RANCANG BANGUN SISTEM PEMBERSIH KACA GEDUNG OTOMATIS

(BAGIAN II)

TUGAS AKHIR

ANDHIKA PERMANA PUTRA

PINOLIDO FIRM

PROGRAM STUDI D3 OTOMASI SISTEM INSTRUMENTASI

DEPARTEMEN FISIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS AIRLANGGA

SURABAYA

2014

LEMBAR PERSETUJUAN TUGAS AKHIR RANCANG BANGUN SISTEM PEMBERSIH KACA GEDUNG OTOMATIS

BAGIAN II

TUGAS AKHIR

Sebagai Syarat Untuk Memperoleh Gelar Ahli Madya (A.Md) Pada Progam Studi D3 Otomasi Sistem Instrumentasi Departemen Fisika Fakultas Sains dan Teknologi Universitas Airlangga

Oleh:

ANDHIKA PERMANA PUTRA NIM. 981102006

Tanggal Lulus:

Disetujui Oloh:

Pembimbing,

Winarno,S,Si.,M.T

NIK.139080784

Konsultan,

Deny Arifianto S.Si

NIK. 139111263

LEMBAR PENGESAHAN PROPOSAL TUGAS AKHIR

JUDUL

: RANCANG BANGUN SISTEM PEMBERSIH

KACA GEDUNG OTOMATIS (BAGIAN II)

PENYUSUN

: Andhika Permana Putra

NIM

: 081102006

TANGGAL UJIAN : 26 Agustus 2014

PEMBIMBING

: Winarno, S.Si., M.T

KONSULTAN

: Deny Arifianto S.Si

Disetujui Oleh:

Pembimbing,

Wingrno, S.Si., M.T

NIK.139080784

Konsultan.

eny Ariflanto S.Si NIK. 139111263

Mengetahui:

Ketua Departemen Fisika

Fakultas Sains dan Teknologi

Universitas Airlangga

196403051989031003

Ketua Program Studi

D3 Otomasi Sistem Instrumentasi

Fakultas Sains dan Teknologi

Universitas Airlangga

Drs. Bambang Suprijanto, M.Si

NIP. 196304261992031001

iv

PEDOMAN PENGGUNAAN PROYEK AKHIR

Proyek Akhir ini tidak dipublikasikan, namun tersedia di perpustakaan dalam lingkungan Universitas Airlangga. Diperkenankan untuk dipakai sebagai referensi kepustakaan, tetapi pengutipan seijin penulis dan harus menyebutkan sumbernya sesuai kebinasaan ilmiah.

Dokumen Proyek Akhir ini merupakan hak milik Universitas Airlangga.

Andhika Permana Putra, 2014, Rancang Bangun Sistem Pembersih Kaca Gedung Otomatis (Bagian II). Tugas akhir ini di bawah bimbingan Winarno, S.Si., M.T. dan Deny Arifianto S.Si. Prodi D3 Otomasi Sistem Instrumentasi Departemen Fisika Fakultas Sains dan Teknologi Universitas Airlangga.

ABSTRAK

Indonesia khususnya ibukota Jakarta mendapat gelar "Kota dengan pencakar langit terbanyak di dunia", pada penghargaan tersebut Jakarta menempati peringkat ke-22 dari 100 negara yang memiliki gedung pencakar langit di dunia (Emporis Standart Komite Hanburg, 2013). Gedung pencakar langit sebagian besar dilapisi oleh kaca yang menjulang tinggi dari bawah sampai atas gedung. Proses pembersihan kaca yang dilakukan sampai saat ini hanyalah menggunakan cara manual dengan menggunakan jasa manusia yang menaiki gondola. Ketika terjadi musim panas maupun musim hujan alat tersebut dirasa sangat kurang efektif sehingga hal tersebut dapat memperlama pembersihan kaca. Faktor lainnya yakni tingginya resiko kecelakaan pekerja dikarenakan tingkat keamanan yang ada pada gondola sangat rendah. Dilihat dari kondisi tersebut, maka diperlukan alat yang dapat membersihkan kaca gedung secara otomatis dan aman. Sistem pembersih kaca gedung bertingkat ini terdiri dari sensor posisi, encoder, relay dan motor DC. Terdapat 4 sensor posisi pada kerangka sistem pembersih vaitu, bagian kiri, atas, kanan dan bawah. Pada saat sistem dinyalakan, sistem pembersih kaca gedung bertingkat menentukan posisi awal dengan bergerak keatas dan kekiri hingga sensor posisi pada bagian atas dan kiri aktif. Setelah menentukan posisi awal, alat mulai melakukan proses pembersihan. Dari hasil pengujian hubungan antara counter terhadap jarak diperoleh persamaan liniear y = 0.2445x + 4.1182, $R^2 = 0.9692$. Karena R^2 mendekati 1, maka hasil dari hubungan counter terhadap jarak adalah linier. Sedangkan data hasil penguj ian alat secara keseluruhan diperoleh pesentase kesalahan alat sebesar 0 %. Dari data yang diperoleh pada saat pengujian sistem ini, menunjukan bahwa sistem ini dapat bekerja secara stabil.

Kata Kunci: Kaca Gedung, Mikrokontroler, CodeVisionAVR, Encoder, Relay

KATA PENGANTAR

Segala puji bagi Allah SWT atas segala berkah dan rahmat serta karunia-Nya yang telah diberikan kepada penulis sehingga dapat menyelesaikan Tugas Akhir yang berjudul "Rancang Bangun Sistem Pembersih Kaca Gedung Otomatis".

Penulisan proposal ini tidak lepas dari bantuan berbagai pihak, untuk itu penulis menyampaikan terimakasih kepada semua pihak yang telah membantu dalam menyelesaikan pengajuan proposal Tugas Akhir ini sehingga dapat terselesaikan dengan baik, khususnya kepada:

- 1. Allah SWT karena atas limpahan rahmat dan karunia-Nyalah kami mampu menyelesaikan proposal ini dengan semaksimal mungkin dan tepat waktu.
- 2. Junjungan besar Nabi Muhammad SAW, karena telah membimbing serta menunjukkan jalan yang terang bagi umat-Nya.
- Kedua orang tua penulis yang telah mendoakan serta memberikan dukungan dan semangat kepada penulis.
- Pak Bambang selaku Ketua Prodi dan selaku pembimbing D3 Otomasi Sistem Instrumentasi yang telah mengizinkan penulis untuk melakukan penelitian serta memberikan arahan dan bimbingannya.
- Bapak Winarno,S.Si.,M.T selaku pembimbing yang selalu membimbing dan memberikan arahan kepada penulis.
- 6. Bapak Deny Arifianto S.SI selaku konsultan yang selalu memberikan saran dan bimbingan kepada penulis.

vii

IR - PERPUSTAKAAN UNIVERSITAS AIRLANGGA

7. Rekan seperjuangan OSI 2011 yang selalu memberikan warna pada dunia

perkuliahan penulis serta selalu menjadi penyemangat dan mendukung penulis.

Terimakasih semua yang kalian berikan kawan.

8. Terimakasih banyak kepada mas Deny Arifianto selaku dosen dan teman yang

selalu memberi pengarahan dan pengalaman kepada penulis. "suwon seng

akeh lek".

9. Terimakasih kepada teman-teman tim Robotika "ASTRAI" yang memberi

warna dan canda tawa kepada penulis.

10. Terimakasih kepada partner TA setia penulis Indra Agus Listianto si enjoy

and young money yang selalu menemani dan memberikan hiburan.

11. Semua pihak yang telah membantu yang tidak bisa disebutkan satu per satu,

penulis ucapkan terimakasih banyak.

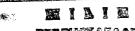
Penulis menyadari masih banyak kekurangan dalam penulisan laporan ini,

oleh karena itu kritik dan saran yang sifatnya membangun sangat diharapkan demi

kesempurnaan Tugas Akhir ini. Namun penulis berharap hasil karya ini dapat

bermanfaat bagi perkembangan ilmu pengetahuan.

Surabaya, 9 September 2014


Penulis

viii

DAFTAR ISI

HALAMAN JUDUL i
LEMBAR PERSETUJUANiii
LEMBAR PENGESAHANiv
PEDOMAN PENGGUNAAN PROYEK AKHIRv
ABSTRAKvi
KATA PENGANTARvii
DAFTAR ISIix
DAFTAR GAMBARxi
DAFTAR TABELxiii
BAB 1. PENDAHULUAN
1.1 Latar Belakang1
1.2 Rumusan Masalah2
1.3 Batasan Masalah
1.4 Tujuan
1.5 Manfaat
1.5.1 Bagi Masyarakat3
1.5.2 Bagi Mahasiswa4
BAB 2. TINJAUAN PUSTAKA
2.1 Kotoran di Kaca5
2.2 Mikrokontroler ATMega85355
2.2.1 Gambaran Umum dan Arsitektur ATMega 85356
2.2.2 Konfigurasi Pin ATmega 85357
2.3 CodeVision AVR8
2.4 LCD 16x2
2.5 Optocoupler
2.6 USB ASP/Downloader11
2.7 Rotary Encoder

ix

Perpusyakaan ereversivas airlarum.

EURABAYA

IR - PERPUSTAKAAN UNIVERSITAS AIRLANGGA

BAB 3. METODE PENELITIAN 3.2 Alat dan Bahan Penelitian......14 3.3.2.1 Perangkat Keras (Hardware)......17 3.3.2.2 Perangkat Lunak (Software)......17 BAB 4. HASIL PENELITIAN DAN PEMBAHASAN 4.1 Pembuatan Program Bagian Pertama (Mikrokontroler)27 4.2 Hasil Pemrogramanan Alat......30 4.3 Data Pengujian Motor......35 4.5 Data Pengujian Keseluruhan......39 4.6 Pembahasan Kinerja Alat......40 BAB 5. KESIMPULAN DAN SARAN 5.1 Kesimpulan......41 5.2 Saran.......41 DAFTAR PUSTAKA42 LAMPIRAN43

DAFTAR GAMBAR

Gambar2.1 Mikrokontroler	.7
Gambar2.2 Tampilan CodeVisionAVR	.9
Gambar2.3 Rangkaian LCD 16x2	.11
Gambar2.4 Rangkaian USB ASP/ Downloader	. 12
Gambar2.5 Rotary Encoder	. 13
Gambar3.1 Diagram Alir Prosedur Penelitian	. 15
Gambar3.2 Diagram Blok Alat	. 16
Gambar3.3 Flowchart Alat	. 19
Gambar3.4 Flowchart Program Awal	20
Gambar3.5 Flowchart Program Kanan dan Semprot	22
Gambar3.6 Flowchart Program Gerak Kiri / Membersihkan	23
Gambar3.7 Flowchart Program Turun	24
Gambar3.8 Flowchart Program Akhir / Berhenti	25
Gambar4.1 Tampilan Code Vision AVR	27
Gambar4.2 Kotak Dialog Create New File	27
Gambar4.3 Kotak Dialog Confirm	28
Gambar4.4 Setting Chip	29
Gambar4.5 Setting LCD	29
Gambar4.6 Setting PORT	29
Gambar4.7 External IRQ	29
Gambar4.8 Setting Timer	29

IR - PERPUSTAKAAN UNIVERSITAS AIRLANGGA

Gambar4.9 Grafik Hubungan	Antara Counter Terhadar	Jarak38
---------------------------	-------------------------	---------

xii

DAFTAR TABEL

Tabel 3.1 Inisialisasi dan Pengalamatan Port	26
Tabel 4.1 Pengujian Motor untuk Pergerakkan Kekanan	(Menyemprot) dan
Kekiri (Membersihkan)	35
Tabel 4.2 Pengujian Motor untuk Pergerakkan Naik dan T	urun36
Tabel 4.3 Pengujian Motor Pompa	37
Tabel 4.4 Data Pengujian Rotary Encoder	37
Tabel 4.5 Data Uji Keseluruhan	39