis in the liver.® Many studies la/c shown that
exercise plays a role in increasing IGF-1 activity.
Carro and colleagues showed that wistar rats treated
with treadmill running of 17m/min for 1 hour could
induce uptake of IGF-1 from blood to neurons in the
brain, andfflcumulation of IGF-1 in neuron cells
caused an increase in sensitivity to prolonged afferent




stimulus. Systemic inffiftion of IGF-1 in sedentary
rats will resemble the effect of exercise on the brain,
which shows tl'mlme pattern of IGF-1 accumulation
in the brain after exercise or after intracarotid
injection of IGF-1. The accumulation of IGF-1 in the
brain also cffles an increase of c-Fos neuronal
activity and the number of new neurons in the
hippocampus. The mechanism generated by IGF-1 is

similar to stimulation of brain-derived neurotrophic
factor in the hippocampus. Increased expression of c-
Fos was inhibited after exercise, if IGF-1 uptake by
brain cells was inhibited by antiserum IGF-1 26404
This suggested that IGF-1 in Cil’(:ulilla] was
important and exercise causesd an increase of IGF-1
activity in the brain by stimulating IGF-1 uptake in
circulation to the brain.??
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Fig.2. Aging causes (1) decreased IGF-1 levels and (2) decreased IGF-1R expression, thus inhibits proliferation, cell survival, and
anti apoptosis signaling pathway: (3) inhibits increased BDNF expression; (4) inhibits increased NMADR expression: (S)
inhibits clearance from PA. Exercise can counteract the effects of aging through: (1) an increase of growth hormone which causes

an increase in IGF-1 levels by the liver.

VEGF, aging brain and exercise
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VEGF is a hypoxia-induced p.mtcin which plays an
important role to stimulate the growth and formation
of blood vessels. VEGF can be secreted by a variety
of «cells and tissues, including glial cells,
macrophages, endothelial cells, and smooth and
skeletal muscle.”” VEGF binding with VEGF
receptor 2 (VEGF2R) in
angiogenic, mitogenic and neurogenic activity.*?

causes an increase

Studies evaluating the VEGF response in older mice
showed that injection adeno-associated viral vector
expressing VEGF (AAV-VEGF) caused an three

times increase of vascular density in brain of mice
aged 3 and 12 months three times C()l’l‘ﬁ:d to mice
aged 24 months. In addition, there was an increase in
the number of endothelial cells and neuroprogenitors
in the subventricular area in mice aged 3 and 12
months comp@l to 24 months. AAV-VEGF
injection also increased the expression of VEGF
receptor 2 in the brains of mice aged 3 and 12
months, but not in mice aged 24 months.*? Other
studies have shown that there was a decrease in the
VEGFR2 protein in the coronary arteries and a
decrease in the phosphorylation of Akt induced by
VEGF in older mice compared with young mice.*’
This suggested that aging caused a decrease in
response to VEGF stimulation and impairment of




VEGFR2/PI3-kinase signaling, which was likely due
to decreased VEGF receptor function and expression.

Exercise causes an increase of several growth factors
including VEGF. There was an increase of neuronal
proliferation in the subgranular zone (SGZ) in the
hippocampus of mice after having exercise on a
running wheel for 1 week. Blocking peripheral
VEGF with soluble Flt-1 fusion protein (sFIt) caused
a decrease in neuronal proliferation in the
hipp()carms‘. This showed that peripheral VEGF
played an important role in the process of
neur@esis in the hippocampus.* It was estimated
that 60-90% of peripheral VEGF was produced by
muscles. Therefore, skeletal muscle may be the main
source of VEGF that was involved in exercise-
induced neur(anesis. This was proven by research
that observed the number of neuronal prea'sor cells
in the hippocampal dentate gyrus of mice with
normal skeletal myofil VEGF production (VEGF ™
mice) and transgenic mice with decreased levels of

skeletal myofiber VEGF (VEGF hslmice). It was
showed wheel running for 2 weeks caused increased
neurogenesis in VEGF ™ mice but no effect was
found in VEGF " -"mice *

In addition to increasing VEGFR and neural stem cell
(NSCs) activity, treadmill exercise in rats also
showed significantly increased Caveolin-1. Caveolin-
1 is protein that mediates cell and tissue regeneration.
Inhibition of caveolin-1 by daidzein was reported to
decrease caveolin-1 and VEGF levels. It was known
that caveolin-1 was involved in following
mechanism: (1) caveolin-1 was tlgght to mediate
the VEGF signaling pathway: (2) caveolin-1/VEGF
signaling pathways via VEGFR2 after exercise
imnduced NSC differentiation and proliferation, (3)
acn:ased caveolin-1 activity caused a decrease in
VEGF expression, thus inhibiting stimulation of
VEGFR2 phosphory]atica by VEGF and inhibits
several major signaling pathways such as PLCyl,
AKT and ERK #4647
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Fig.3. Aging causes (1) decreased VEGF2R expression and (2) decreased Akt phosphorylation activity induced by VEGF, causing a
decrease in signaling pathways of neuroprotective and neurogenesis. Exercise is able to counteract the effects of aging by following
mechanisms: (1) increasing of VEGF levels by skeletal muscle and (2) increasing caveolin-1 activity, mediating an increase of
VEGF expression thereby increasing the activity of the signaling pathway by VEGF.




Conclusion

Age-related neurodegenerative disease was caused by

decreased activity, levels and expression of
neurotrophic factors such as BDNF, IGF-1 and
VEGF. These three factors have a role in increasing
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