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A B S T R A C T

This study aims to explore a relationship between exposures of whole-cell Porphyromonas gingivalis in various
doses with atopic inflammatory responses at experimental mice. A pretest-posttest controlled group design, with
16 Wistar rats (Rattus novergicus) randomized into four groups. Group 1 was the control group. Group 2 was
given low-dose (9× 107 colony-forming unit) of P. gingivalis. Group 3 was given medium-dose (9× 109 colony-
forming unit) of P. gingivalis. Group 4 was given high-dose (9× 1011 colony-forming unit) of P. gingivalis.
Interleukin-4, Interleukin-5, Interleukin-17F, Interleukin-21, Immunoglobulin-E, Immunoglobulin-G4, and γ-
Interferon were measured by direct-sandwich ELISA just before the treatments began, day-4, and day-11 after
treatments. There is a sudden increase of Interleukin-4 in the group 4 (23.79 ± 0.91 pg/ml to 54.17 ± 0.79 pg/
ml; p=0.01) and slight increase of Interleukin-5 in the group 4 (207.60 ± 11.15 pg/ml to 243.40 ± 9.33 pg/
ml; p=0.03). No change was observed for Interleukin-17F in all groups. Serum concentration of
Immunoglobulin-E was decreased in group 2 (−10.44 ± 8.13 pg/ml), but increased in group 4
(+1.03 ± 4.57 pg/ml). Taken together, some cytokines are up-regulated and others are down-regulated after
exposure to whole-cell P. gingivalis. Moreover, study of host responses during periodontal infection may offer
critical key insight that contribute to the development of atopy.
Clinical implications: We introduced and explained the potential role of periodontal pathogen Porphyromonas
gingivalis in systemic immune responses, along with its virulence factor inside the oral cavity. Our results con-
sider several changes and differences of cytokines and immunoglobulins following whole-cell Porphyromonas
gingivalis exposure. However, results of the study need to be interpreted with caution due to its limitations.
Capsule summary: Interleukin (IL)-4 and IL-5 had been found increase after exposure to the periodontal pa-
thogens Porphyromonas gingivalis, whereas no or minimal change had been found in the level of IL-17F, Ig-G4,
and IFN-γ. The various cytokines and immunoglobulins shown in this study do not prove a causal relationship,
and the precise role of Porphyromonas gingivalis in the regulation of atopic immune response warrants further
investigation. Nevertheless, these findings may provide some critical key insight into the host responses fol-
lowing Porphyromonas gingivalis infection.

1. Introduction

Atopic and allergic diseases including bronchial asthma, hay fever,
eczema, and food allergies have suddenly increased over the decade in
Indonesia, initially in urban communities but now elsewhere [1]. The
concept of hygiene hypothesis – a more infection in early childhood

protects against later allergies – is believed by most people, although
reasons behind those immunological properties are speculative [2]. In
Indonesia, allergies are commonly found in the slum and poverty area
where children are often exposed to the infections [3]. In spite of the
fact that allergy is not perceived in slum area in Indonesia as serious
health problem, previous study estimated a relatively high prevalence
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of atopic and allergic diseases among them. Hygiene hypothesis-related
phenomena, seemingly conflicting in Indonesia. Even though, some
convincing epidemiological data are supporting hygiene hypothesis, it
often fails to explain why the incidence of atopic and allergic diseases
are doubling in the slum and poverty area in Indonesia, where they got
exposure to various kinds of microbes [4].

Majority of children living in the slum and poverty area in Indonesia
didn’t have any access to clean water, less educated about personal
hygiene including oral hygiene. Therefore, they were much exposed to
dirt and microbes, compare to the others who live in the clean en-
vironment. A previously discussed hypothesis suggests that environ-
mental exposures during the first years of life play an important role in
immune homeostasis and in determining allergic risk throughout
childhood [5]. As a contrary to that hypothesis, child with poor oral
hygiene results in a skewed development of the T-helper 2 (Th-2) im-
mune system with specific cytokine profiles resulting an abnormal
immune responses to various environmental allergens which are
otherwise innocuous [6]. Even though the reasons for these trends re-
main unclear, however allergic disease prevalence rates have increased
among children with poor oral hygiene, strongly suggests that oral
cavity with their microbes’ diversity may play a role [7].

Oral cavities are the home of many unique microbiomes whose in-
teractions with host immune responses are less frequently studied
compared to the intestinal microbiomes. In children with poor oral
hygiene, periodontitis – an oral infection process resulting from an in-
teraction between Porphyromonas gingivalis bacterial attack with host
local inflammatory response – will cause inflammation of the sup-
porting tissues of the teeth leading to stimulate pathogen-associated
molecular patterns (PAMPs) and recognize this atopic inflammatory
pathway. Upon activation of PAMPs, interleukin-4 (IL-4) and inter-
leukin-5 (IL-5) - cytokines that induce differentiation of naïve helper T
cells (Th-0 cells) to Th-2 cells - become maladaptive to atopic in-
flammatory pathway [8].

A relationship between periodontal pathogens and various atopic-
allergic diseases has been widely reported. Our preliminary data sug-
gest that Porphyromonas gingivalis – pathogens which commonly found
in the oral cavity – influences the development of atopy in children with
poor oral hygiene [9]. Porphyromonas gingivalis is a gram-negative,
anaerobic bacterium considered as an important pathogen of period-
ontal disease that is also implicated in initiation and progression of
allergies in the early life period [9]. By modulating immune system and
changing their epitopes, researchers believe that these kind of bacteria
are responsible to the development of Immunoglobulin-E (Ig-E) medi-
ated inflammatory responses [10]. The propensity to produce Ig-E an-
tibodies in response to lipopolysaccharides – a core oligosaccharides
and a lipid component of bacteria wall cell – is considered a significant
risk factor for childhood allergies development [11].

For more than two decades, Porphyromonas gingivalis lipopoly-
saccharide has been proposed to explain the phenomenon of period-
ontal disease-induced allergy [12], and our current understanding of
the link between oral hygiene and Ig-E mediated inflammatory re-
sponses suggests that any associated risk of allergies in the early
childhood is likely precipitated by early or preëxisting oral disease.
Nevertheless, Porphyromonas gingivalis as a direct causative agent of
atopic immune response is sometimes viewed with skepticism due to
the several confounding factors [13]. For instance, periodontal disease
in of itself is a poor predictor of dysbiosis in microbiomes. Dysbiosis in
the oral microbiome (For instance: caries, periodontitis, and chronic
rhinosinusitis) is associated with changes in the cutaneous microbiome
and gut microbiome. This hypothesis suggests that the association be-
tween periodontal pathogens with altered immune system can only be
happened indirectly [14].

On the other hand, some researchers strongly support the concept of
hygiene hypothesis, believed that Porphyromonas gingivalis might have a
protective role to prevent allergic diseases [15]. Friedrich reported a
significant inverse correlation between periodontal diseases and

inflammatory airway diseases in responses to house dust mites, with a
borderline significant inverse association between periodontitis and
asthma also observed [16]. Very few studies attempted to explore the
concept of association between periodontitis, bronchial asthma, allergic
rhinitis, atopic dermatitis, and food allergy which could neither support
such a protective factor nor a risk factor for that, nor reject such an
association [17]. This fact suggests a necessity in starting an experiment
to understanding the association between oral hygiene and allergies, in
term of direct association between exposures of periodontal pathogens
with potential inflammatory markers for atopy.

Since IL-4 and IL-5 contribute to induce differentiation of naïve
helper T-cells (Th-0) to become Th-2 cells, thus their roles in atopy
remain inevitable. Recent study found that IL-17 – cytokine family in-
duced by microbial lipopolysaccharides – propagating a positive feed-
back loop between innate and adaptive immunity in mediating pro-
inflammatory response to aerosol allergen during asthma and airway
inflammation [18]. Among six members in the IL-17 cytokine family,
the presence of IL-17F plays the most vital role in to the amplification of
allergic inflammation [18]. Dysregulated IL-17F but not IL-17 can result
in excessive pro-inflammatory cytokine expression, which lead to tissue
damage and systemic inflammation [19]. On the contrary to the others
cytokines explained above, IL-21 – a newly emerging member of the
type I cytokine family – is found to be involved in plasma cell differ-
entiation from both naive and memory B cells [20]. In general, IL-21
induces survival, proliferation, isotype switching, and differentiation to
Ig-secreting plasma cells [20], but might help to diminish B cells that
are activated through an antigenic non-specific fashion during acute
infection without the cognate antigen-specific or co-stimulatory signals
[21]. Therefore, it is important to understand the characteristics and
consequences of IL-4, IL-5, IL-17F, and IL-21 to regulate im-
munoglobulin-E (Ig-E), immunoglobulin G4 (Ig-G4), interferon gamma
(IFN-γ), and in particular to several features of this atopic pattern of
immunological reactivity, depending on the immune setting and en-
vironmental system after exposure of periodontal pathogens [22].

There are several limited hypothesis about the relationship between
periodontitis, periodontal pathogen, and the developing of allergy in
the early childhood. Porphyromonas gingivalis, is a well-known period-
ontopathic pathogen, which may provoke allergies. The aim of this
study was to explore the relationship between administrations of
whole-cell Porphyromonas gingivalis in various doses with atopic and
ectopic inflammatory conditions at experimental mice. We did measure
level of interleukin-4 (IL-4), IL-5, IL-17F, IL-21, immunoglobulin-E (Ig-
E), immunoglobulin G4 (Ig-G4), and gamma-interferon (IFN-γ) in re-
sponses to the exposure of whole-cell Porphyromonas gingivalis at var-
ious doses in the intra-sulcular coronal surface of experimental mice.

2. Methods

2.1. Materials

2.1.1 Whole cell of Porphyromonas gingivalis (Astarte Biologics, WA,
USA, in three different dosages: low-dose 9×107 colony-forming
unit (CFU), medium-dose 9×109 CFU, and high-dose 9×1011

CFU). These strains were cultured on blood agar plates supple-
mented with 5 µg of hemin and 1 µg vitamin K1 mL−1. Bacterial
cultures were maintained in a Coy anaerobic chamber (Ann
Arbor, MI) at an atmosphere of 10% H2, 5% CO2, and 85% N2.

2.1.2 Level of IL-4, IL-5, IL-17F, and IL-21 were determined with a Bio-
Plex mouse cytokine kit (Bio-Rad, Hercules, CA), using fluores-
cently labeled microsphere beads and a Bio-Plex suspension array
system (Bio-Rad) according to the manufacturer's instructions.

2.1.3 Total serum of Ig-E, Ig-G4, and IFN-γ were measured in blood
serum by direct sandwich ELISA (R&D System Europe Ltd.,
Abingdon, UK) according to manufacturer’s instructions. Ig-E, Ig-
G4, and IFN-γ concentration was quantified by staining with an
AP-conjugated anti-IgE polyclonal Ab and SIGMAFAST™ p-
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Nitrophenyl phosphate Tablets (Sigma-Aldrich) and by measuring
the absorbance at 405 nm.

2.2. Ethics statement

Universitas Airlangga conferred ethical clearance for this study.
Compliance with ethical standards, this research proposal was ap-
proved by the ethical committees of Airlangga Oral and Dental Hospital
in collaboration with College of Dentistry Research Ethics Committee
and College of Medicine Research Council (Ref: 50 /KKEPK.FKG/IV/
2015) under the name of Nelwan SC as the Principal Investigator.

2.3. Animal studies

All studies were conducted in accordance with the principles and
procedures outlined in the National Institutes of Health Guide for the
Care and Use of Laboratory Animals. 16 healthy male Wistar rats
(Rattus norvegicus; age 8–10 weeks, weight 120–150 g) were rando-
mized and divided into four groups of intervention:

• Group 1: Placebo intra-sulcular injected

• Group 2: 9×107 CFU of P. gingivalis intra-sulcular injected

• Group 3: 9×109 CFU of P. gingivalis intra-sulcular injected

• Group 4: 9×1011 CFU of P. gingivalis intra-sulcular injected.

Administration of these strains had been done by intra-sulcular/
subgingival injection at the coronal intra-sulcular surface of primary
molar teeth.

2.4. Experimental procedures

The entire sample was taken blood serum at day 0 (before intra-
sulcular injection), day 4 (after intra-sulcular injection), and day 11
(after intra-sulcular injection). We measured the level of IL-4, IL-5, IL-

17F, IL-21, Ig-E, Ig-G4, and IFN-γ with fluorescently labeled micro-
sphere beads and direct sandwich enzyme‑linked immunosorbent assay
(ELISA). Samples were conducted with euthanasia protocols after re-
search ended.

2.5. Study design

Pretest-posttest controlled group design was done in this study. We
extracted 16 Wistar rats (Rattus norvegicus) and randomized them into 4
groups. There were no significant age and body weight differences.
Within each group, we measured serum sample of IL-4, IL-5, IL-17F, IL-
21, Ig-E, Ig-G4, and IFN-γ before experiments began (day 0). After
4 days and 11 days, serum samples were also taken in both groups. The
level of IL-4, IL-5, IL-17F, IL-21, Ig-E, Ig-G4, and IFN-γ were measured
and compared between groups and between periods.

2.6. Statistical analysis

Data analysis has been performed using SPSS version 17.0 (IBM
Corp., Chicago, IL, USA). The assumption of normality distribution data
has been tested by Shapiro–Wilk (SW) normality test. SW test showed
W=0.892516, V= 3.416357, P=0.055, means that the data are
normally distributed. Statistical analyses were done using analysis of
variant (ANOVA). Results were presented as means ± standard de-
viation. The repeated measure ANOVA were used to test differences
between level of IL-4, IL-5, IL-17F, IL-21, Ig-E, Ig-G4, and IFN-γ in each
period among single groups of Wistar rats. The level of statistical sig-
nificance was denoted at p < 0.05.

3. Results

We investigated average serum level of IL-4, IL-5, IL-17F, IL-21, Ig-
E, Ig-G4 and IFN-γ in the four groups, before and after 11 days admin-
istrations of whole-cell Porphyromonas gingivalis. Data are the

Fig. 1. Analysis of IL-4 as a pro-inflammatory cytokines before (day 0) and after (day 4 & day 11) treatment. Fold increase of IL-4 in the group 4 [high dose of whole
cell Porphyromonas gingivalis administration (9×1011 CFU)] was compared to decreased of IL-4 in the placebo group.
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representative of four independent samples between each groups.
Results of the study include comparison between periods and groups.
Data expressed as mean ± SD of experiments made in quadruplicate.

We first investigated the effect of whole-cell Porphyromonas gingi-
valis administration at various doses of a colony forming unit (CFU). As
has been shown in the figure below, group with high dose of whole-cell
Porphyromonas gingivalis administration (9× 1011 CFU) correlates with
the increase of IL-4 (23.79 ± 14.96 ng/ml to 54.17 ± 16.20 ng/ml;
p=0.02). Nevertheless, serum IL-4 didn’t change significantly with the
administration of low-dose Pg (0.79 ± 0.15 ng/ml to 0.62 ± 0.35 ng/
ml; p=0.223) and were found decrease in placebo group
(3.15 ± 1.29 ng/ml to 0.18 ± 0.07 ng/ml; p=0.012) (see Fig. 1) (see
Table 1).

As reported in the past, there are slight increases of serum IL-5 in
groups with exposure of Porphyromonas gingivalis during 11 days of
observation. In the group 4 [High dose of Pg (9×1011 CFU)], serum IL-
5 had been observed increase slightly (207.60 ± 78.56 pg/ml to
243.40 ± 124.37 pg/ml; p=0.039). Similar increase had been ob-
served in the group 3 [medium dose of Pg (9×109 CFU)] and group 2
[low dose of Pg (9×107 CFU)], but no significant increase had been
reported in control group/placebo (37.65 ± 3.37 pg/ml to
59.86 ± 5.83 pg/ml; p=0.058) (see Fig. 2) (see Table 2).

Our results next confirmed that serum IL-17F weren’t affected by

treatment of the whole-cell Pg. Compared to each periods, no sig-
nificant change had been observed in all groups. Compared to the other
groups, the various doses of the whole-cell Pg treatment group de-
monstrated no significant differences between group 4 and the control
group at day-11 (p=0.31) (see Fig. 3) (see Table 3).

We next examined whether IL-21 is affected by administration of
whole-cell Pg at various doses. Fig. 4 helped us to show whether the
decrease of serum IL-21 occurred in all groups, in which the greatest
decrease had been found in the group 4 [High dose of Pg (9×1011

CFU)]. Significant differences were found among the proportions of IL-
21 decrements between group 4 and other group at day-11 (p=0.03).
Group 2 showed less decrements among other groups (see Fig. 4) (see
Table 4).

Next, we compared serum Ig-E levels at the baseline with those at
day-11 in subjects assigned to whole-cell Pg treatment. The results are
summarized in Fig. 5 and show significant differences between each
group for serum Ig-E level at the baseline (F statistic 14.988 > F table
3.49; p= <0.001). After 4 days of experiments, there is a significant
difference in net change between levels of serum Ig-E at the different
dose of whole-cell Pg exposure (F statistic 3.623 > F table 3.49;
p=0.045). Nevertheless, a non-significant net Ig-E changes were
shown by each group at day-11 (see Fig. 5) (see Table 5).

Before the experiments and until 4 days after the experiments, no

Table 1
Comparisons of mean IL-4 (ng/ml) before and after treatment (mean ± SD).

Time-point n Control Pg 9×107 CFU Pg 9×109 CFU Pg 9×1011 CFU

Day-0 Before treatment 4 3.15 ± 1.29 0.79 ± 0.15 0.59 ± 0.15 23.79 ± 14.96
Day-4 After treatment 4 3.33 ± 2.88 0.98 ± 0.24 11.38 ± 12.77 11.27 ± 21.22
Day-11 After treatment 4 0.18 ± 0.07 0.62 ± 0.35 30.00 ± 14.86 54.17 ± 16.20
p value* / 0.012 0.223 0.004 0.002

Note: df hypothesis= 2, df error= 11, F table 15.711; significant at p < 0.05.
* Measured by repeated measure ANOVA.

Fig. 2. Analysis of IL-5 as a pro-inflammatory cytokines before (day 0) and after (day 4 & day 11) treatment. Slight increase of IL-5 had been observed in all group of
treatments. The proportions of these increment in all groups showed no statistically different.
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significant difference was observed in the average serum of Ig-G4. After
11 days of experiments, there was a reduction tendency in the group 2
(23.97 ± 3.77 ng/ml to 18.08 ± 3.01 ng/ml; p=0.01), but no
change in the group 3 (18.78 ± 2.95 ng/ml to 17.61 ± 2.79 ng/ml;
p=0.17) and group 4 (21.71 ± 3.53 ng/ml to 21.17 ± 3.39 ng/ml;
p=0.43). An increasing tendency was found in control group
(8.34 ± 2.05 ng/ml to 13.91 ± 2.79 ng/ml; p=0.02). (see Fig. 6)

As seen in Fig. 7, analysis of within-subject effects showed a slight
but not significant increase in serum concentration of IFN-γ in the high-
dose exposure of the whole-cell Pg across the days
(140.40 ± 21.79 pg/ml at day-0 to 171.21 ± 23.07 pg/ml at day-11;
p=0.08). There is a pattern of decreases across the days between the

control groups (181.44 ± 25.39 pg/ml at day-0 to
167.69 ± 22.81 pg/ml at day-11; p=0.34). Test of between-subject
effects showed no significant difference at day-4 and day-11. (p=0.23
& p=0.47, respectively). With respect to the group 4 and the control
group, serum concentration of IFN-γ didn’t change significantly in the
group 2 and group 3. (see Fig. 7)

4. Discussion

In all experimental research, international guidelines highlight the
necessity for standardized and validated measurements to quantify la-
boratory parameters for atopy and allergy. European Academy of

Table 2
Comparisons of mean IL-5 (pg/ml) before and after treatment (mean ± SD).

Time-point n Control Pg 9× 107 CFU Pg 9×109 CFU Pg 9×1011 CFU

Day-0 Before treatment 4 37.65 ± 3.37 79.03 ± 37.78 90.16 ± 43.76 207.60 ± 78.56
Day-4 After treatment 4 52.74 ± 3.69 40.68 ± 21.63 123.66 ± 67.17 221.00 ± 121.57
Day-11 After treatment 4 59.86 ± 5.83 129.06 ± 77.89 153.99 ± 35.56 243.40 ± 124.37
p value* / 0.058 0.062 0.003 0.039

Note: df hypothesis= 2, df error= 11, F table 15.711; significant at p < 0.05.
* Measured by repeated measure ANOVA.

Fig. 3. Analysis of IL-17F as a pro-inflammatory cytokines before (day 0) and after (day 4 & day 11) treatment. Little decrease had been observed in all group of
treatments. No statistically differences among IL-17F levels between all groups at day-0, day-4, and day-11.

Table 3
Comparisons of mean IL-17F (pg/ml) before and after treatment (mean ± SD).

Time-point n Control Pg 9× 107 CFU Pg 9×109 CFU Pg 9×1011 CFU

Day-0 Before treatment 4 769.9 ± 69.4 644.5 ± 37.8 638.9 ± 46.2 696.2 ± 29.1
Day-4 After treatment 4 706.2 ± 39.8 670.8 ± 54.5 550.5 ± 29.9 572.9 ± 45.4
Day-11 After treatment 4 700.1 ± 32.9 703.6 ± 74.0 627.2 ± 69.9 575.9 ± 36.0
p value* / 0.072 0.059 0.225 0.317

Note: df hypothesis= 2, df error= 11, F table 15.711; significant at p < 0.05.
* Measured by repeated measure ANOVA.
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Allergy and Clinical Immunology Task Force reported a consensus
statement on potential laboratory parameters for atopy. These were
classified into 7 parameters: (1) Ig-E (both total and allergen-specific Ig-
E); (2) Ig-G subclasses (both allergen-specific IgG [Ig-G1] and blocking
antibody [Ig-G4]); (3) Interleukin-4 (IL-4), (4) IL-5, (5) IL-17F, (6) IL-
21; and (7) in vivo biomarkers, which include provocation tests [23].

Porphyromonas gingivalis induces periodontitis through the disrup-
tion of the host adaptive immune response. Without alarming the innate
immune system, Porphyromonas gingivalis is allowed to get an un-
controlled growth in oral cavity [24]. Several studies showed that high
doses of Porphyromonas gingivalis does stimulate dendritic cells, but
seems to prime T cells for subsequent production of IL-5 rather than
IFN-γ [25]. Upon Porphyromonas gingivalis infection, periodontal tissues
of infected mice readily expressed IL-17F within 12 h. IL-17F was found
elevated in the sputum and bronchoalveolar lavage of infected mice,
whereas the level of IL-17F in the blood remains similar [26]. Several
studies demonstrated an increase of IL-21 would stimulate CD4+T cells
to produce IL-17F also [27,28]. This fact may explain why level of IL-
17F in the blood wasn’t significantly changed after exposure of various
doses of Porphyromonas gingivalis.

As opposed to Ig-E, Ig-G4 antibodies are recognized as a blocking
antibody, which is capable to regulate the maladaptive immune re-
sponse and atopic parameters towards allergy. Our study doesn’t ad-
dress a direct association between serum of Ig-G4 levels and with serum
Ig-E levels. Our results are in accordance with the literature whether

increases of pro-inflammatory cytokines, such as IL-4 and IL-5. Even
though our results are not followed by significant change of Ig-E and Ig-
G4 level respectively. This fact can be explained by common regulations
of Ig-E and Ig-G4 that is dependent to Th-2 cells [29]. Recent studies
have clearly defined the differential roles of Ig-E and Ig-G4 in atopic and
allergic diseases; Ig-E stimulates mast cell degranulation resulting an
occurrence of allergy, whereas Ig-G4 mediates the pathophysiological
processes that control them [30]. Thus, the Ig-E/Ig-G4 balance could
hypothetically have some value as a predictor or allergy severity or
disease evolution. However, the Ig-G4 binding-profile to allergen ex-
tracts can differ substantially from the Ig-E binding pattern, and these
differences can be associated to clinical symptoms [31].

This research highlighted gram-negative anaerobic periodontal pa-
thogen, Porphyromonas gingivalis as a specific contributor to atopic and
allergic diseases like hay fever and bronchial asthma [32]. As a paradox
to hygiene hypothesis, Porphyromonas gingivalis reveals low in-
flammatory potency during early childhood periods. Each cytokine
produced in oral cavity exerted synergistic effects with those infection
of Porphyromonas gingivalis to enhance ectopic and atopic immune re-
sponses [33–35]. Spontaneous allergy with co-morbid Porphyromonas
gingivalis bacteremia has been reported in children with low-grade
periodontal disease, and the frequency of detection of these pathogens
in the oral cavity increases in children with allergies [36]. Following
exposure of whole-cell Porphyromonas gingivalis, atopic immune re-
sponse is initiated at an extralymphoidal site, typically in the airways’

Fig. 4. Analysis of IL-21 as an anti-in-
flammatory cytokines before (day 0) and after
(day 4 & day 11) treatment. Significant de-
crease had been observed in all group, however
greatest decrease had been observed in the
group 4. Statistically differences were found
among the proportions of IL-21 decrements
between group 4 and control group at day-11.

Table 4
Comparisons of mean IL-21 (pg/ml) before and after treatment (mean ± SD).

Time-point n Control Pg 9× 107 CFU Pg 9×109 CFU Pg 9×1011 CFU

Day-0 Before treatment 4 311.9 ± 115.2 147.0 ± 41.4 231.5 ± 98.8 265.4 ± 109.9
Day-4 After treatment 4 243.6 ± 83.9 213.2 ± 103.7 203.8 ± 66.2 138.8 ± 42.3
Day-11 After treatment 4 102.5 ± 61.4 171.4 ± 72.5 132.6 ± 42.8 57.5 ± 29.4
p value* / 0.002 0.039 0.017 < 0.001

Note: df hypothesis= 2, df error= 11, F table 15.711; significant at p < 0.05.
* Measured by repeated measure ANOVA.
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mucosa [37]. Hence, we could recognize why bronchial asthma is
common among children with inadequate oral hygiene.

Our study had several limitations. Firstly, this study was conducted
in Wistar rats, and the evolution of the laboratory parameters for atopy
was not quite similar to human. Classic serum and blood biomarkers
have not consistently correlated with the occurrence of allergies.
Results from various experimental models can be difficult to interpret;
for example, the protocols used for the investigation of the IgG4 re-
sponse in Wistar rats produce results that differ in several ways from
human immune response. The close to 100% response rate in the mouse
models contrasts with< 25% response rate in humans [38]. IgG4 an-
tibody responses in the rats are typically transient, whereas the atopic
IgG4 response in a human persists for many years, although its function
for blocking antibody is practically similar [39]. Secondly, our subjects
were unsupported with very similar baseline characteristic. As a con-
sequence, we did subtract baseline data and require an adjustment to
make clearer findings. Thirdly, our observations need being interpreted
with caution because of the risk of the inflation of false positive tests
related to multiple comparisons. However, our data were accurate and
reproducible, because all parameters were assessed using the same

equipment.

5. Conclusions

The presence finding suggests no significant inter-group differences
in the levels of serum Ig-E, Ig-G4, and IFN-γ; but a significant inter-
group difference in the level of IL-4. In conclusion, results have de-
monstrated that some cytokines are up-regulated and others are down-
regulated following exposure of various doses of whole-cell
Porphyromonas gingivalis. Due to its limitations, this study needs to be
interpreted with caution. However, this study may offer critical key
insights that contribute to the rationale for clinical evaluation of
Porphyromonas gingivalis in the mucosal and systemic immune re-
sponses.
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Fig. 5. Comparison of serum Ig-E level during 11 days of experiments. At day-4 and day-11 after treatments, we found statistically differences between group 4 and
control group.

Table 5
Comparisons of mean Ig-E level (pg/ml) before and after treatment (mean ± SD).

Time-point n Control Pg 9× 107 CFU Pg 9×109 CFU Pg 9×1011 CFU F stat * p value*

Day-0 Before treatment 4 5.69 ± 0.56 22.92 ± 2.82 9.40 ± 4.39 11.64 ± 5.59 14.988 <0.001
Day-4 After treatment 4 5.31 ± 1.53 11.38 ± 3.27 8.81 ± 1.80 13.57 ± 1.42 10.993 0.001
Day-11 After treatment 4 5.06 ± 3.72 12.48 ± 5.39 10.39 ± 5.46 12.67 ± 2.37 2.573 0.103
Δ net Ig-E changes day-4 from day-0 4 −0.38 ± 1.98 −11.54 ± 2.74 −0.59 ± 3.62 +1.94 ± 4.23 3.623 0.045
Δ net Ig-E changes day-11 from day-0 4 −0.64 ± 3.77 −10.44 ± 8.13 +0.99 ± 3.92 +1.03 ± 4.57 1.329 0.311
p value*** / 0.046 0.009 0.392 0.046 / /

Note:
* Measured by one-way ANOVA (df1-3, df2= 12, F table= 3.49; significant at p < 0.05).
*** Measured by repeated measure ANOVA (df hypothesis= 2, df error= 11, F table= 15.711; significant at p < 0.05; adjustment for multiple comparisons:

Bonferroni).
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Fig. 6. Comparison of serum Ig-G4 during 11 days of experiments. Group 2 shows slight decrease of serum Ig-G4, whereas no significant change in the group 3 and
group 4. Slight increase found in the control group. No significant inter-group differences had been found in day-11.

Fig. 7. Comparison of serum IFN-γ during 11 days of experiments. Slight decrease for control group and slight increase for group 4 in each period, but no statistical
significance were measured. Inter-group analysis shows no significant differences at day-0, day-4, and day-11.
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