ABSTRACT Analgesic Antiinflammatory Activity Test of (E)-3-(4-methoxyphenyl)-N-(phenylcarbamothioyl)acrylamide and (E)-3-(4-methoxyphenyl)-N-(p-tolylcarbamothioyl)acrylamide (Structure Modification Result of Ethyl p-methoxycinnamate from Kaempferia galangan Rhizoma) Inflammatory pain was healed by Nonsteroid anti-inflammatory drugs (NSAIDs). The mechanism activity of NSAIDs undergo cyclooxigenase enzyme (COX) inhibitory which have role on prostalgalandin biosyntesis. Cyclooxigenase enzymes have two isoforms called COX-1 and COX-2. COX-2 selective inhibitor has been developing to heal inflammatory pain which is least at adverse effect on GIT and bleeding. On the same way, structure modification of EPMS as a COX-2 inhibitor had done and produce this two compound which are (E)-3-(4-methoxyphenyl)-N-(phenylcarbamothioyl)acrylamide and (E)-3-(4-methoxyphenyl)-N-(p-tolylcarbamothioyl)acrylamide. Both of these compounds were estimated to have a COX-2 inhibitory activity based on their pharmacophore. The present study was design to prove analgesic antiinflammatory activity of (E)-3-(4-methoxyphenyl)-N-(phenylcarbamothioyl)acrilamide and (E)-3-(4-methoxyphenyl)-N-(p-tolylcarbamothioyl)acrilamide and compare the activity of these compound. A model of inflammatory pain-like state were induced by intraplantar injection of Complete Freund's Adjuvant (CFA). Then, either (E)-3-(4-methoxyphenyl)-N-(phenylcarbamothioyl)acrylamide or (E)-3-(4-methoxyphenyl)-N-(p-tolylcarbamothioyl)acrylamide was administered orally once daily for 7 consecutive daya at 50, 100, 200 mg/kg bw. Administrasion starting on day 7th to day 13th after injection CFA. Hyperalgesia was measured on day 0, 1st, 3rd, 5th, 7th, 8th, 10th, 12th, 14th, and 21st after CFA injection. The end-point of hyperalgesia measuring whether it is paw-licking or jumping. Besides hyperalgesia, parameter used in inflammatory pain-like state was ipsilateral sites of paw thickness. (E)-3-(4-methoxyphenyl)-N-(phenylcarbamothioyl)acrylamide and (E)-3-(4-methoxyphenyl)-N-(p-tolylcarbamothioyl)acrylamide at dose 50, 100, 200 mg/kg bw. could increase mice's latency on thermal stimulation and reduce paw thickness compared with placebo significantly (p≤0.001 for dose 50, 100, 200 mg/kg bw). Whereas, both activity of (E)-3-(4-methoxyphenyl)-N-(phenylcarbamothioyl)acrylamide and (E)-3-(4-methoxyphenyl)-N-(p-tolylcarbamothioyl)acrylamide have no significantly increase mice's latency on thermal stimulation as well as reduce paw thickness (p>0.05). These results prove that both (*E*)-3-(4-methoxyphenyl)-*N*-(phenylcarbamothioyl)acrylamide and (*E*)-3-(4-methoxyphenyl)-*N*-(*p*-tolylcarbamothioyl)acrylamide have analgesic antiinflammatory activity in the inflammatory pain-like state. Keyword: Analgesic antiinflammatory activity, (E)-3-(4-methoxyphenyl)-N-(phenylcarbamothioyl)acrylamide, (E)-3-(4-methoxyphenyl)-N-(ptolylcarbamothioyl)acrylamide, EPMS, CFA ix Skripsi Uji aktivitas analgesik... Winning Sawitri