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a b s t r a c t 

Segmentation of three-dimensional (3D) medical images using deep learning is a challenging task due to 

the lack of a 3D medical image dataset and their ground truth, resource memory limitations, and imbal- 

anced dataset problem. In this paper, we propose advanced deep learning network for segmentation of 

3D medical images. The proposed Multi-projection Network can preserve resource memory by applying 

two-dimensional (2D) kernels while still obtaining the 3D information from the image by incorporating 

slices from different planar projections of the 3D image to achieve good segmentation results. The pro- 

posed network uses a weighted cost function to address the imbalanced dataset problem and introduces 

an adaptive weight that considers the probability of each class in the image. The experimental results 

showed that the proposed Multi-projection Network can produce the highest sensitivity (true positive 

rate) compared to other architectures despite the high class imbalance in the dataset and small amount 

of training data. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

d  

m  

a  

m  

p  

i  

t  

i  

m  

c  

m  

p  

t  

f  

s  

u  

t  

b  

t

 

p  

t  

i  

m  

b  

r  

i  

t  

a  

a  

c  

t  

i  

h

0

. Introduction 

Due to the advanced development of medical technology, three-

imensional (3D) image acquisition methods, such as computed to-

ography (CT) scanning and magnetic resonance imaging (MRI),

re commonly used. This advancement has led to the need for

ore accurate and efficient 3D image segmentation methods. By

erforming image segmentation, important objects in the medical

mage can be recognized and further analysis can be done to ex-

ract relevant information about the object and decisions regard-

ng the patient can be made. Many computer-aided methods for

edical image segmentation have been proposed. These methods

an be divided into threshold-based, region-based, texture-based,

odel-based, atlas-based, and artificial neural network-based ap-

roaches [1–3] . Recent studies have shown that deep learning

echniques, such as convolutional neural network (CNN), are use-

ul in medical image segmentation because they can provide high

egmentation accuracy [4–11] . Instead of extracting features man-
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ally, deep learning can find informative and distinctive features

hat represent the data using a learning process [9] . Hence, the

urden of finding the right features to perform image segmenta-

ion or classification shifts from humans to computers [12] . 

The lack of medical image datasets and their ground truth is a

roblem when using deep learning for medical image segmenta-

ion because this approach requires a large-scale dataset for train-

ng to produce good segmentation results [12–14] . Moreover, seg-

entation of 3D medical images is challenging due to the relations

etween the three dimensions: ignoring any of these relations will

esult in information loss. Hence, the most common deep learn-

ng approaches, which use two-dimensional (2D) kernels, are not

he most suitable methods for the segmentation of 3D medical im-

ges. Deep learning approaches that use 3D kernels directly gener-

te large feature vectors, therefore their implementation has high

omputational cost (resource memory limitations and long training

ime) [15] . Moreover, because networks that use 3D kernels use 3D

mages or 3D image patches as the input data, they are also limited

y the number of 3D images in the dataset [13,16] . 

Another challenge in the segmentation of 3D medical images

s the high class imbalance in 3D medical image datasets [8] . Not
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1  
every image contains a segmentation object and when there is

an object in the image, the size of the object region tends to be

much smaller than the background region. Deep learning algo-

rithms tends to prefer the majority class and suppress the minor-

ity class to minimize the network cost, even though the minority

class is the one of interest. If this problem is not addressed, the

segmentation result of 3D medical images using deep learning will

have low sensitivity (true positive rate). Several researches have

proposed solutions for this problem by introducing a weight into

the cost function of the network [17–19] . Although these methods

are effective for binary classification problems using deep learn-

ing, it is difficult to calibrate the proposed functions for multiclass

classification problems. 

In this paper, we propose an advanced deep learning network

for segmentation of 3D medical images. The proposed architec-

ture, called Multi-projection Network, preserve resources’ mem-

ory by applying 2D kernels while still obtain the 3D information

of the image by incorporating slices from different planar projec-

tions of the 3D image to achieve a good segmentation result. We

also introduce an adaptive weighted cost function for the network

to address the imbalanced dataset problem in 3D medical image

segmentation. This weight is calculated by considering the prob-

ability of each class in the image batch. The proposed cost func-

tion improves the network’s performance in detecting the minority

class and can be also used for multiclass segmentation. Three kinds

of datasets were used in an experiment to represent the prob-

lems of 3D medical image segmentation, such as the imbalanced

dataset problem and a limited amount of available training data.

This paper also provides a comparison of the proposed method

with several other network architectures to analyze the accuracy

of the proposed network for binary segmentation of one-modality

3D medical images. 

2. Related works 

Image segmentation classifies each pixel in the image individ-

ually. CNN can be used for image segmentation by using image

patches to determine the class of a pixel. The drawback of this

approach is that input patches from neighboring pixels overlap so

that the same convolutions are computed many times over [20] .

Fully Convolutional Network (FCN) substitutes the fully connected

layer in CNN with a convolution layer [21] . Using FCN, the net-

work can take an entire image as the input and produce an en-

tire image as the output, thus speeding up the computation pro-

cess. However, FCN approaches for medical image segmentation do

not have an adequate spatial resolution in their direct output la-

bel space [22] . To solve this problem, a modified version of FCN,

called U-Net [5] has been proposed. U-Net and its variations are

among the most well known deep learning methods for medical

image segmentation [20] . It has a similar architecture as Autoen-

coder, a symmetrical neural network that learns the features of

the dataset in an unsupervised manner [23] . It combines an equal

number of layers and processes on the encoder and decoder side.

The difference between Autoencoder and U-Net is that U-Net uses

skip connections that bypass information from the encoder layers

to the decoder layers to help recover the full spatial resolution at

the network’s output [24] . U-Net can take an entire image as input

and give the segmentation map directly as output, therefore it can

take into account the global information of the image. 

Several researches have been conducted for 3D medical image

segmentation using a number of different approaches. The first ap-

proach is to treat the 3D images as a set of 2D slices and applying

a 2D deep learning strategy to segment the images [4,7,8,25,26] .

Although this approach generates more training data for the net-

work, it dismisses the connection between consecutive slices in the

3D image. Several researches examined this problem by adding a
ost-processing step, such as using 3D Conditional Random Field,

o obtain the inter-slice information [25] . Another approach for 3D

edical image segmentation is by adding the image depth in the

eep learning process [6,18,27,28] . Voxels are used instead of pix-

ls, therefore 2D convolution and 2D pooling will be substituted by

D convolution and 3D pooling. Although this approach is the most

bvious way to preserve the inter-slice information, it is limited by

he small size of the 3D dataset and the resource memory. 

Several researches have attempted to use a 2D deep learning

trategy while preserving the inter-slice information by integrating

everal 2D projections from different points of view of the 3D im-

ge in a network. For 3D medical images, this is done by dividing

he 3D image into three different planes ( x, y , and z ) and creating

hree different sets of 2D slices [29–31] . Prasan, et al. [29] adopted

his approach in a method called Triplanar Convolutional Neural

etwork on knee cartilage segmentation images. The 3D image

atches consisting of voxels are extracted from the image and then

ivided into three different sets of 2D slices. Each set of slices will

ecome the input for a CNN. The outputs of the three CNNs are

oncatenated to obtain a joint output, which will be fed into the

oftmax classifier to obtain the classification result of each voxel. 

. Material and methods 

.1. Dataset 

We used three datasets in our experiments. The first dataset

sed was BRATS-2012 [32,33] , a dataset of brain images for brain

umor segmentation that was acquired using MRI (Magnetic Reso-

ance Imaging) scanning. There are 80 brain images in the dataset,

onsisting of multi-contrast MR scans of 10 low-grade and 20 high-

rade glioma patients and simulated images of 25 low-grade and

5 high-grade glioma subjects. The size of the 3D images in this

ataset vary. The second dataset used was BRATS-2018, the latest

ersion of the BRATS dataset. It consists of the BRATS-2012 and

RATS-2013 datasets, manually annotated and revised by clinical

xperts. This dataset consists of 285 MRI scans divided into 210

igh-grade glioma subjects and 75 low-grade glioma subjects. Each

RI scan consists of 155 2D images with a size of 240 × 240 pixels.

There are four modalities for each brain image in the BRATS

ataset, namely T1 (native), T1C (post-contrast T1-weighted), T2

T2-weighted), and Flair (T2 Fluid Attenuated Inversion Recovery).

he ground truth provided four segmentation labels, namely non-

umor, edema, necrosis, and enhanced structures. We treated the

egmentation problem using BRATS dataset as a binary segmen-

ation problem in which the segmentation object was the whole

rain tumor. This included edema, necrosis and enhanced struc-

ures. Hence in our research there were only two classes in the

RATS-2012 and BRATS-2018 datasets, i.e. whole brain tumor and

on-tumor. We used only one modality for the input of the net-

ork, i.e. the T1C modality that is better at showing brain tumors

han other modalities. 

The third dataset used was CBCT (Cone-Beam Computed To-

ography) containing scans of human jaws. We acquired this scan

rom the hospital Rumah Sakit Gigi dan Mulut, Universitas Airlangga

RSGM UNAIR), which used an ORTHOPANTOMOGRAPH 

TM OP300

D X-ray unit. The field of view (FOV) width and height of the

canner are 79.8 mm and 60 mm, respectively. The dataset con-

isted of jaw images from 7 patients. The segmentation object was

eeth and the manually annotated ground truth was confirmed

y radiologist experts. The 3D images had sizes of 266 x 266 x

00 voxels. The 2D images were obtained by slicing the 3D im-

ge along the axial plane. To make them uniform, the 2D images

n the BRATS-2012, BRATS-2018 and CBCT datasets were resized to

28 × 128 pixels while only the middle 128 images of each 3D scan
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Fig. 1. Architecture of the proposed Multi-projection Network. 
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ere selected. Therefore, the size of each processed 3D images was

28 × 128 × 128 voxels. 

.2. Network architecture 

The proposed network architecture, which incorporates three

ifferent projections of the 3D input images, is illustrated in Fig 1 .

he structure of the proposed network architecture is developed

rom the structure of Convolutional Autoencoder network that con-

ist of encoder and decoder side. Autoencoder has symmetrical

tructure where the process in decoder side is the reverse of the

rocess in encoder side [34] . The Multi-projection Network uses

ifferent encoders to take each of the planar projections of the

D image as input. The input 3D medical image is sliced into 3

ifferent sets of 2D images according to axial, coronal, and sagit-

al plane. Axial slices show the 3D image from top to bottom,

oronal slices show the 3D image from front to back and sagittal

lices show the 3D image from left to right. The proposed Multi-

rojection Network consists of three sets of two convolution - de-

onvolution (up-convolution) layers and one pooling - un-pooling

up-sample) layer. 

In the convolution layer, convolution with step size or stride s

sing a number of filters or kernels 
{

w 1 , w 2 , . . . , w n 

}
is done to

he input image I to produce feature maps or output channels

I × w 1 , I × w 2 , . . . , I × w n 

}
. Each kernel w i is a matrix with size

 × m . The kernel values are changed during the training process to

btain the objective of the network, usually to minimize the error

f the network that was calculated by the network cost function.

or all the convolution layers, the kernel size l × m is set to 3 × 3

nd the number of output channels n is set 16. The stride s of first

onvolution layer is set to 2, while the stride of second convolution

ayer is set to 1. Each convolution layer is followed by a transfer

unction to help the classifier build a non-linear decision bound-

ry. A ReLU (rectified linear unit) activation function was chosen

s the transfer function. Therefore, the output of the transfer func-

ion will be as in Eq (1) , 

f (I × w i ) = max (0 , I × w i ) . (1) 

The pooling process using the maximum value (max pooling) is

one to reduce the dimensionality and avoid overfitting by down-

ampling the input image of the process. This is done by applying
ax filtering with kernel size l × m , which moves through the im-

ge with stride s . For all pooling layers, the kernel size l × m is set

o 2 × 2 and the stride s is set to 1. After the final pooling layer, the

utputs of the three encoders are concatenated and a convolution

ith kernel size = 3, strides = 1, and number of output channels =
6 is performed. The target image of the network is one of the 2D

rojections of the 3D image, i.e. the axial slices. Adam optimizer

35] is employed for the training process of the network. Adam

ptimizer, recommended for achieving fast convergence [36] , com-

utes adaptive learning rates for each parameter using momentum.

Using this architecture, the 3D information of the image can

till be obtained while preserving the resource memory by using

D kernels. The information from axial, coronal, and sagittal slices

re combined after the last pooling process on the encoder side

o reduce the dimensionality of the combined input. The concate-

ated information is then convoluted to produce the most impor-

ant feature maps from the combined input. 

.3. Weighted cost function 

The idea of the proposed cost function is to make the network

refer the occurrence of false positives over false negatives by pro-

iding a larger error value when a false negative occurs. False pos-

tives occur when the segmented class, which is the minority class,

overs more area than the target. False negatives occur when the

egmented class covers less area than the target. For example, us-

ng root mean squared error (RMSE) as the cost function, the error

btained from a segmented object that has n more pixels or n less

ixels than the target will be the same. The formula of RMSE is

hown in Eq (2) where N is the number of pixels in the image,
 

 i is the target pixel, and x i is the corresponding segmentation re-

ult. 

MSE = 

√ 

1 

N 

N ∑ 

i =1 

( ̂  x i − x i ) 2 (2) 

Let the image have K number of classes and C k , k = 

{
1 , 2 , .., K 

}
epresenting a class in the image. Let n C k /N be the probability of

ach class where n C k is the number of elements in class C k . In a

ataset with high class imbalance, the probability of the majority

lass is much bigger than the probability of minority class. A larger
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Fig. 2. Input images. 

Fig. 3. Target images. 

Fig. 4. Segmentation results of Multi-projection network with the proposed weighted cross entropy as the cost function. 
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weight of the minority class can be achieved by using the probabil-

ity of majority class as the weight of the minority class. However,

using a reversed class probability directly as the weight can make

the cost function return zero value when the number of elements

of one of the classes is zero, hence each class must have minimal

one element. The reverse of the normalized probability function of

each class will be 1 − (( n C k + 1 ) / ( N + K )) where K = 2 in a binary

segmentation task. This function can be expanded for multiclass

segmentation problems as in Eq (3) . 

Weighted RMSE = 

√ √ √ √ 

1 

N 

( 

K ∑ 

k =1 

1 − n C k 
+1 

N+ K 
K − 1 

∑ 

̂ x i ∈ C k 
( ̂  x i − x i ) 2 

) 

(3)

However, while the RMSE cost function can be applied to bi-

nary classification tasks by rounding or thresholding its value, it is

difficult to apply in multiclass classification tasks. A cross-entropy

cost function is better suited for classification tasks. The proposed

weight can be assigned to the cross-entropy cost function using a

similar approach. Let ̂ y (i ) 
k 

be the actual probability of pixel ( ̂  y (i ) )

belonging to class k and y (i ) 
k 

be the output probability of pixel

( y ( i ) ) belonging to class k . The cross-entropy error for binary seg-

mentation is calculated using Eq (4) . Using this formula as the

cost function will result in the same error value, either when

a higher number of false negatives or a higher number of false

positives occurs. To make the function prefer the occurrence of

false positives over false negatives, a weight w needs to be intro-

duced in the first part of the formula. Using the proposed weight

w = ( 1 − ( ( n C k + 1 ) / ( N + K ) ) ) / ( K − 1 ) , the weighted cross-entropy

formula will be as in Eq (5) . 

Cross − entropy = − 1 

N 

N ∑ 

i =1 

K ∑ 

k =1 

( ̂  y (i ) 
k 

log (y (i ) 
k 

)) (4)
eighted Cross − entropy = − 1 

N 

N ∑ 

i =1 

K ∑ 

k =1 

(w ̂

 y (i ) 
k 

log (y (i ) 
k 

)) (5)

If the proposed cost functions are applied to a neural network

hat takes batches or mini-batches consisting of several images as

nput, the weight of each class in the cost function will be cal-

ulated for each batch. The weight of the cost function adaptively

rovides a different value based on the class probability of each

atch. Moreover, while the original cost function will give an error

alue in the range of [0,1], the proposed cost function will give an

rror value in the range of [0, ∞ ] due to its weight. 

. Experimental results 

This research was implemented on Python using the Tensorflow

ibrary. The specifications of the machine on which network was

un were is GPU GTX 1080, RAM 2 x 8GB 2400 MHz DDR4. Exam-

les of the input images and their corresponding ground truth (tar-

et images) are shown in Figs. 2 and 3 , respectively. Examples of

he output images from Multi-projection Network using the pro-

osed weighted cost-entropy as the cost function are shown in

ig 4 . Image (1) and image (2) are from the BRATS-2012 dataset,

mage (3) and image (4) are from the BRATS-2018 dataset, and im-

ge (5) and image (6) are from the CBCT dataset. 

Because of the imbalanced dataset problem, accuracy cannot be

he only evaluation metric for measuring the performance of deep

earning in 3D medical image segmentation. A high accuracy is not

nough to demonstrate the goodness of the evaluated method be-

ause in dataset with high class imbalance a method may presents

 high accuracy value even though it fails to recognize the area

f interest (object) [37] . Therefore, sensitivity (true positive rate)

nd specificity (true negative rate) were also used to evaluate the

erformance of the proposed network. The segmentation result is
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Table 1 

Comparison of deep learning methods on several datasets. 

Network Performance (%) 

BRATS-2012 BRATS-2018 CBCT 

Acc Sen Spe Acc Sen Spe Acc Sen Spe 

Autoencoder [34] 98.30 89.49 98.31 97.84 70.24 98.02 94.66 87.39 94.54 

FCN [21] 98.31 91.18 98.30 97.44 68.69 97.63 95.12 89.09 94.91 

2D U-Net [5] 98.59 91.03 98.58 97.64 71.34 97.81 95.16 88.41 95.07 

3D U-Net [27] 97.90 78.33 98.00 97.32 74.54 97.54 94.31 85.22 94.19 

Multi-projection 98.07 93.67 98.06 97.49 74.51 97.62 94.26 90.09 94.07 

Table 2 

Comparison of cost function on the proposed Multi-projection network. 

Cost 

func- 

tion 

Performance (%) 

BRATS-2012 BRATS-2018 CBCT 

Acc Sen Spe Acc Sen Spe Acc Sen Spe 

RMSE 99.59 58.41 99.88 98.58 2.53 99.98 96.77 74.74 97.91 

Cross-entropy (CE) 99.55 67.35 99.77 98.58 0.33 100 96.74 74.90 97.75 

Globally-weighted RMSE 98.64 91.09 98.64 98.17 70.62 98.37 94.70 85.19 94.74 

Globally-weighted CE 98.66 89.05 98.67 97.72 72.53 97.95 94.63 89.92 94.47 

Proposed RMSE 98.68 92.16 98.67 98.19 71.14 98.41 95.21 88.52 95.11 

Proposed CE 98.07 93.67 98.06 97.49 74.51 97.62 94.26 90.09 94.07 
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onsidered good if it has high accuracy, sensitivity, and specificity.

igh sensitivity means that the method has good ability to detect

he object class, while high specificity means that the method has

ood ability to detect the background class. 

.1. Data splitting 

Each of the datasets was split into a training set and a test set.

he BRATS-2012 dataset, consisting of 80 MRI images, was divided

nto 70 training data and 10 testing data. The BRATS-2018 dataset,

onsisting of 285 MRI images, was divided into 250 training data

nd 35 testing data. The CBCT dataset, consisting of 7 images, was

ivided into 5 training data and 2 testing data. The 3D images from

he dataset were randomly assigned for training or testing process.

he test set is also used for the validation process. A number of

xperiments was conducted using k -fold cross validation for the

ata splitting process but the results were not significantly differ-

nt from using the training and testing split. Therefore we chose

ot to use the cross validation method so that the computational

ost would not be increased. 

.2. Comparison with other networks 

Experiments were conducted to evaluate several network archi-

ectures for binary segmentation of 3D medical images. The archi-

ectures were: Convolutional Autoencoder [34] , FCN [21] , 2D U-Net

5] , 3D U-Net [27] , and the proposed Multi-projection Network.

he 3D U-Net has the same network architecture as the 2D U-Net

ut it uses 3D volumetric image as the input and uses 3D kernels

or its process. The size of the image batch for Autoencoder, FCN,

nd 2D U-Net was set to 128 2D images while the size of the im-

ge batch for 3D U-Net and Multi-projection Network was set to 1

D image (128 2D images). For each training set and architecture,

e set 50 as the training epoch because the given training error

as reached convergence. 

We implemented the architecture and the cost function of the

ompared methods according to their respective paper. However,

heir hyper-parameters setting, consist of the number of convo-

ution and pooling layers, kernel size, stride, and number of out-

ut channels, are made similar with the proposed Multi-projection

etwork to provide equivalent comparison. In their respective pa-
er, the compared methods usually use cross-entropy as their cost

unction and it is mentioned that weight should be used in case of

mbalanced dataset. However, the weight is also a hyper-parameter.

or this research, the weight value for the cost function of com-

ared methods is set according to the ratio between minority and

ajority class in each dataset, in which we called as globally-

eighted cross-entropy. We train all of the networks from scratch

nd do not use transfer learning. 

Table 1 shows the comparison results for the BRATS-2012,

RATS-2018, and CBCT datasets, respectively. The network’s perfor-

ance was measured using accuracy (Acc), sensitivity (Sen), and

pecificity (Spe). The performance measurements in Table 1 show

hat the proposed Multi-projection Network had a higher sensitiv-

ty value than Autoencoder, FCN, and 2D U-Net for all datasets. This

eans that Multi-projection Network can handle the imbalance

roblem better than the other networks that use 2D kernels. How-

ver, 3D U-Net which uses 3D kernels had the highest sensitivity

alue compared to the other networks for BRATS-2018 dataset. It

an be concluded that obtaining the 3D information for segmen-

ation of 3D medical images is crucial to produce an accurate seg-

entation result in terms of the sensitivity metric. However, the

D U-Net method had the lowest sensitivity value compared to

he other networks for the BRATS-2012 and CBCT datasets. This is

ecause for 3D U-Net, which takes 3D images as input, the BRATS-

012 and CBCT training sets do not contain enough images to make

he network perform well. 

.3. Evaluation of cost function 

The performance of Multi-projection Network using different

ost functions was compared, as shown in Table 2 . The compared

ost functions are root mean squared error (RMSE), cross-entropy

CE), weighted RMSE using the global probability of each class in

he dataset (globally-weighted RMSE), weighted cross-entropy us-

ng the global probability of each class in the dataset (globally-

eighted CE), RMSE using the proposed weight (proposed RMSE),

nd cross-entropy using the proposed weight (proposed CE). This

xperiment was conducted on BRATS-2012, BRATS-2018, and CBCT

atasets respectively, as shown in Table 2 . 

The performance evaluation in Table 2 shows that the use of

he proposed weighted cost function produced a higher sensitivity
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value, especially on datasets with high class imbalance, such as

BRATS-2012 and BRATS-2018. The ratio between minority and ma-

jority class in the BRATS-2012, BRATS-2018, and CBCT datasets is

15:10 0 0, 13:10 0 0, and 45:10 0 0, respectively. Higher class imbal-

ance will result in lower sensitivity of non-weighted cost functions.

The use of a weighted cost function that considers the class proba-

bility in each batch gives Multi-projection Network a slightly better

accuracy and sensitivity value than the use of a globally-weighted

cost function, which uses the class probability in the dataset

directly. 

5. Discussion 

Although deep learning has many advantages in 3D medical im-

age segmentation, this approach is not always the best method

for specific datasets because it has limitations, such as requir-

ing sufficient training data and its inability to deal with imbal-

anced datasets. The common approach of addressing the imbal-

anced dataset problem is to balance the dataset by reducing the

number of majority class instances in a sample subset or by over-

sampling the minority class, including the creation of synthetic

samples [38] . However, in this research we preferred to address the

imbalanced dataset problem by modifying the network cost func-

tion rather than modifying the samples because of the characteris-

tics of the input data that were used. In this research, 3D medical

images were used as the input data that consisted of sequential

2D images. This characteristic will make it difficult to reduce the

2D slice images or add 2D synthetic images to the sample subset

because it can damage the data sequence. Moreover, creating addi-

tional 3D synthetic images as samples is not an option because it

does not solve the imbalanced dataset problem because the class

imbalance in one 3D medical image for segmentation purpose is

already high. 

The proposed method was tested on datasets with class imbal-

ance. High class imbalance makes harmful effect on the classifica-

tion results. A method can be identified as better than others if it

performs better on the data with high class imbalance [39] . Adding

weight to the cost function of Multi-projection Network can solve

the imbalanced dataset problem. By considering the local probabil-

ity contained in each batch for the cost function’s weight, the net-

work’s kernels will be updated according to all of the images that

are contained in the input batch. Because the 2D slices are inserted

sequentially to form the appropriate 3D image, there are input

batches that have higher class imbalance than the others which re-

sults in higher error rate in some of the batches. After 50 iteration,

the error of the training process using cross-entropy as the cost

function (without weight) is about 0.07 on BRATS-2018 dataset,

meanwhile the error rate of the training process using weighted

cross-entropy is about 0.0075. Evaluation of the network’s average

error or cost rate in each iteration of training process shows that

the proposed cost function gives an uneven cost graph due to its

adaptive weight. However, this does not pose a problem because

the rate of the training cost is globally decreased. 

In this research, Multi-projection Network used max pooling

for the pooling layer because it leads to faster convergence by se-

lecting superior invariant features, which improves generalization

performance [40] . The kernel sizes are important parameters for

the convolution layer in deep learning networks. A large kernel

size can capture more information from the image than a small

kernel size. However, a larger kernel means more computation

therefore it leads to higher computational cost and longer train-

ing time. In this research we chose to use 3 as the kernel size for

all the convolution processes. The selection of a small kernel size

is also done by many state-of-the-art deep learning methods to

keep both computation and number of parameters contained [41] .

Stride = 1 is usually used for the convolution process. However,
n this research there are convolution layers that use stride = 2

o save the resource’s space and speed-up the computational time.

ulti-projection Network uses Rectifier Linear Unit (ReLU) activa-

ion function because it increases the network sparsity and makes

he network learn faster [42–45] . 

The architecture of Multi-projection Network can be further de-

eloped for segmentation of 3D objects, where the encoders are

sed for 2D projections of the 3D object from different sides. How-

ver, because the number of encoders depends on the number of

rojections that are used, it is necessary to consider a training

trategy that can reduce the dimensionality of the feature maps.

he proposed Multi-projection Network method with it cost func-

ion showed promising results for binary segmentation of 3D med-

cal images. However, many aspects can still be investigated and

mproved in future work. Further research regarding deep learning

etwork parameters, such as effective mini-batch size and number

f network layers related to the type of input data and the task of

he network, needs to be conducted. 

. Conclusion 

In this paper we proposed an advanced network architecture

nd a cost function for segmentation of 3D medical images. The

roposed Multi-projection Network method can preserve resource

emory by applying 2D kernels while still obtaining the 3D in-

ormation from the image by incorporating a number of slices of

he 3D image to achieve a good segmentation result. The proposed

etwork’s cost function addresses the imbalanced dataset problem

y introducing an adaptive weight to the network cost function,

hich considers the probability of each class in the image. The

roposed cost function improves the network’s performance in de-

ecting the minority class and can also be used for multiclass seg-

entation. It had accuracy, sensitivity, and specificity of 97.49%,

4.51%, and 97.62%, respectively, on the BRATS-2018 dataset, which

as high class imbalance. Furthermore, the method for assigning

daptive class weight can also be applied to other network cost

unctions. 

The experimental results showed that the proposed Multi-

rojection Network can reduce the effect of the imbalanced dataset

roblem and had the highest sensitivity value among the com-

ared network architectures, i.e. Autoencoder, FCN (Fully Convo-

utional Network), 2D U-Net, and 3D U-Net, on the BRATS-2012

nd CBCT datasets. Multi-projection Network had a slightly lower

ensitivity value than 3D U-Net on the BRATS-2018 dataset, which

onfirms the importance of 3D information in segmentation of 3D

edical images. Multi-projection Network had accuracy, sensitiv-

ty, and specificity of 94.26%, 90.09%, and 94.07%, respectively, on

BCT dataset that consists of 7 3D images. This proves that despite

he small amount of training data, the proposed method can have

xcellent performance on segmentation of 3D medical images. The

xperimental results showed that the proposed method has the

otential to be used and further developed in conducting 3D im-

ge analysis and other medical applications, such as brain cancer

etection and oral surgery. 
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