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Abstract 
Background: Angiotensin-converting enzyme (ACE) inhibitors have 
been shown to promote endothelial progenitor cell (EPC) function. 
However, the efficacies of different ACE inhibitors in improving the 
migratory capabilities of ECPs in coronary artery disease (CAD) 
patients is unclear. This study compared the effectiveness of captopril, 
lisinopril, and ramipril toward the migration capability of impaired 
EPCs from CAD patients. 
Methods: We isolated peripheral blood mononuclear cells (PBMCs), 
separated EPCs from PBMCs, and divided them into an untreated 
group (control) and treated groups of captopril, lisinopril, and ramipril 
at doses of 1mM, 10mM, and 100mM. EPC migration was evaluated 
using the Boyden chamber assay. Analysis of variance (ANOVA) was 
performed using SPSS 25.0. 
Results: This study showed that treatment with captopril, lisinopril, 
and ramipril starting at the lowest dose (1 mM) increased EPC 
migration (65,250 ± 6,750 cells; 60,750± 5,030 cells; and 49,500 ± 8,400 
cells, respectively) compared to control (43,714 ± 7,216 cells). 
Increased migration of EPCs was observed by increasing the 
treatment dose to 10 mM with captopril, lisinopril, and ramipril 
(90,000 ± 16,837 cells; 79,071 ± 2,043 cells; and 64,285 ± 11,824 cells, 
respectively). The highest EPC migration was shown for lisinopril 100 
mM (150,750 ± 16,380 cells), compared to captopril and ramipril at the 
same dose (105,750 ± 8112 cells and 86,625 ± 5,845 cells, respectively). 
Conclusions: Captopril, ramipril, and lisinopril were shown to increase 
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EPC migration in a dose-dependent manner. Low-dose (1 mM) and 
medium-dose (10 mM) captopril had a larger effect on ECP migration 
than lisinopril and ramipril. Meanwhile, high-dose lisinopril (100mM) 
had the highest migration effect, suggesting it may be preferable for 
promoting EPC migration in CAD patients.
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Introduction
Endothelial dysfunction and impaired endothelial regeneration  
are thought to play an important role in the pathogenesis of  
arteriosclerosis in coronary arterial disease (CAD)1. Endothelial  
regeneration is not only fulfilled by resident endothelial cells 
but also repaired by endothelial progenitor cells (ECPs) origi-
nating from the bone marrow2. ECPs are premature circu-
lating cells, a specific subtype of hematopoietic stem cells 
that differentiate into endothelial cells in situ and promote  
neovascularization3,4. Several studies have shown that in patients 
with CAD, there is a significant decrease in the number and  
migratory function of circulating EPCs, which leads to impaired 
neovascularization of ischemic tissue5,6. Low EPC counts can  
predict severe endothelial dysfunction, cardiovascular events, 
and deaths from cardiovascular causes7,8. It is suggested that  
intracellular damage and impaired redox balance in EPCs due 
to oxidative stress are the predisposes of imbalance in vascular  
pathology9,10.

Angiotensin-converting enzyme (ACE) inhibitors are widely  
used in cardiovascular disease and have been shown to be 
associated with beneficial effects on EPCs in several in vitro  
and clinical studies11–14. An animal study on mice with increased 
left ventricular pressure showed that ramipril increases the 
number and improves EPC migration12. A clinical study in  
hypertensive patients showed that enalapril and zofenopril 
reduce EPC levels and prevent vascular damage and carotid  
intima-media thickening13. In a small clinical trial, admin-
istration of ramipril for four weeks in patients with  
stable CAD augments and increases the functional activity of 
EPCs, including migration, adhesion, and in vitro capacity of  
vasculogenesis15.

However, no studies have investigated the role of ACE  
inhibitors of captopril and lisinopril in relation to the EPCs. 
In addition, the comparison between different types of ACE 
inhibitors toward the impaired migration function of EPCs 
remains to be investigated. We aimed to evaluate the effects of  
captopril, lisinopril, and ramipril on EPCs migration from CAD  
patients.

Methods
Ethical statement
Our study protocol was approved by the Institutional Ethics  
Committee of Dr. Soetomo General Hospital (945/KEPK/II/ 
2019). Informed consent for peripheral blood sampling pro-
cedures and participation in research studies was obtained 
from all patients before the blood was drawn. We have omitted  
all data that could reveal the identity of the patients.

Study population
In the present study, we used peripheral blood samples from  
the same participants and performed similar methodology 
to that described in our previous study16. From June 2018 to  
December 2018, we studied a total of eight patients with sta-
ble CAD who underwent coronary angiography. Only patients 
with the left main coronary artery stenosis of more than 50% or  
stenosis in other coronary arteries more than 70% were  

recruited. To prevent the effects of myocardial ischemia on 
ECP kinetics, we excluded patients with a history of new-onset  
acute myocardial infarction. In addition, patients with anemia, 
diabetes, a history of percutaneous coronary intervention, or  
coronary artery bypass grafting were not included in the study. 
Physical examination was performed to determine body mass 
index (BMI) and to assess the vital signs. We also examined the  
lipid profile and performed echocardiography to assess left  
ventricular function. The characteristics of the study population  
are summarized in Table 1.

Preparation of blood samples and mononuclear cell 
isolation
We collected 40 ml peripheral blood samples from the median 
cubital vein following WHO guidelines on drawing blood17.  
From freshly drawn heparinized blood, we isolated periph-
eral blood mononuclear cells (PBMCs) using Ficoll Histopaque  
1077 (Sigma-Aldrich, USA). Briefly, peripheral blood was 
diluted 1:1 with phosphate buffer saline (PBS) + 2% fetal 
bovine serum (FBS) to a total volume of 30–35 ml. It was then  
carefully layered into 20 ml of Ficoll Histopaque 1077 (Sigma-
Aldrich, USA) in a 50 ml conical tube. Subsequently, the tube 
was put into a centrifuge at 300xg for 30 minutes. The PBMC 
layer was obtained in the form of a buffy coat layer. Using a  
sterile plastic pipette, the PBMCs were carefully taken and 
put into another 50 ml conical tube. Furthermore, PBMC was 
added with PBS + 2% FBS in a ratio of 1: 1, then stirred until  
homogeneous and centrifuged at 300xg for 7 minutes. This 
step was repeated with the supernatant removed, 15 ml of 
PBS + 2% FBS was added to the precipitate formed at the  
bottom of the tube and centrifuged at 300xg for 7 minutes. 
Finally, the supernatant was removed, and the sediment was  
dissolved with a basal medium. Cells were concentrated up to  
5×106 cells/ml.

Table 1. The characteristics of the study 
population.

Variable Mean ± SD

Age (years) 54.50 ± 4.31

BMI (kg/m2) 25.39 ± 2.13

Heart rate (times/minute) 86 ± 8.68

Systolic blood pressure (mmHg) 137.50 ± 24.35

Diastolic blood pressure (mmHg) 80 ± 7.56

Triglyceride (mg/dl) 97 ± 11.64

LDL (mg/dl) 145 ± 61.11

HDL (mg/dl) 35 ± 7.64

Total cholesterol (mg/dl) 200.50 ± 74.75

Left ventricle ejection fraction (%) 53.5 ± 4.11
BMI, body mass index; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein; SD, standard deviation.
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Isolation and culture of endothelial progenitor cells
To separate EPCs from PBMCs, we used standard protocols18. 
Briefly, PBMCs isolated from blood samples in a concentration 
of 5×106 cells/mL were collected in Stemline II Hematopoietic  
Stem Cell Expansion Medium (Sigma-Aldrich, USA) sup-
plemented with endothelial basal medium (EBM) containing  
40 ng/ml of vascular endothelial growth factor (VEGF) and 
15% FBS. Then PBMCs were seeded in the six-well plate 
with fibronectin coating. The cultures were maintained with 
a humidified atmosphere at 37°C and 5% carbon dioxide.  
Forty-eight hours after seeding, we separated the medium liquid  
ontaining the non-adherent cells from the adherent cells attached 
to the bottom of the plate. All the medium liquid containing  
the non-adherent cells was collected into one tube, centrifuged 
with a spin at 300xg for 7 minutes, and the supernatant was  
discarded. The precipitate formed was dissolved with basal 
medium and supplement with a concentration of 1×106 cells/ml.  
We confirmed the cells as EPCs through immunofluorescence 
tests using fluorescein isothiocyanate (FITC) mouse anti-human  
CD34 monoclonal antibody (cat. no. 343604; Biolegend, USA).

Treatment groups
Isolated EPCs were divided into three treatment groups and 
one negative control group. The treatment groups were divided  
into 1) captopril 1 μM, 10 μM, and 100 μM; 2) lisinopril 1 μM,  
10 μM, and 100 μM; and 3) ramipril 1 μM, 10 μM, and 100 μM.  
The cultures were maintained with a humidified atmosphere 
at 37°C and 5% carbon dioxide for 48 hours. Each data point  
represented the mean value of quadruplicate cultures.

Migration assay
We used the Boyden chamber migration assay to measure ECP 
migration. Briefly, migration chambers with 8μm pore-size  
filters were placed in 24-well plates. Using 1 mmol/L EDTA 
in PBS, isolated EPCs were detached and then centrifuged at  
400xg for ten minutes. EPCs were seeded in the upper cham-
ber (5×105/ml in serum-free medium), and the lower compart-
ment of the Boyden chamber was filled with endothelial basal  
medium. After 24 hours of incubation at 37°C, we scraped off 
non-migratory cells on the upper chamber with cotton swabs. 
The migration chamber was put into a new basal medium  
and added with 500μL of trypsin + EDTA 0.5% solution. After 
10 minutes of incubation, we verified using a light micro-
scope to ensure more than 90% of adhering cells were released  
from the lower surface of the migration chambers. For quan-
tification, the cells were harvested and stained with trypan  
blue/Giemsa. Migrated ECPs were counted using an TC20  
automated cell counter (Bio-Rad, USA).

Statistical analyses
Continuous data were presented as mean ± SD. Multiple  
experimental group analysis of total migrated EPCs was  
performed using analysis of variance (ANOVA). A p-value of 
less than 0.05 was considered statistically significant. All sta-
tistical analysis was completed using SPSS version 25.0 for  
Windows.

Results
CD34 expression and migration capability of 
endothelial progenitor cells
CD34 is a positive marker for EPCs, and CD34 expression  
was found in the early to mature culture of EPCs. CD34 expres-
sion was characterized by the presence of green luminescence 
using a fluorescence microscope, indicating the presence of  
EPCs, as shown in Figure 119. The migration capability of  
EPCs was evaluated by calculating the number of cells that 
moved from the upper chamber to the membrane facing the  
lower chamber with Giemsa staining (Figure 2).

ACE inhibitors increased endothelial progenitor cells 
migration
The number of EPC migrations in the captopril-treated group  
at different doses (65,250 ± 6,750 cells at 1 mM; 90,000 ±  
16,837 cells at 10mM; and 105,750 ± 8112 cells at 100 mM) 
was significantly higher than the control group (43,714 ± 7,216 
cells) (p < 0.05) (Figure 3). The number of EPC migrations in 
the lisinopril-treated group at different doses (60,750 ± 5,030 
cells at 1 mM; 79,071 ± 2,043 cells at 10mM; and 150,750 
± 16,380 cells at 100 mM) was significantly higher than the 
control group (43,714 ± 7,216 cells) (p < 0.05) (Figure 4).  
The number of EPC migrations in the ramipril-treated group 
at different doses (49,500 ± 8,400 cells at 1 mM; 64,285 ±  
11,824 cells at 10mM; and 86,625 ± 5,845 cells at 100 mM)  
was significantly higher than the control group (43,714 ±  
7,216 cells) (p < 0.05) (Figure 5).

The increase in the migration of EPCs was consistent with the 
increase in the dose of ACE inhibitor. Captopril at doses of  
1 mM and 10 mM had a higher migration effect than lisino-
pril and ramipril at the same doses (p < 0.05). Meanwhile,  

Figure 1. CD34 expression was characterized by the 
presence of green luminescence in endothelial progenitor 
cell culture.
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lisinopril at a dose of 100mM had the highest migration effect  
(p < 0.05) (Figure 6).

Discussion
In this present study, we demonstrated that captopril, lisinopril,  
and ramipril therapy in EPC cultures from CAD patients was 
associated with improved migration of EPCs. This study showed 

that ACE inhibitor treatment increases EPCs migration in  
a dose-dependent manner. At the doses of 1 mM and 10 mM, 
there was no significant difference in EPCs migration between  
captopril and lisinopril. However, both of them exceeded the 
results of ramipril at the same dose. Meanwhile, lisinopril 
at the dose of 100 mM had a superior outcome compared to  
captopril and ramipril at the same dose.

Figure 2. Light-inverted microscope view of endothelial progenitor cells under 48 h-treatment of (a) 100 mM captopril, (b) 100 mM lisinopril, 
(c) 100 mM ramipril, (d) negative control (medium only), and (e) positive control (100 ng/mL VEGF). White bar represents 100µM.

Figure 3. Total migrated endothelial progenitor cells (EPCs) on increasing dose of captopril treatment. Total migrated cells are 
expressed as mean ± SD (n = 4). Different annotations (a,b,c,d) denounce significant difference in ANOVA test (p<0.05).
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Circulating EPCs are derived from hematopoietic stem cells  
produced in the bone marrow, which can repair endothelial dys-
function through endogenous mechanisms. In patients with 
CAD, the number and migration capacity of ECPs are decreased, 
and thus they are unable to maintain adequate endothelial  
stability6,20–22. During ischemic conditions, EPCs are known 
to play an essential role in reendothelization and neovascu-
larization. Animal and clinical studies have shown that EPCs  

contribute up to 25% of newly formed vascular endothelial  
cells after ischemic conditions23,24.

Several pharmacological agents have reported the beneficial 
effects on EPCs, such as HMG-CoA reductase inhibitors/statin25,26, 
one of which has been demonstrated by our previous study16,  
peroxisome proliferator-activated receptor (PPAR) agonists27,  
dihydropyridine calcium channel blocker28, and angiotensin 

Figure 5. Total migrated endothelial progenitor cells (EPCs) on increasing dose of ramipiril treatment. Total migrated cells are 
expressed as mean ± SD (n = 4). Different annotations (a,b,c,d) denounce significant difference in ANOVA test (p<0.05).

Figure 4. Total migrated endothelial progenitor cells (EPCs) on increasing dose of lisinopril treatment. Total migrated cells are 
expressed as mean ± SD (n = 4). Different annotations (a,b,c,d) denounce significant difference in ANOVA test (p<0.05).
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II receptor antagonists (ARB)29. Antioxidative agents with  
anti-inflammatory properties, such as ginsenoside, salvianolic 
acids, berberine, Ginkgo biloba, resveratrol, and puerarin, 
also have been found to increase the number or functional 
activity of EPCs30. ACE inhibitors, which are widely used in  
cardiovascular therapy, such as for hypertension and conges-
tive heart failure, may have a potential role in restoring the role 
of EPCs in repair, healing, and neovascularization11,31. Several  
studies have demonstrated the role of ACE inhibitors in 
increasing the number and function of EPCs in patients with  
hypertension and stable CAD13,15. Each of the ACE inhibitors 
has a different chemical functional group, which may explain  
the varying effects of different ACE inhibitor types in sev-
eral studies, either in vitro or in vivo. Sulfhydryl-containing  
ACE inhibitors are known to be the most effective compared to  
other types of ACE inhibitors31–34. Captopril has one sulfhydryl 
group, and zofenopril has two sulfhydryl groups to coordi-
nate the zinc ion of the active side, whereas lisinopril, ramipril,  
and enalapril do not have sulfhydryl groups35–38. Sulfhydryl- 
containing ACE inhibitors can reduce oxidative stress and  
stimulate nitric oxide (NO) activity in human endothelial cells39  
and patients with primary hypertension40. In vitro studies have 
shown that zofenopril is more effective compared to enal-
april in preventing foam cell formation and thereby slowing  
atherosclerosis. In addition, zofenopril can also reduce reac-
tive oxygen species and increase NO production in the  
endothelium37,41–44

The finding that ACE inhibition therapy augmented the number 
of circulating EPCs in patients with CAD, and also enhanced 

EPCs functional activity, may provide a novel strategy to improve 
neovascularization and reendothelialization after ischemia,  
thereby providing a therapeutic concept to improve EPC  
numbers and functions in patients with CAD.

Conclusion
Captopril, ramipril, and lisinopril were shown to increase  
EPC migration in a dose-dependent manner. Low-dose (1 mM) 
and medium-dose (10 mM) captopril had a larger effect on ECP  
migration than lisinopril and ramipril. Meanwhile, high-dose  
lisinopril (100mM) had the highest migration effect, suggest-
ing it may be preferable for promoting EPC migration in CAD  
patients.

Data availability
Underlying data
Figshare: Dataset for Enhancement of EPC migration by  
high-dose lisinopril is superior compared to captopril and  
ramipril. https://doi.org/10.6084/m9.figshare.13130303.v219

This project contains the following underlying data:

-    �Transwell_Migration_Assay_Dataset.xlsx

-    �Image Repository.zip (original, unedited microscopy  
images in JPG format)

-    �Clinical and demographic data of study population.docx

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Figure 6. Total migrated endothelial progenitor cells (ECPs) on increasing dose of captopril, lisinopril and ramipiril. Total migrated 
cells are expressed as mean ± SD (n = 4). Different annotations (a,b,c,d) denounce significant difference in ANOVA test (p<0.05).
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