The Potential Benefits of Vonoprazan as Helicobacter pylori Infection Therapy

by Muhammad Miftahussurur

Submission date: 28-Jul-2020 03:20PM (UTC+0800) Submission ID: 1363159963 File name: 6._Vonoprazan_Review_Article-Final_AcxYAR_280720.docx (147.18K) Word count: 6746 Character count: 38717

1	The Potential Benefits of Vonoprazan as Helicobacter pylori Infection Therapy
2	
3	Muhammad Miftahussurur ^{1,2*} , Boby Pratama Putra ³ , Yoshio Yamaoka ⁴
4	
5	
6	¹⁷ ¹ Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of
7	Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia
8	⁴ ² Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
9	³ Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
10	⁴ Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine,
11	Yufu, 879-5593, Japan
12	
13	
14	
15	
16	
17	
18	*Corresponding Author:
19	Muhammad Miftahussurur, MD., Ph.D
20	⁵ Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo
21	Academic General Hospital, Jalan Mayjen Prof. Dr. Moestopo 6 – 8 Surabaya 60286, Indonesia
22	Phone: +62315023865, Email: muhammad-m@fk.unair.ac.id
23	

1 Abstract

2 Helicobacter pylori infection is a severe global health problem and strongly associated with acid-3 related diseases and gastric malignancies. Eradicating H. pylori is strongly recommended for lowering peptic ulcer recurrence and preventing gastric cancer. The current approved H. pylori 4 5 eradication regimen is combining proton pump inhibitor (PPI) with two antibiotics. Unfortunately, this regimen failed to meet expectations mostly due to antibiotics resistance and insufficiency 6 gastric acid suppression. Vonoprazan, a novel drug from potassium-competitive acid blocker 7 agent, showed promising results as a PPI replacement. Vonoprazan inhibits gastric acid secretion 8 9 by acting as a reversible competitive inhibitor against potassium ion and forming disulfide bonds 10 with cysteine molecule of H⁺/K⁺-ATPase. Vonoprazan has better pharmacological characteristics 11 than PPI, such as no requirement of acid activation, stable in acid conditions, shorter duration to 12 achieve optimum acid suppression, and lack of CYP2C19 polymorphism impact. Several 13 comparative randomized controlled trials and meta-analysis studies revealed Vonoprazan 14 superiority in eradicating H. pylori notably the resistant strains. The adverse effect caused by 15 Vonoprazan is long-term acid suppression that may provoke elevated gastrin serum, hypochlorhydria, and malabsorption. All Vonoprazan studies were only still conducted in Japan, 16 17 therefore further studies outside Japan is necessary for accepting globally.

18

Keywords: *Helicobacter pylori*, acid suppression agents, proton pump inhibitor, potassiumcompetitive acid blocker, Vonoprazan.

21

1 Introduction

2 Helicobacter pylori is a unique human-specific pathogen and can be found in the human stomach 3 about 40-50% of the total human population. *H. pylori* infection is one of the global health problem whose prevalence is about 44.3%, range about 34.7% in developed countries and 50.8% in 4 developing countries with global recurrence rate range in 4.3-4.6%.¹⁻³ An epidemiology meta-5 analysis study revealed that *H. pylori* infection is most prevalent in Africa (79.1%), followed by 6 7 Latin America (63.4%) and Asia (54.7%).⁴ Meanwhile in our country, Indonesia, the H. pylori infection prevalence is about 22.1%, suggesting H. pylori infects 1 of 4-5 our populations.⁵ H. 8 9 pylori infection is well correlated with incidences of gastritis, gastroesophageal reflux disease, gastroduodenal ulcers, gastric mucosal-associated lymphoid tissue (MALT) lymphoma, and 10 gastric malignancies.⁶⁻⁹ Eradication of *H. pylori* is critical due to its benefits such as reducing 11 12 peptic ulcer recurrence, principal therapy of gastric MALT lymphoma, and minimizing risks of gastric cancer.10-12 13

H. pylori elimination therapy commonly uses PPI-based combination therapy for 7-14 days 14 by combining PPI and minimum of 2 antibiotics. PPI takes a crucial role in \overline{H} . pylori eradication 15 by suppressing gastric acid secretion hence enhancing antibiotics efficacies.¹³ However, the 16 17 success rate of PPI-based eradication therapy declines as antibiotics resistance emergence and inadequate acid suppression.^{13,14} Escalating PPI dosage does not increase successful eradication 18 rate of PPI-based regimens.^{15–17} Vonoprazan is a new potential gastric acid suppression agent 19 through H⁺/K⁺-ATPase inhibition and classified into Potassium-Competitive Acid Blockers (P-20 CAB).^{18,19} Vonoprazan has been advised by Japanese guidelines to replace PPI in first-line and 21 second-line *H. pylori* eradication therapies since first introduced in 2015.²⁰ Several non-RCT, 22 23 RCT, and meta-analysis established encouraging results using Vonoprazan-based therapies in eradicating *H. pylori*. Vonoprazan is expected to be a new candidate in *H. pylori* eradication
 regimens.

3

4 Methods

5 We collected all relevant studies after searching comprehensively using predefined keywords 11 through online databases of PubMed, Web of Science, EMBASE, and The Cochrane Library. We 6 searched all relevant articles with keywords (("Vonoprazan" OR "VPZ" OR "TAK-438" OR 7 "Potassium-Competitive Acid Inhibitor") AND ("Helicobacter pylori" OR "H. pylori")) for 8 9 Vonoprazan-based eradication regimens and (("Proton Pump Inhibitor" OR "PPI" OR "Omeprazole" OR "Lansoprazole" OR "Esomeprazole" OR "Rabeprazole") AND ("Helicobacter 10 pylori" OR "H. pylori")) for PPI-based eradication regimens. We included all articles about 11 comparative retrospective, RCT, and meta-analysis studies of *H. pylori* eradication therapies in 12 13 human populations using both regimens until April 2020. Our exclusion criteria are animal and 14 Non-English studies.

15

16 Previous Treatment

A fact that unsatisfying acid-suppressing therapy outcomes before PPI invention expedited researches to innovate obtaining new therapeutic agents. Initial studies revealed PPI has better effectiveness compared to Histamine-2 receptor antagonist (H2RA)-based therapies.²¹ Eradication of *H. pylori* combines PPI with minimum of two antibiotics and may add bismuth in each regimen. Table 1 reviews *H. pylori* eradication regimens approved by the Indonesian Society of Gastroenterology and American College of Gastroenterology.^{22,23}

Drug	Dose	Duration
First Line		
PPI*	2 x 1	
Amoxicillin	2 x 1000 mg	7 – 14 days
Clarithromycin	2 x 500 mg	
f Clarithromycin-resistant str	ains >20%	
PPI*	2 x 1	
Bismuth subsalicylate	2 x 2 tablets	7 14 dava
Metronidazole	3 x 500 mg	7 -14 days
Tetracycline	4 x 250 mg	
Second line when Clarithrom	cin-based Therapy Failed	
PPI*	2 x 1	
Bismuth subsalicylate	2 x 2 tablets	7 – 14 days
Metronidazole	3 x 500 mg	
PPI*	2 x 1	
Amoxicillin	2 x 1000 mg	7 – 14 days
	8	7 – 14 days
Levofloxacin	2 x 500 mg	/ = 14 days
	2 x 500 mg	7 – 14 days
Levofloxacin	2 x 500 mg	/ = 14 days
Levofloxacin Third line when second line re	2 x 500 mg	
Levofloxacin Third line when second line re PPI*	2 x 500 mg egimens failed 2 x 1	7 – 14 days 7 – 14 days

1 Table 1. *Helicobacter pylori* Eradication Therapy Regimens

*PPI agents used are Omeprazole 20 mg, Lansoprazole 30 mg, Esomeprazole 40 mg, Rabeprazole
20 mg, Pantoprazole 40 mg.

3 Unfortunately, PPI-based therapies unmeet clinicians' expectations in eradicating H. pylori as a raise in antibiotics resistance evidence. Failure of first-line eradication therapy is caused by 4 the emergence of Clarithromycin-resistant H. pylori strain whose failure rate up to 60-70%.^{24,25} 5 Otherwise, Metronidazole-resistant H. pylori is the main cause second-line eradication therapy 6 especially in South East Asia.²⁶ Resistance against Levofloxacin has been emerged in some 7 countries with resistance rate about 20-40%.²⁷⁻²⁹ As declared earlier, increasing PPI doses does 8 9 not improve the eradication rate significantly. Consequently, Vonoprazan was introduced as PPI substitution candidate in all-lines H. pylori eradication regimens as referred to Japanese 10 guidelines.20 11

12 Pharmacological Aspects

13 Vonoprazan is acid-stable regimens that can act as fast-released therapy. Vonoprazan has maximum plasma concentration (Cmax) which rises from 10 to 60 ng/mL in only 1.5-2 hours.^{30,31} 14 15 Vonoprazan has area under curve (AUC) from time 0 to infinity in a dose range of 1.14-1.32 and significantly influenced by intestinal meal absorption.³⁰⁻³² Although there is no significant 16 17 difference in holding time ratio pH>4 and time elapsed to reach C_{max} , Vonoprazan has more salutary C_{max}, AUC, and half-life compared to those of PPI. Vonoprazan is a base drug with 18 19 pKa>9.0 as it is more concentrated in secretory canaliculi of the gastric parietal cells than in plasma.^{32,33} Another possibility is Vonoprazan has higher positive charged points.³⁴ Vonoprazan's 20 distribution depends on albumin and alpha-1 acid glycoprotein.³⁰ 21

Vonoprazan is an active drug that does not require acid activation like PPI. Vonoprazan is
 primarily metabolized in the liver through cytochrome P450 CYP3A4 but also metabolized

partially by CYP2B6, CYP2C19, CYP2D6, and SULT2A1.^{35,36} Pharmacokinetics interaction 1 2 between Vonoprazan and Clarithromycin is a mutual interaction because Clarithromycin is strong CYP3A4 inhibitor thus reduce Vonoprazan metabolism.³⁷ Otherwise, PPI is metabolized primarily 3 through CYP2C19 whose polymorphism as extensive metabolizer that affects PPI efficacies and 4 pro-drug activation process.^{35,38} Research about acid suppression agents developed dramatically 5 after H⁺/K⁺-ATPase crucial role invention at the last stage of gastric acid secretion. PPI is a prodrug 6 activated by acid and forms disulfide bonds with cysteine component of H⁺/K⁺-ATPase.^{33,39} PPI 7 reaches maximum acid stability after 3-5 days consumption.^{40,41} 8

9 Lack of PPI potency in forming a gastric base environment urged researchers to discover 10 alternative acid-suppressing agents. Another mechanism that can be an alternative is reducing 11 potassium ions concentration to limit H⁺/K⁺-ATPase efficacy. P-CAB agents, includes 12 Vonoprazan, act as a reversible competitive inhibitor against potassium ions in binding with H⁺/K⁺-ATPase.^{42,43} Vonoprazan is stable in acid gastric secretory canaliculi environment and binds 13 non-covalently to H⁺/K⁺-ATPase.⁴⁴ Vonoprazan dissociates gradually and represses newly-14 15 presenting H⁺/K⁺-ATPase for a sustained period, consequently can increase gastric pH approaching 7 approximately in 4 hours.⁴⁵ Difference of pharmacokinetics and pharmacodynamics 16 between PPI and Vonoprazan is compiled in Table 2.41,43 17

18

19 Table 2. Pharmacological Comparisons Between PPI and Vonoprazan

Parameter	First Generation PPI	Second Generation PPI	Vonoprazan
Acid activation		Yes	No
Active drug		No	Yes
Acid Stability		No	Yes

Main P450 metabolizer	CYP2C19		СҮРЗА4
Meal's influence	Yes	5	No
Mechanism of Action	Covalent bond to gas	stric proton pump	Potassium ion competitive
			reversible inhibitor to
			gastric proton pump
Day required for	3-5		1
reaching maximal acid			
suppression			
pH>4 holding time (%)	OMZ 30.4	ESO 43.1	10 mg 38.4-43.1
	LPZ 39.1	RPZ 42.8	20 mg 62.7-63.3
Time Needed to Reach	OMZ 1-4	ESO 1-3.5	10 mg 1.75
Maximum Plasma	LPZ 1.2-2.1	RPZ 1.14	20 mg 1.50
Concentration (h)			
Half-life (h)	OMZ 0.5-1.2	ESO 1.3-1.6	$10 \text{ mg} 6.95 \pm 1.03$
	LPZ 0.9-2.1	RPZ 0.6-1.4	$20 \text{ mg} 6.85 \pm 0.80$
Cmax (µmol/l)	OMZ 0.23-23.2	ESO 2.1-2.4	$10 \text{ mg} 9.7 \pm 2.1 \mu\text{g/l}$
	LPZ 1.62-3.25	RPZ 1.14	$20 \text{ mg} 25.0 \pm 5.6 \mu\text{g/l}$
AUC (µmol.h/l)	OMZ 0.58-3.47	ESO 4.2	10 mg 60.1 ± 9.0 µg.h/l
	LPZ 4.60-13.5	RPZ 2.22	20 mg 160.3 ± 38.6 µg.h/l

1 AUC: Area Under Curve, C_{max}: Maximum Plasma Concentration, OMZ: Omeprazole 20 mg; LPZ:

2 Lansoprazole 30 mg; ESO: Esomeprazole 40 mg; RPZ: Rabeprazole 20 mg.

3

1 Vonoprazan and Gastroesophageal Reflux Disease

GERD is one of the diseases we often face in our daily practices with heartburn symptoms and quality of life disruption. Standard therapy of GERD is PPI yet the outcome is still unsatisfying. The previous study told that 30% of erosive esophagitis patients still complain about heartburn when sleeping during PPI therapy.^{46,47} Another surprising study recorded that about 50% of GERD patients received PPI therapy did not meet their expectation and 20% of them did "shopping doctor" to seek additional medications.⁴⁸

8 Vonoprazan has the potential to substitute PPI in GERD management. Switching PPI to 9 Vonoprazan in erosive esophagitis can relieve symptoms quickly and significantly. A meta-10 analysis study proved the non-inferiority of Vonoprazan against PPI in GERD management and 11 subgroup analysis noted that Vonoprazan significantly has better efficacy in healing erosive 12 esophagitis.⁴⁹ Vonoprazan is also more effective healing erosive esophagitis in CYP2C19 EM 13 patients than PPI with healing rate 90.0% and 79.3% respectively.⁵⁰

14

15 Vonoprazan and Peptic Ulcers

Gastric and duodenal ulcer is one of the main chronic gastrointestinal problems. The 16 17 gastroduodenal ulcer can be caused by H. pylori infection, long-term NSAIDs consumption, and 18 idiopathic. Current standard therapy for healing peptic and duodenal ulcers is PPI. Vonoprazan is non-inferior against Lansoprazole in healing peptic ulcer whose recurrence rates are 3.3% and 19 5.5% respectively confirmed by endoscopy examination.⁵¹ An RCT study confirmed Vonoprazan 20 21 non-inferiority with peptic ulcer healing rate 93.5% compared to Lansoprazole 93.8%, 22 unfortunately the study cannot confirm healing rate of duodenal ulcers due to dropped out patients and not healed ulcers.⁵² Vonoprazan also has comparable efficacy with Lansoprazole in reducing 23

peptic ulcer recurrence incidence in patients consuming low dose Aspirin.⁵³ Meta-analysis study
showed that patients whose peptic ulcer related to endoscopic gastric submucosal resection
receiving Vonoprazan have statistically significant higher healing rate compared to those received
PPI (pooled OR 2.27, 95% CI 1.38-3.73, I²=0%, p=0.001).⁵⁴

5

6 Vonoprazan and *H. pylori* Eradication

H. pylori eradication is essential for preventing and intervening long-term complications. There are numerous determinants influencing eradication rate during *H. pylori* eradication therapy: antibiotic resistance, acid suppression adequacy, virulence factors (*cagA*, *vacA*, *dupA*), and environments.^{55–58} Previous *H. pylori* eradication therapy uses PPI-based regimens still unmet needs, somehow doubling PPI dose has low evidence and weak recommendation for eradication therapy.¹⁷ Additionally, polymorphism CYP2C19 EM evidence diminishes PPI ability in suppressing gastric acid.

14 Vonoprazan has a strong candidacy replacing PPI in *H. pylori* eradication regimens. 15 Vonoprazan has pharmacological advantages such as the absence of acid activation, stable in an acid environment, and more prolonged half-life.55 Vonoprazan has been advised to replace PPI in 16 17 Japanese guidelines of *H. pylori* eradication. Standardized first-line *H. pylori* eradication therapy is PPI, Clarithromycin, and Amoxicillin. Both RCT and non-RCT studies revealed Vonoprazan-18 19 based eradication regimens have higher eradication rate than PPI-based regimens (Table 3). Our 20 previous meta-analysis includes 5 Clarithromycin-sensitive H. pylori RCT studies revealed no 21 statistically significant difference of successful and failure eradication rate when we compare first-22 generation PPI-based and Vonoprazan based regimens (pooled RR 1.01, 95% CI 0.98-1.04, $I^2 = 61\%$, p=0.04 and pooled RR 0.84, 95% CI 0.57-1.25, $I^2 = 0\%$, p=0.39), still we found significant 23

1	differences of successful and eradication rates not only between second-generation PPI-based and
2	Vonoprazan-based regimens (pooled RR 1.25, 95% CI 1.15-1.37, I ² =82%, p<0.00001 and pooled
3	RR 0.31, 95% CI 0.23-0.42, I^2 =50%, p<0.00001), but also combination of all PPI generation-based
4	and Vonoprazan-based regimens (pooled RR 1.11, 95% CI 1.07-1.16, I ² =98%, p<0.00001 and
5	pooled RR 0.43, 95% CI 0.34-0.55, I ² =81%, p<0.00001). ¹⁵ Several studies about Clarithromycin-
6	resistant <i>H. pylori</i> showed a better eradication rate with Vonoprazan-based regimens (Table 4). A
7	meta-analysis study concluded that Vonoprazan-based regimens have superiority in eradicating
8	Clarithromycin-resistant H. pylori (pooled eradication rates 82% and 40%, pooled OR 6.83, 95%
9	CI 3.63-12.86, I ² =0%, p<0.0001). ⁵⁹

11 Table 3. Review of Comparative Studies First-line *H. pylori* Eradication Therapy

VPZ-based regimen		PPI-based regimen	
Regimen	Eradication	Regimen	Eradication
	rate		rate
VPZ: 20 mg bid	90.9%	LPZ: 30 mg bid	75.1%
AMX: 750 mg bid		AMX: 750 mg bid	
CLR: 200 or 400 mg		CLR: 200 or 400 mg	
bid		bid	
VPZ: 20 mg bid	33.3%	LPZ: 30 mg bid	11.1%
AMX: 750 mg bid		AMX: 750 mg bid	
CLR: 200 or 400 mg		CLR: 200 or 400 mg	
bid		bid	
	Regimen VPZ: 20 mg bid AMX: 750 mg bid CLR: 200 or 400 mg bid VPZ: 20 mg bid AMX: 750 mg bid CLR: 200 or 400 mg	RegimenEradication rateVPZ: 20 mg bid90.9%AMX: 750 mg bid90.9%CLR: 200 or 400 mg90.9%bid33.3%AMX: 750 mg bid33.3%CLR: 200 or 400 mg90.9%	RegimenEradicationRegimenraterateVPZ: 20 mg bid90.9%LPZ: 30 mg bidAMX: 750 mg bidAMX: 750 mg bidCLR: 200 or 400 mgCLR: 200 or 400 mgbidbidVPZ: 20 mg bid33.3%LPZ: 30 mg bidAMX: 750 mg bidCLR: 200 or 400 mgcLR: 200 or 400 mgbidCLR: 200 or 400 mgCLR: 200 or 400 mg bidCLR: 200 or 400 mgCLR: 200 or 400 mg bidCLR: 200 or 400 mgCLR: 200 or 400 mg bidCLR: 200 or 400 mg

Maruyama <i>et al.</i> , 2017 ⁶²	1 VPZ: 20 mg bid AMX: 750 mg bid CLR: 200 or 400 mg	95.8%	LPZ: 30 mg bid or RPZ: 20 mg bid AMX: 750 mg bid	69.6%
	bid		CLR: 200 or	
Sue <i>et al.</i> , 2017 ⁶³	1 VPZ: 20 mg bid	87.3%	400 mg bid 18 LPZ: 30 mg bid,	76.5%
	AMX: 750 mg bid		RPZ: 10 mg bid or	
	CLR: 200 or 400 mg		ESO: 20 mg bid AMX: 750 mg bid	
			CLR: 200 or 400 mg	
	_		bid	
Ozaki et al.,	1 VPZ: 20 mg bid	90.9%	RPZ: 10 mg bid or	72.8%
201864	AMX: 750 mg bid		ESO: 20 mg bid	
	CLR: 200 or 400 mg		AMX: 750 mg bid	
	bid		CLR: 200 or 400 mg	
			bid	
Non-RCT				
	1			
Suzuki et al.,	VPZ: 20 mg bid	89.0%	LPZ: 30 mg bid or	74.2%
2016 ⁶⁵	AMX: 750 mg bid		RPZ: 20 mg bid	
	CLR: 200 or 400 mg		AMX: 750 mg bid	
	bid		CLR: 200 mg bid	

Shinozaki <i>et al.</i> ,	1 VPZ: 20 mg bid	82.9%	18 LPZ: 30 mg bid,	73.9%
2016 ⁶⁶	AMX: 750 mg bid		RPZ: 10 mg bid or	
	CLR: 200 or 400 mg		ESO: 20 mg bid	
	bid		AMX: 750 mg bid	
	_		CLR: 200 mg bid	
Shichijo et al.,	1 VPZ: 20 mg bid	87.2%	LPZ: 30 mg bid,	72.4%
2016 ⁶⁷	AMX: 750 mg bid		RPZ: 10 mg bid or	
	CLR: 200 or 400 mg		ESO: 20 mg bid	
	bid		AMX: 750 mg bid	
			CLR: 200 or 400 mg	
	_		bid	
Noda et al.,	VPZ: 20 mg bid	89.7%	OMZ: 20 mg bid,	73.9%
2016 ⁶⁸	AMX: 750 mg bid		LPZ: 30 mg bid,	
	CLR: 400 mg bid		RPZ: 10 mg bid or	
			ESO: 20 mg bid	
			AMX: 750 mg bid	
			CLR: 200 or 400 mg	
			bid	
Matsumoto et al.,	VPZ: 20 mg bid	89.6%	LPZ: 30 mg bid,	71.9%
2016 ⁶⁹	AMX: 750 mg bid		RPZ: 10 mg bid or	
	CLR: 200 mg bid		ESO: 20 mg bid	
			AMX: 750 mg bid	

CLR: 200 or 400 mg

	_		bid	
Yamada et al.,	VPZ: 20 mg bid	85.7%	LPZ: 30 mg bid,	73.2%
2016 ⁷⁰	AMX: 750 mg bid		RPZ: 10 mg bid or	
	CLR: 200 mg bid		ESO: 20 mg bid	
			AMX: 750 mg bid	
			CLR: 200 mg bid	
Tsujimae et al.,	VPZ: 20 mg bid	84.6%	ESO: 20 mg bid	79.1%
201671	AMX: 750 mg bid		AMX: 750 mg bid	
	CLR: 200 mg bid		CLR: 200 mg bid	
Kajihara <i>et al</i> .,	VPZ: 20 mg bid	94.6%	RPZ: 10 mg bid	86.7%
201672	AMX: 750 mg bid		AMX: 750 mg bid	
	CLR: 400 mg bid		CLR: 200 or	
			400 mg bid	
Sakurai et al.,	VPZ: 20 mg bid	87.9%	LPZ: 30 mg bid,	66.9%
2017 ⁷³	AMX: 750 mg bid		RPZ: 10 mg bid or	
	CLR: 200 mg bid		ESO: 20 mg bid	
			AMX: 750 mg bid	
			CLR: 200 mg bid	
Sue et al., 2017 ⁷⁴	VPZ: 20 mg bid	84.9%	OMZ: 20 mg bid,	78.8%
	AMX: 750 mg bid		LPZ: 30 mg bid,	
	CLR: 200 or 400 mg		RPZ: 10 mg bid or	
	bid		ESO: 20 mg bid	

			3 AMX: 750 mg bid	
			CLR: 200 or	
			400 mg bid	
Nishizawa <i>et al</i> .,	VPZ: 20 mg bid	62.3%	LPZ: 30 mg bid or	47.1%
2017 ⁷⁵	AMX: 750 mg bid		RPZ: 10 mg bid	
	CLR: 200 or		AMX: 750 mg bid	
	400 mg bid		CLR: 200 or	
			400 mg bid	
Tanabe et al.,	VPZ: 20 mg bid	91.5%	13 LPZ: 30 mg bid,	79.4%
2018 ⁷⁶	AMX: 750 mg bid		RPZ: 10 mg bid or	
	CLR: 200 or 400 mg		ESO: 20 mg bid	
	bid		AMX: 750 mg bid	
			CLR: 200 mg bid	

1 AMX: Amoxicillin, CLR: Clarithromycin, ESO: Esomperazole, LPZ: Lansoprazole, OMZ:

2 Omeprazole, RPZ: Rabeprazole, VPZ: Vonoprazan.

3

4 Table 4. Review of Comparative Studies First-line Clarithromycin-resistant H. pylori

5 Eradication Therapy

Regimen			
	Eradication	Regimen	Eradication
	rate		rate
-		rate	rate

—				
¹⁹ Murakami <i>et al</i> .,	VPZ: 20 mg bid	82.0%	LPZ: 30 mg bid	40.0%
2016 ⁶⁰	AMX: 750 mg bid		AMX: 750 mg bid	
	CLR: 200 or 400 mg		CLR: 200 or 400 mg	
	bid		bid	
Non-RCT				
Noda <i>et al.</i> ,	VPZ: 20 mg bid	87.5%	OMZ: 20 mg bid,	53.8%
2016 ⁶⁸	³ AMX: 750 mg bid		LPZ: 30 mg bid,	
	CLR: 400 mg bid		RPZ: 10 mg bid or	
			ESO: 20 mg bid	
			AMX: 750 mg bid	
			CLR: 200 or 400 mg	
			bid	
Matsumoto et al.,	VPZ: 20 mg bid	76.1%	LPZ: 30 mg bid,	40.2%
2016 ⁶⁹	AMX: 750 mg bid		RPZ: 10 mg bid or	
	CLR: 200 mg bid		ESO: 20 mg bid	
			AMX: 750 mg bid	
			CLR: 200 or 400 mg	
		_	bid	
AMX: Amoxicillin,	CLR: Clarithromycin,	ESO: Esom	eprazole, LPZ: Lansopra	zole, OMZ:
Omeprazole, RPZ: R	abeprazole, VPZ: Vonop	razan.		

Second-line eradication therapy is used after the failure of first-line therapy, which consists
of PPI, Amoxicillin, and Metronidazole. We did not find any RCT studies comparing the outcome
of Vonoprazan-based and PPI-based second-line *H. pylori* eradication therapy (Table 5). Shinozaki *et al.* conducted meta-analysis study for all non-RCT studies and concluded that Vonoprazanbased second-line eradication regimens are statistically significant in eradicating *H. pylori* (pooled
OR 1.51, 95% CI 1.27-1.81, I²=0%, p<0.00001).⁷⁷

7

Study VPZ-based regimen PPI-based regimen Regimen Eradication Regimen Eradication rate rate VPZ: 20 mg bid 89.6% LPZ: 30 mg bid, 89.9% Yamada et al., 201670 RPZ: 10 mg bid or AMX: 750 mg bid ESO: 20 mg bid MNZ: 250 mg bid AMX: 750 mg bid MNZ: 250 mg bid Tsujimae et al., VPZ: 20 mg bid 89.1% ESO: 20 mg bid 83.3% 201671 AMX: 750 mg bid AMX: 750 mg bid MNZ: 250 mg bid MNZ: 250 mg bid VPZ: 20 mg bid 96.1% LPZ: 30 mg bid, Sakurai et al., 89.7% 201773 AMX: 750 mg bid RPZ: 10 mg bid or MNZ: 250 mg bid ESO: 20 mg bid

8 Table 5. Review of Comparative Studies Second-line H. pylori Eradication Therapy

			AMX: 750 mg bid	
			MNZ: 250 mg bid	
Sue et al., 201774	VPZ: 20 mg bid	80.5%	LPZ: 30 mg bid,	81.5%
	AMX: 750 mg bid		RPZ: 10 mg bid or	
	MNZ: 250 mg bid		ESO: 20 mg bid	
			AMX: 750 mg bid	
			MNZ: 250 mg bid	
Nishizawa et al.,	VPZ: 20 mg bid	71.8%	LPZ: 30 mg bid or	73.7%
201778	3 AMX: 750 mg bid		RPZ: 10 mg bid	
	MNZ: 250 mg bid		AMX: 750 mg bid	
			MNZ: 250 mg bid	

AMX: Amoxicillin, CLR: Clarithromycin, ESO: Esomperazole, LPZ: Lansoprazole, MNZ:
 Metronidazole, RPZ: Rabeprazole, VPZ: Vonoprazan.

3

Third-line *H. pylori* eradication regimen combines PPI or Vonoprazan, Amoxicillin, and
Sitafloxacin. A study revealed that the third-line Vonoprazan-based regimen has higher *H. pylori*eradication rate than the PPI-based regimen (75.8% vs 53.3%).⁷⁹ Another study also revealed
Vonoprazan-based regimen has better eradication rate in Sitafloxacin-resistant *H. pylori* than
Esomeprazole-based regimens (91.7% vs 71.2%).⁸⁰ Study about third-line *H. pylori* eradication
therapy is limited since it is not covered in Japanese health insurance coverage.⁸¹

10 The main limitation in this review is all studies were conducted in Japan hence make 11 researchers and clinicians wonder about the efficacy of Vonoprazan outside Japan. Japanese 12 people tend to have higher pH >4 holding time ratio than the UK population.^{31,32} Besides, every region has different antibiotic resistance mapping, for example, Japan has high Clarithromycin resistance rate (>30%) but low Metronidazole resistance rate (<5%).⁸² The contradictory study conducted in Indonesia revealed that *H. pylori* in this country has low Clarithromycin resistance (9.1%) but high Metronidazole and Levofloxacin resistances with rates of 46.7% and 31.2% respectively.²⁹

High incidence of *H. pylori* with poly-antimicrobial resistances drives the researcher to 6 7 discover alternative H. pylori eradication therapy. Previously, we performed research to discover 8 alternative therapy using Metronidazole-resistant and Levofloxacin-resistant H. pylori strains in 9 Indonesia, Bangladesh, and Bhutan, through in vitro studies discovered that Furazolidones, Rifaximin, Rifabutin, Garenoxacin, and Sitafloxacin are effective in eradicating H. pylori.^{29,83} 10 11 Another alternative therapy is using anti-Helicobacter pylori herbal medicine such as Indian plant Bombax ceiba, or even a propolis Trigona sp. ethanol extract can inhibit the growth of 12 13 Metronidazole-resistant and Levofloxacin-resistant H. pylori in in vitro study.^{84,85}

14

15 Safety and Adverse Events

16 Since early P-CAB developed, the most recognized complication is hepatotoxicity though no serious adverse effects observed.^{39,41} Unlike the previous P-CAB group which is a derivative of an 17 imidazole-pyridine compound, Vonoprazan is a pyridine-derivative compound so that the 18 hepatotoxicity risk becomes lower.^{35,86} Nevertheless, some previous studies did not encounter any 19 20 significant difference transaminases increment between patients receiving Vonoprazan and PPI.³⁰ 21 The effect of acid inhibition of Vonoprazan is better than PPI, as a consequence, the 22 increment of gastrin serum in patients receiving Vonoprazan therapy is higher than in patients receiving PPI therapy.^{16,50} Hypergastrinemia can trigger gastric enterochromaffin cell hyperplasia 23

and develop the risk of gastric endocrine tumors.^{87,88} Hypochlorhydria precipitated by acid inhibition can alter the gut microbiome, increase prone to develop antibiotic-associated diarrhea caused by *Clostridium difficile* and spontaneous bacterial peritonitis.^{89,90} Excessive acid suppression can also cause malabsorption resulting in the onset of iron deficiency anemia, megaloblastic anemia, hypomagnesia, and hypocalcemia.^{43,91} Additional side effects that can emerge are interstitial nephritis, pneumonia, dementia, chronic kidney disease and ischemic heart disease.^{92–94}

8

9 Conclusion

10 Vonoprazan can be future medication replacing PPI in gastroduodenal diseases mainly
11 *Helicobacter pylori* eradication therapy. Vonoprazan has both better pharmacological and clinical
12 superiorities than PPI. However, further Vonoprazan studies are required to confirm its efficacies,
13 particularly clinical study outside Japan, therefore Vonoprazan can be accepted globally.

Acknowledgments 1

2 Riset Kolaborasi Mitra Luar Negeri tahun 2020 Grant from Universitas Airlangga

3 (441/UN3.14/PT/2020).

4

Author Contributions 5

All authors have equal contributions in searching references, extracting data, drafting and 6 approving the final manuscript.

7

8

9 **Conflict of Interests**

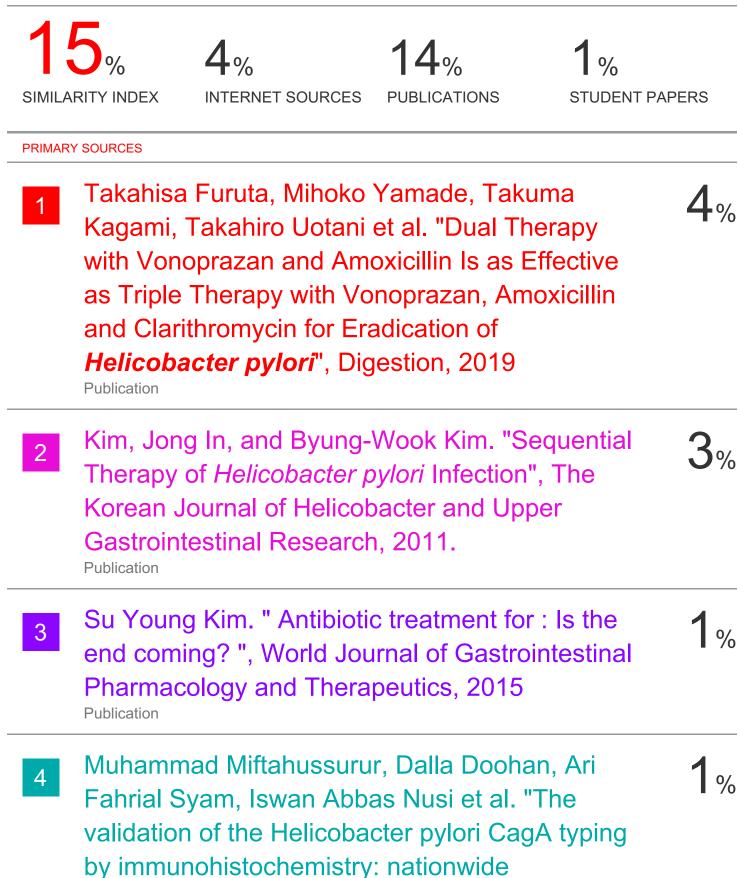
10 Authors have no conflict of interests to declare.

1 References

- Hu Y, Wan JH, Li XY, Zhu Y, Graham DY, Lu NH. Systematic review with meta-analysis:
 the global recurrence rate of *Helicobacter pylori*. Aliment Pharmacol Ther. 2017;46(9):773–
 9.
- Xue Y, Zhou LY, Lu HP, Liu JZ, Guo LS. Recurrence of *Helicobacter pylori* infection:
 Incidence and influential factors. Chin Med J (Engl). 2019;132(7):765–71.
- Sjomina O, Pavlova J, Niv Y, Leja M. Epidemiology of *Helicobacter pylori* infection.
 Helicobacter. 2018;23(Suppl. 1):6–11.
- Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, et al. Global
 Prevalence of *Helicobacter pylori* Infection: Systematic Review and Meta-Analysis.
 Gastroenterology. 2017;153(2):420–9.
- Syam AF, Miftahussurur M, Makmun D, Nusi IA, Zain LH, Zulkhairi, et al. Risk Factors and
 Prevalence of *Helicobacter pylori* in Five Largest Islands of Indonesia: A Preliminary Study.
 PLoS One. 2015;10(11):1–14.
- Abadi ATB, Ierardi E. Vonoprazan and *Helicobacter pylori* treatment: A lesson from Japan or a limited geographic phenomenon? Front Pharmacol. 2019;10(April):1–6.
- Lyu QJ, Pu QH, Zhong XF, Zhang J. Efficacy and Safety of Vonoprazan-Based versus Proton
 Pump Inhibitor-Based Triple Therapy for *Helicobacter pylori* Eradication: A Meta-Analysis
 of Randomized Clinical Trials. Biomed Res Int. 2019;2019:1–8.
- Floch P, Mégraud F, Lehours P. *Helicobacter pylori* strains and gastric MALT lymphoma.
 Toxins (Basel). 2017;9(4):1–9.
- Graham DY, Miftahussurur M. *Helicobacter pylori* urease for diagnosis of *Helicobacter pylori* infection: A mini review. J Adv Res. 2018;13:51–7.
- Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, et al. Effectiveness of
 Helicobacter pylori eradication in the prevention of primary gastric cancer in healthy
 asymptomatic people: A systematic review and meta-analysis comparing risk ratio with risk
 difference. PLoS One. 2017;12(8):1–18.
- 11. Ford A, Forman D, Hunt R, Yuan Y, Moayyedi P. *Helicobacter pylori* eradication for the
 prevention of gastric neoplasia. Cochrane Database Syst Rev. 2015;(7).
- 30 12. Suzuki H, Mori H. World trends for *H. pylori* eradication therapy and gastric cancer
 31 prevention strategy by *H. pylori* test-and-treat. J Gastroenterol. 2018;53(3):354–61.
- 32 13. Scott DR, Sachs G, Marcus E a. The role of acid inhibition in *Helicobacter pylori* eradication.
 33 F1000Research. 2016;5(1747):1–7.
- Ierardi E, Losurdo G, Fortezza RF La, Principi M, Barone M, Leo A Di. Optimizing proton
 pump inhibitors in *Helicobacter pylori* treatment: Old and new tricks to improve effectiveness.
 World J Gastroenterol. 2019;25(34):5097–104.
- Putra BP, Miftahussurur M. Vonoprazan-based therapy has lower failure rate in eradicating
 Helicobacter pylori compared to proton pum inhibitors-based therapy: a meta-analysis of
 randomized controlled trials. New Armen Med J. 2019;13(4):22–30.
- 40 16. Graham DY, Dore MP. Update on the Use of Vonoprazan: A Competitive Acid Blocker.
 41 Gastroenterology. 2018;154(3):462–6.
- 42 17. Malfertheiner P, Megraud F, O'Morain C, Gisbert JP, Kuipers EJ, Axon a., et al. Management
 43 of *Helicobacter pylori* infection-the Maastricht V/Florence consensus report. Gut.
 44 2017;66(1):6–30.
- Inatomi N, Matsukawa J, Sakurai Y, Otake K. Potassium-competitive acid blockers:
 Advanced therapeutic option for acid-related diseases. Pharmacol Ther. 2016;168:12–22.

- Rawla P, Sunkara T, Ofosu A, Gaduputi V. Potassium-competitive acid blockers are they
 the next generation of proton pump inhibitors? World J Gastrointest Pharmacol Ther.
 2018;9(7):63–8.
- 20. Kato M, Ota H, Okuda M, Kikuchi S, Satoh K, Shimoyama T, et al. Guidelines for the
 management of *Helicobacter pylori* infection in Japan: 2016 Revised Edition. Helicobacter.
 2019;24(4):1–17.
- Z1. Iwakiri K, Kinoshita Y, Habu Y, Oshima T, Manabe N, Fujiwara Y, et al. Evidence-based
 clinical practice guidelines for gastroesophageal reflux disease 2015. J Gastroenterol.
 2016;51(8):751–67.
- Syam AF, Simadibrata M, Makmun D, Abdullah M, Fauzi A, Renaldi K, et al. National
 Consensus on Management of Dyspepsia and *Helicobacter pylori* Infection. Acta Med
 Indones. 2017;49(3):279–87.
- 13 23. Chey WD, Leontiadis GI, Howden CW, Moss SF. ACG Clinical Guideline: Treatment of
 14 *Helicobacter pylori* Infection. Am J Gastroenterol. 2017;112(2):212–38.
- Chang JY, Shim KN, Tae CH, Lee KE, Lee J, Lee KH, et al. Triple therapy versus sequential
 therapy for the first-line *Helicobacter pylori* eradication. BMC Gastroenterol. 2017;17(1):1–
 7.
- Thung I, Aramin H, Vavinskaya V, Gupta S, Park JY, Crowe SE, et al. Review article: The
 global emergence of *Helicobacter pylori* antibiotic resistance. Aliment Pharmacol Ther.
 2016;43(4):514–33.
- 26. Miftahussurur M, Yamaoka Y. Appropriate First-Line Regimens to Combat *Helicobacter pylori* Antibiotic Resistance: An Asian Perspective. Molecules. 2015;20(1):6068–92.
- 27. Miftahussurur M, Shrestha PK, Subsomwong P, Sharma RP, Yamaoka Y. Emerging
 Helicobacter pylori levofloxacin resistance and novel genetic mutation in Nepal. BMC
 Microbiol. 2016;16(1):1–10.
- 28. Shetty V, Lamichhane B, Tay CY, Pai GC, Lingadakai R, Balaraju G, et al. High primary
 resistance to metronidazole and levofloxacin, and a moderate resistance to clarithromycin in
 Helicobacter pylori isolated from Karnataka patients. Gut Pathog. 2019;11(1):1–8.
- 29. Miftahussurur M, Waskito LA, Syam AF, Nusi IA, Siregar G, Richardo M, et al. Alternative
 aradication regimens for *Helicobacter pylori* infection in indonesian regions with high
 metronidazole and levofloxacin resistance. Infect Drug Resist. 2019;12:345–58.
- 30. Echizen H. The First-in-Class Potassium-Competitive Acid Blocker, Vonoprazan Fumarate:
 Pharmacokinetic and Pharmacodynamic Considerations. Clin Pharmacokinet.
 2016;55(4):409–18.
- 31. Jenkins H, Sakurai Y, Nishimura a., Okamoto H, Hibberd M, Jenkins R, et al. Randomised
 clinical trial: Safety, tolerability, pharmacokinetics and pharmacodynamics of repeated doses
 of TAK-438 (vonoprazan), a novel potassium-competitive acid blocker, in healthy male
 subjects. Aliment Pharmacol Ther. 2015;41(7):636–48.
- 32. Sakurai Y, Nishimura A, Kennedy G, Hibberd M, Jenkins R, Okamoto H, et al. Safety,
 40 tolerability, pharmacokinetics, and pharmacodynamics of single rising Tak-438 (Vonoprazan)
 41 doses in healthy male Japanese/Non-Japanese Subjects. Clin Transl Gastroenterol.
 42 2015;6(6):1–10.
- 33. Shin JM, Inatomi N, Munson K, Strugatsky D, Tokhtaeva E, Vagin O, et al. Characterization
 of a Novel Potassium-Competitive Acid Blocker of the Gastric H,K-ATPase, 1-[5-(2Fluorophenyl)-1- (pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine
 Monofumarate (TAK-438) J Pharmacol Exp Ther. 2011;339(2):412–20
- 46 Monofumarate (TAK-438). J Pharmacol Exp Ther. 2011;339(2):412–20.

1	34.	Yang X, Li Y, Sun Y, Zhang M, Guo C, Mirza IA, et al. Vonoprazan: A Novel and Potent
2		Alternative in the Treatment of Acid-Related Diseases. Dig Dis Sci. 2018;63(2):302–11.
3	35.	Mori H, Suzuki H. Role of Acid Suppression in Acid-related Diseases: Proton Pump Inhibitor
4		and Potassium-Competitive Acid Blocker. J Neurogastroenterol Motil. 2019;25(1):6–14.
5	36.	Wang Y, Wang C, Wang S, Zhou Q, Dai D, Shi J, et al. Cytochrome P450-Based Drug-Drug
6		Interactions of Vonoprazan In Vitro and In Vivo. Front Pharmacol. 2020;11(February):1–9.
7	37.	Jenkins H, Jenkins R, Patat A. Effect of Multiple Oral Doses of the Potent CYP3A4 Inhibitor
8		Clarithromycin on the Pharmacokinetics of a Single Oral Dose of Vonoprazan: A Phase I,
9		Open-Label, Sequential Design Study. Clin Drug Investig. 2017;37(3):311-6.
10	38.	Kagami T, Sahara S, Ichikawa H, Uotani T, Yamade M, Sugimoto M, et al. Potent acid
11		inhibition by vonoprazan in comparison with esomeprazole, with reference to CYP2C19
12		genotype. Aliment Pharmacol Ther. 2016;43(10):1048-59.
13	39.	Kinoshita Y, Ishimura N, Ishihara S. Advantages and disadvantages of long-term proton pump
14		inhibitor use. J Neurogastroenterol Motil. 2018;24(2):182–96.
15	40.	Oshima T, Arai E, Taki M, Kondo T, Tomita T, Fukui H, et al. Randomised clinical trial:
16		vonoprazan versus lansoprazole for the initial relief of heartburn in patients with erosive
17		oesophagitis. Aliment Pharmacol Ther. 2019;49(2):140–6.
18	41.	Oshima T, Miwa H. Potent Potassium-Competitive Acid Blockers: A New Era for the
19		Treatment of Acid-related Diseases. J Neurogastroenterol Motil. 2018;24(3):334–44.
20	42.	Akazawa Y, Fukuda D, Fukuda Y. Vonoprazan-based therapy for Helicobacter pylori
21		eradication: Experience and clinical evidence. Therap Adv Gastroenterol. 2016;9(6):845–52.
22	43.	Sugano K. Vonoprazan Fumarate, a Novel Potassium-Competitive Acid Blocker, in the
23		Management of Gastroesophageal Reflux Disease: Safety and Clinical Evidence to Date.
24		Therap Adv Gastroenterol. 2018;11(2):1–14.
25	44.	Yao X, Smolka AJ. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced
26		Disease. Gastroenterology. 2019;156(8):2158–73.
27	45.	Garnock-Jones KP. Vonoprazan: First global approval. Drugs. 2015;75(4):439–43.
28		Kinoshita Y, Hongo M, Mitsui S, Hagiwara T, Kobayashi T, Karasawa G, et al. Efficacy of
29		twice-daily rabeprazole for reflux esophagitis patients refractory to standard once-daily
30		administration of PPI: The Japan-based TWICE study. Am J Gastroenterol. 2012;107(4):522-
31		30.
32	47.	Kinoshita Y, Kato M, Fujishiro M, Masuyama H, Nakata R, Abe H, et al. Efficacy and safety
33		of twice-daily rabeprazole maintenance therapy for patients with reflux esophagitis refractory
34		to standard once-daily proton pump inhibitor: the Japan-based EXTEND study. J
35		Gastroenterol. 2018;53(7):834–44.
36	48.	Chey WD, Mody RR, Izat E. Patient and physician satisfaction with proton pump inhibitors
37		(PPIs): Are there opportunities for improvement? Dig Dis Sci. 2010;55(12):3415–22.
38	49.	Cheng Y, Liu J, Tan X, Dai Y, Xie C, Li X, et al. Direct Comparison of the Efficacy and
39		Safety of Vonoprazan Versus Proton-Pump Inhibitors for Gastroesophageal Reflux Disease:
40		A Systematic Review and Meta-Analysis. Dig Dis Sci. 2020;
41	50.	Ashida K, Sakurai Y, Hori T, Kudou K, Nishimura a., Hiramatsu N, et al. Randomised clinical
42		trial: Vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the
43		healing of erosive oesophagitis. Aliment Pharmacol Ther. 2016;43(2):240–51.
44	51.	Mizokami Y, Oda K, Funao N, Nishimura A, Soen S, Kawai T, et al. Vonoprazan prevents
45		zier recurrence during long-term NSAID therapy: Randomised, lansoprazole-controlled non-
46		inferiority and single-blind extension study. Gut. 2018;67(6):1042-51.


1	52.	Miwa H, Uedo N, Watari J, Mori Y, Sakurai Y, Takanami Y, et al. Randomised clinical trial:
2		efficacy and safety of vonoprazan vs. lansoprazole in patients with gastric or duodenal ulcers
3		- results from two phase 3, non-inferiority randomised controlled trials. Aliment Pharmacol
4		Ther. 2017;45(2):240–52.
5	53.	Kawai T, Oda K, Funao N, Nishimura A, Matsumoto Y, Mizokami Y, et al. Vonoprazan
6		prevents low-dose aspirin-associated ulcer recurrence: Randomised phase 3 study. Gut.
7		2018;67(6):1033–41.
8	54.	Jaruvongvanich V, Poonsombudlert K, Ungprasert P. Vonoprazan versus proton-pump
9		inhibitors for gastric endoscopic submucosal dissection-induced ulcers: A systematic review
10		and meta-analysis. Eur J Gastroenterol Hepatol. 2018;30(12):1416-21.
11	55.	Sugimoto M, Yamaoka Y. Role of Vonoprazan in Helicobacter pylori Eradication Therapy in
12		Japan. Front Pharmacol. 2019;9(1):1–15.
13	56.	Waskito LA, Miftahussurur M, Lusida MI, Syam AF, Suzuki R, Subsomwong P, et al.
14		Distribution and clinical associations of integrating conjugative elements and cag
15		pathogenicity islands of Helicobacter pylori in Indonesia. Sci Rep. 2018;8(1):1-9.
16	57.	Doohan D, Miftahussurur M, Matsuo Y, Kido Y, Akada J, Matsuhisa T, et al. Characterization
17		of a novel Helicobacter pylori East Asian-type CagA ELISA for detecting patients infected
18		with various cagA genotypes. Med Microbiol Immunol. 2020;209(1):29-40.
19	58.	Subsomwong P, Miftahussurur M, Uchida T, Vilaichone RK, Ratanachu-Ek T, Mahachai V,
20		et al. Prevalence, risk factors, and virulence genes of Helicobacter pylori among dyspeptic
21		patients in two different gastric cancer risk regions of Thailand. PLoS One. 2017;12(10):1-
22		20.
23	59.	Li M, Oshima T, Horikawa T, Tozawa K, Tomita T, Fukui H, et al. Systematic review with
24		meta-analysis: Vonoprazan, a potent acid blocker, is superior to proton-pump inhibitors for
25		eradication of clarithromycin-resistant strains of Helicobacter pylori. Helicobacter.
26		2018;23(4):1–8.
27	60.	Murakami K, Sakurai Y, Shiino M, Funao N, Nishimura A, Asaka M. Vonoprazan, a novel
28		potassium-competitive acid blocker, as a component of first-line and second-line triple
29		therapy for Helicobacter pylori eradication: A phase III, randomised, double-blind study. Gut.
30		2016;65(9):1439–46.
31	61.	Takimoto M, Tomita T, Yamasaki T, Fukui S, Taki M, Okugawa T, et al. Effect of
32		Vonoprazan, a Potassium-Competitive Acid Blocker, on the13C-Urea Breath Test in
33		Helicobacter pylori-Positive Patients. Dig Dis Sci. 2017;62(3):739-45.
34	62.	Maruyama M, Tanaka N, Kubota D, Miyajima M, Kimura T, Tokutake K, et al. Vonoprazan-
35		Based Regimen Is More Useful than PPI-Based One as a First-Line Helicobacter pylori
36		Eradication: a Randomized Controlled Trial. Can J Gastroenterol Hepatol. 2017;2017(1):1–7.
37	63.	Sue S, Ogushi M, Naito M, Sasaki T, Kondo M, Komatsu K, et al. Vonoprazan- vs Proton-
38		Pump Inhibitor-based First-line 7-day Triple Therapy for Clarithromycin-susceptible
39		Helicobacter pylori: A Multicenter, Prospective, Randomized Trial. Helicobacter.
40		2017;23(2):1–8.
41	64.	Ozaki H, Harada S, Takeuchi T, Kawaguchi S, Takahashi Y, Kojima Y, et al. Vonoprazan, a
42		Novel Potassium-Competitive Acid Blocker, Should Be Used for the Helicobacter pylori
43		Eradication Therapy as First Choice: A Large Sample Study of Vonoprazan in Real World
44		Compared with Our Randomized Control Trial Using Second-Generation Pro. Digestion.
45		2018;97(3):212–8.

1 2 3 4	65.	Suzuki S, Gotoda T, Kusano C, Iwatsuka K, Moriyama M. The Efficacy and Tolerability of a Triple Therapy Containing a Potassium-Competitive Acid Blocker Compared with a 7-Day PPI-Based Low-Dose Clarithromycin Triple Therapy. Am J Gastroenterol. 2016;111(7):949–56.
5 6 7	66.	Shinozaki S, Nomoto H, Kondo Y, Sakamoto H, Hayashi Y, Yamamoto H, et al. Comparison of vonoprazan and proton pump inhibitors for eradication of <i>Helicobacter pylori</i> . Kaohsiung J Med Sci. 2016;32(5):255–60.
8 9 10	67.	Shichijo S, Hirata Y, Niikura R, Hayakawa Y, Yamada A, Mochizuki S, et al. Vonoprazan versus conventional proton pump inhibitor-based triple therapy as first-line treatment against <i>Helicobacter pylori</i> : a multicenter retrospective study in clinical practice. J Dig Dis.
10		2016;17(10):670-675.
12	68.	Noda H, Noguchi S, Yoshimine T, Goji S, Adachi K, Tamura Y, et al. A novel potassium-
13 14		competitive acid blocker improves the efficacy of clarithromycin-containing 7-day triple therapy against <i>Helicobacter pylori</i> . J Gastrointest Liver Dis. 2016;25(3):283–8.
15 16 17	69.	Matsumoto H, Shiotani A, Katsumata R, Fujita M, Nakato R, Murao T, et al. <i>Helicobacter pylori</i> Eradication with Proton Pump Inhibitors or Potassium-Competitive Acid Blockers: The
17 18 19	70.	Effect of Clarithromycin Resistance. Dig Dis Sci. 2016;61(11):3215–20. Yamada S, Kawakami T, Nakatsugawa Y, Suzuki T, Fujii H, Tomatsuri N, et al. Usefulness of vonoprazan, a potassium ion-competitive acid blocker, for primary eradication of
20		Helicobacter pylori . World J Gastrointest Pharmacol Ther. 2016;7(4):550.
21 22 23	71.	Tsujimae M, Yamashita H, Hashimura H, Kano C, Shimoyama K, Kanamori A, et al. A Comparative Study of a New Class of Gastric Acid Suppressant Agent Named Vonoparazan versus Esomeprazole for the Eradication of <i>Helicobacter pylori</i> . Digestion. 2017;94(4):240–
24		6.
25 26 27	72.	Kajihara Y, Shimoyama T, Mizuki I. Analysis of the cost-effectiveness of using vonoprazan- amoxicillin–clarithromycin triple therapy for first-line <i>Helicobacter pylori</i> eradication. Scand J Gastroenterol. 2017;52(2):238–41.
28 29	73.	Sakurai K, Suda H, Ido Y, Takeichi T, Okuda A, Hasuda K, et al. Comparative study: Vonoprazan and proton pump inhibitors in <i>Helicobacter pylori</i> eradication therapy. World J
30 31 32	74.	Gastroenterol. 2017;23(4):668–75. Sue S, Kuwashima H, Iwata Y, Oka H, Arima I, Fukuchi T, et al. The superiority of vonoprazan-based first-line triple therapy with clarithromycin: A prospective multi-center
33 34	75.	cohort study on <i>Helicobacter pylori</i> eradication. Intern Med. 2017;56(11):1277–85. Nishizawa T, Suzuki H, Hibi T. Quinolone-Based Therapy for <i>Helicobacter pylori</i>
35 36	76.	Eradication. J Clin Biochem Nutr. 2009;44(1):119–24. Tanabe H, Yoshino K, Ando K, Nomura Y, Ohta K, Satoh K, et al. Vonoprazan-based triple
37 38		therapy is non-inferior to susceptibility-guided proton pump inhibitor-based triple therapy for <i>Helicobacter pylori</i> eradication. Ann Clin Microbiol Antimicrob. 2018;17(1):1–7.
39 40	77.	Shinozaki S, Shinozaki S, Kobayashi Y, Osawa H, Sakamoto H, Hayashi Y, et al. Effectiveness and Safety of Vonoprazan versus Proton Pump Inhibitors for Second-Line
41 42		<i>Helicobacter pylori</i> Eradication Therapy: Systematic Review and Meta-Analysis. Digestion. 2020;3223:1–7.
43	78.	Nishizawa T, Suzuki H, Fujimoto A, Kinoshita H, Yoshida S, Isomura Y, et al. Effects of
44 45		patient age and choice of antisecretory agent on success of eradication therapy for <i>Helicobacter pylori</i> infection. J Clin Biochem Nutr. 2017;60(3):208–10.

 vonoprazan-based versus proton-pump inhibitor-based third-line triple therapy sitafloxacin for <i>Helicobacter pylori</i>. J Gastroenterol Hepatol. 2019;34(4):686–92. Saito Y, Konno K, Sato M, Nakano M, Kato Y, Saito H, et al. Vonoprazan-Based Third 	with
4 90 Soite V Kenne K Sete M Nakana M Kate V Saite H at al Venenmeren Deced Thin	
4 80. Saito Y, Konno K, Sato M, Nakano M, Kato Y, Saito H, et al. Vonoprazan-Based Third	1-Line
5 Therapy Has a Higher Eradication Rate against Sitafloxacin-Resistant. Cancers (I	Basel).
6 2019;11(116):1–8.	
7 81. Kiyotoki S, Nishikawa J, Sakaida I. Efficacy of vonoprazan for Helicobacter	pylori
8 eradication. Intern Med. 2020;59(2):153–61.	
9 82. Okamura T, Suga T, Nagaya T, Arakura N, Matsumoto T, Nakayama Y, et al. Antimic	robial
10 Resistance and Characteristics of Eradication Therapy of <i>Helicobacter pylori</i> in Jap	an: A
11 Multi-Generational Comparison. Helicobacter. 2014;19(3):214–20.	
12 83. Miftahussurur M, Aftab H, Shrestha PK, Sharma RP, Subsomwong P, Waskito LA	et al.
13 Effective therapeutic regimens in two South Asian countries with high resistance to	
14 <i>Helicobacter pylori</i> antibiotics. Antimicrob Resist Infect Control. 2019;8(1):1–10.	U U
15 84. Chaudhary PH, Tawar MG. Pharmacognostic and phytopharmacological overvie	ew on
16 Bombax ceiba. Syst Rev Pharm. 2019;10(1):20–5.	
17 85. Ratnasari N, Rezkitha YAA, Adnyana IK, Alfaray RI, Fauzia KA, Doohan D, et al.	Anti-
18 Helicobacter pylori effects of propolis ethanol extract on clarithromycin and metronic	dazole
19 resistant strains. Syst Rev Pharm. 2020;11(3):429–34.	
20 86. Scott DR, Munson KB, Marcus E a., Lambrecht NWG, Sachs G. The binding selective	vity of
21 vonoprazan (TAK-438) to the gastric H+,K+-ATPase. Aliment Pharmacol Ther. 2015;	42(11-
22 12):1315–26.	
23 87. Lundell L, Vieth M, Gibson F, Nagy P, Kahrilas PJ. Systematic review: The effects of	long-
term proton pump inhibitor use on serum gastrin levels and gastric histology. A	liment
25 Pharmacol Ther. 2015;42(6):649–63.	
26 88. Sundaresan S, Kang AJ, Merchant JL. Pathophysiology of Gastric NETs: Role of Gastr	in and
27 Menin. Curr Gastroenterol Rep. 2017;19(7):1–12.	
28 89. Martinsen TC, Fossmark R, Waldum HL. The phylogeny and biological function of	gastric
29 juice—microbiological consequences of removing gastric acid. Int J Mol Sci. 2019;20(23):1–
30 22.	
31 90. Bruno G, Zaccari P, Rocco G, Scalese G, Panetta C, Porowska B, et al. Proton pump inh	ibitors
32 and dysbiosis: Current knowledge and aspects to be clarified. World J Gastroe	nterol.
33 2019; 25(22): 2706-19.	
34 91. Heidelbaugh JJ. Proton pump inhibitors and risk of vitamin and mineral deficiency: Ev	idence
and clinical implications. Ther Adv Drug Saf. 2013;4(3):125–33.	
36 92. Kristanto A, Adiwinata R, Rasidi J, Phang BB, Adiwinata S, Richard T, et al. Long-term	Risks
37 of Proton Pump Inhibitor Administration: A Literature Review. Indones J Gastroe	enterol
38 Hepatol Dig Endosc. 2017;18(3):169–76.	
39 93. Maes ML, Fixen DR, Linnebur SA. Adverse effects of proton-pump inhibitor use in	older
40 adults: a review of the evidence. Ther Adv Drug Saf. 2017;8(9):273–97.	
41 94. Hussain S, Singh A, Habib A, Najmi AK. Proton pump inhibitors use and risk of c	hronic
42 kidney disease: Evidence-based meta-analysis of observational studies. Clin Epidemio	l Glob
43 Heal. 2019;7(1):46–52.	
44	

The Potential Benefits of Vonoprazan as Helicobacter pylori Infection Therapy

ORIGINALITY REPORT

application in Indonesia", Acta Histochemica, 2020

Publication

5

Muhammad Miftahussurur, Langgeng Agung Waskito, Hashem B El-Serag, Nadim J. Ajami et al. "Gastric microbiota and in Indonesian population ", Helicobacter, 2020 Publication

6

7

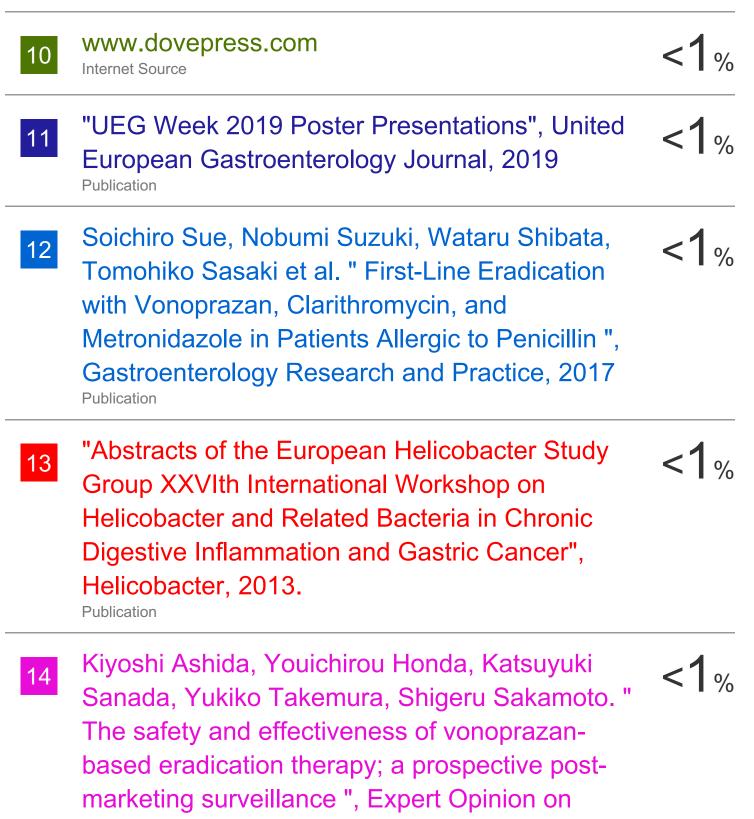
8

Hirotoshi Echizen. "The First-in-Class Potassium-Competitive Acid Blocker, Vonoprazan Fumarate: Pharmacokinetic and Pharmacodynamic Considerations", Clinical Pharmacokinetics, 2015 Publication

Eun Hye Kim, Chan Hyuk Park. "Vonoprazan-Based Helicobacter pylori Eradication Therapy: Time to Get Kompetitive?", Digestive Diseases and Sciences, 2017 Publication

- "Abstracts", Helicobacter, 2017 Publication
- Tang, Hui-Lin, Yan Li, Yong-Fang Hu, Hong-9 Guang Xie, and Suo-Di Zhai. "Effects of CYP2C19 Loss-of-Function Variants on the Eradication of H. pylori Infection in Patients Treated with Proton Pump Inhibitor-Based Triple Therapy Regimens: A Meta-Analysis of

<1% <1%


<1%

1%

<1%

Randomized Clinical Trials", PLoS ONE, 2013.

Publication

Drug Safety, 2019 Publication

17 Muhammad Miftahussurur, Langgeng Agung Waskito, Ari Fahrial Syam, Iswan Abbas Nusi et al. "

Alternative eradication regimens for *Helicobacter pylori* infection in Indonesian regions with high metronidazole and levofloxacin resistance

", Infection and Drug Resistance, 2019
Publication

- 18 Hidekazu Suzuki, Hideki Mori. "World trends for H. pylori eradication therapy and gastric cancer prevention strategy by H. pylori test-and-treat", Journal of Gastroenterology, 2017 Publication
- Amin Talebi Bezmin Abadi, Enzo lerardi.
 "Vonoprazan and Helicobacter pylori Treatment: A Lesson From Japan or a Limited Geographic Phenomenon?", Frontiers in Pharmacology, 2019
 Publication

20

<1%

<**1** %

<1%

<1%

21	Chao Liu, Bing Cheng Feng, Yan Zhang, Li Xiang Li, Xiu Li Zuo, Yan Qing Li. "The efficacy of vonoprazan for management of post- endoscopic submucosal dissection ulcers compared with proton pump inhibitors: A meta- analysis", Journal of Digestive Diseases, 2019 Publication	<1%
22	moshefrenkelmd.com	<1%
23	bmcmusculoskeletdisord.biomedcentral.com	<1%
24	medicalforum.ch Internet Source	<1%
25	www.science.gov Internet Source	< 1 %

Exclude quotes	Off	Exclude matches	< 10 words
Exclude bibliography	On		