Prevalensi Kelainan Ginjal Anjing
Melalui Pemeriksaan Ultrasonografi
Deteksi Cryptosporidium canis
pada Anjing di Kota Surabaya
Peningkatan Performa dan Kualitas Daging
Sapi Bali yang Diberi Jagung
Polimorfisme Gen Oviductal Glycoprotein-1
pada Kambing Penderita Kista Ovarium
Gen Penyandi Resistensi Tetracycline dan
Plasmid Mediated Quinolones pada Salmonella Ayam
Respons Kekebalan Ayam IPB D1 terhadap Salmonella enteritidis
Analisis Filogenetik Gen Hemaglutinin
dan Neuraminidase Flu Burung H9N2
Deteksi Molekuler Blastocystis sp. pada Babi di Bali
Perbandingan Insang Ikan Keureling, Ikan Mas dan Ikan Nila
Aktivitas Antibakteri Daun Pepaya, Daun Kemangi, Temu ireng terhadap Serratia marcescens
Efikasi Vaksinasi Ikan Nila dengan Penambahan Ekstrak Terung Asam dan Lempuyang
Terapi Fotodinamik Mempercepat Kesembuhan Luka Insisi pada Kulit Terinfeksi Bakteri Performa Uji Toxoplasma Modified Agglutination Test
Aktivitas Antimikrob Cuka Apel terhadap Multidrug Resistance Staphylococcus aureus
Kadar Susu Skim Terbaik dalam Pengencer Semen Ayam Kampung
Gambaran Leukosit Pasca pemberian Nanoenkapulasi Andallman pada Burung Puyuh Stres
Analisis Usaha Sapi Perah Kembal di Lembang Bandung
Vol 21, No 2 Juni 2020
Terakreditasi Dirjen Penguatan Riset dan Pengembangan,
Kemenristek Dikti RI
S.K. No. 36a/E/KPT/2016

Naskah Asli
Original Article

WINDA RAHMIA, MOHAMMAD FAHRUL ULUM, SITI ZAENAB, DENI NOVIANA
Prevalensi Kelainan Ginjal Anjing yang Dirawat Rumah Sakit Hewan Pendidikan dan Klinik Hewan Melalui Pemeriksaan Ultrasonografi
(PREVALENCE OF RENAL ABNORMALITIES IN TREATING DOGS TO THE VETERINARY TEACHING HOSPITAL AND ANIMAL CLINIC BY USING ULTRASONOGRAPHY) .. 167-175

ROMY MUHAMMAD DARY MUNA, NUNUK DYAH RETNO LASTUTI, FEDIK ABDUL RANTAM, LUCIA TRI SWAWANTI, ENDANG SUPRIHATI, DIDIK HANDIYATNO, MUFASIRIN
Deteksi Cryptosporidium canis pada Anjing di Kota Surabaya
(CRYPTOSPORIDIUM CANIS DETECTION IN DOGS IN THE CITY OF SURABAYA) .. 176-182

NIRI YOMAN SURYANI, I WAYAN SUARNA, I GDE MAHARDIKA, NI PUTU SRIINI
Peningkatan Performa dan Kualitas Daging Sapi Bali yang Diberi Imbuhuan Tepung Jagung Dalam Ransum (MAIZE FLOUR SUPPLEMENTATION IMPROVE PERFORMANCE AND MEAT QUALITY OF BALI CATTLE) .. 183-191

HERAWATI, FEBRY SYSDITYAWAN RAMADHAN, DYAH AUY OKTAVIANIE, YUDIT ORTANELLA
Polimorisme Gen Oviductal Glycoprotein-1 pada Oviduk Kambing Peranakan Etawa Penderita Kista Ovarium
(OVIDUCTAL GLYCOPROTEIN-1 GENE POLYMORPHISM IN THE OVIDUCT OF ETTAWA CROSSBRED GOATS SUFFERING FROM OVARIAN CYST) .. 192-198

LEILA NUR AZIAH, AGUSTIN INDRAWATI, I WAYAN TEQUH WIBAWAN
Keberhasilan Mendeteksi Gen Penyandikan Tetracycline dan Plasmid Mediated Quinolones pada Bakteri Salmonella Ayam di Bandung dan Purwakarta
(GENE ENCODING RESISTANCE TO TETRACYCLINE AND PLASMID MEDIATED QUINOLONES WERE DETECTED IN SALMONELLA BACTERIA OF CHICKENS IN BANDUNG AND PURWAKARTA) .. 199-207

FITRIASUSANTI, SRI MURTINI, I WAYAN TEQUH WIBAWAN
Respons Kekebalan Ayam IPB D1 yang Memiliki Gen TLR4 terhadap Infeksi Bakteri Salmonella enteritis
(IMMUNE RESPONSE OF IPB D1 CHICKENS WITH TLR4 GENES AGAINST SALMONELLA ENTERITIS BACTERIAL INFECTION) .. 208-215

PRESTALIA DWI RACHMAWATI, TATANG SANTANU ADIKARA, HANI PLUMERIASTUTI, RAHAJU ERNAWATI, JOLA RAHMAMAHANI, DIDIK HANDIYATNO, CHRISTIAN MARCO HADI NUGROHO
Analisis Filogenetik Gen Hemaglutinin dan Neuraminidase Avian Influenza H9N2 Asal Ayam Petelur di Jawa Timur
(PHYLOGENETIC ANALYSIS OF HAEMAGGLUTININ AND NEURAMINIDASEGENES OF AVIAN INFLUENZA H9N2 FROM LAYER IN EAST JAVA) .. 216-226

DOOHAN MAHENDE, LUCIA TRI SWAWANTI, NUNUK DYAH RETNO LASTUTI, MUFASIRIN, ENDANG SUPRIHATI, WIWIK MISACO YUNIARTI, NI KOMANG APRILINA WIDISUPUTRI
Deteksi Molekuler Blastocystis sp. pada Babi Terinfeksi di Kabupaten Tabanan dan Badung, Provinsi Bali, Indonesia
(MOLECULAR DETECTION OF BLASTOCYSTIS INFECTION IN PIGS AT TABANAN AND BADUNG DISTRICT, BALI PROVINCE, INDONESIA) .. 227-233

ERNITA, MUNAWIR, RESTI FAUMI, YUSDIRZ AL AKMAL, MULHARI, ILHAM ZULFAHMI
Perbandingan Secara Anatomi Insang Ikan Keuring (Tor tambroides), Ikan Mas (Cyprinus carpio) dan Ikan Nila, (Oreochromis niloticus)
(ANATOMICAL COMPARISON OF GILLS OF THAI MAHSEER'S (TOR TAMBOIDES), CARP (CYPRINUS CARPIO) AND TILAPIA, (OREOCHROMIS NILOTICUS) .. 234-246
VOVITA DEVINA, VINS A CANTYA PRAKASITA, DWI CAHYO BU DII SETIAWAN, AGNESIA ENDANG TRI HASTUTI WAHYUNI
Aktivitas Antibakteri Ekstrak Daun Pepaya, Daun Kemangi Serta Temu Ireng, dan Madu terhadap Bakteri Serratia marcescens
(ANTIBACTERIAL ACTIVITY OF PAPAYA LEAVES, BASIL LEAVES AND CURCUMA AERUGINOSA EXTRACT AND HONEY AGAINST SERRATIA MARCESCENS)........... 247-255

ESTI HANADAYANI HARDI, KOMSANAH SUKARTI, MAULINA ANGGIRIDINII
Peningkatan Efiaksi Vaksinasi pada Ikan Nila (Oreochromis niloticus) dengan Penambahan Ekstrak Tanaman Terung Asam dan Lempuyang
(INCREASED EFFICACY OF VACCINATION IN TILAPIA (OREOCHROMIS NILTICUS) WITH THE ADDITION OF THE SOLANUM FEROX AND BITTER GINGER (ZINGIBER ZERUMET) PLANT EXTRACTS)........... 256-266

YONATAN DIMASCAHYO BUDIANTO, LUCIA TRI SUWANTI, WIWIK MISACO YUNIARTI, HANI PLUMERIASTUTI, WIWIK TYSANNINGSIH, BOEDI SETIAWAN
Terapi Fotodinamik Mempercepat Kesembuhan Luka Insisi pada Kulit Tikus Putih (Rattus novergicus) yang Diinfeksi Bakteri Methicillin-Resistant Staphylococcus aureus
(PHOTODYNAMIC THERAPY ACCELERATE SKIN INCISION WOUND HEALING IN WHITE RAT (RATTUS NOVERGICUS) INFECTED WITH BACTERIA METHICILIN- RESISTANT STAPHYLOCOCCUS AUREUS)........... 267-277

SISCA VALINATA, SULINAWATI, DIDIK TULUS SUBEKTI
Evaluasi Performa dan Kesesuaian Uji Antara Uji Aglutinasi Toxoplasma Modified Agglutination Test dengan Berbagai Kit Uji Serologis Komersial
(EVALUATION OF ASSAY PERFORMANCE AND INTER RELIABILITY AGREEMENT BETWEEN TOXOPLASMA MODIFIED AGGLUTINATION TEST AND SEVERAL COMMERCIAL SEROLOGICALS ASSAY KITS)........... 278-291

ELISA HERINA DIMARIWI, WIWIK TYSANNINGSIH, JOLA RAHMABANI, RAHAJU ERNAWATI, MUSTOFA HELMI EFFENDI, DIDIK HANDIJATNO
Aktivitas Antimikrob Cuka Apel terhadap Multidrug Resistance Staphylococcus aureus yang Dissosiasi dari Luka Infeksi Anjing di Surabaya
(ANTIMICROBIAL ACTIVITY OF APPLE VINEGAR AGAINST MULTIDRUG RESISTANCE STAPHYLOCOCCUS AUREUS ISOLATED FROM DOG INFECTION WOUNDS IN SURABAYA)........... 292-299

KHAERUDDIN, ANDI NURLINDA, NASRUL ARDI, ABDUL HAKIM FATTAH, ANDI KURNIA ARMAYANTI
Penentuan Konsentrasi Susu Skim Terbaik dalam Pengencer Semen Ayam Kampung Berbahan Dasar Ringer Laktat
(DETERMINATION OF OPTIMUM SKIM MILK CONCENTRATION IN CAMPBELL CHICKEN'S SEMEN EXTENDER BASED ON LACTATED RINGERS)........... 300-308

RASYIDA ULFIA, AKHIRUDDIN MADDU, HUDA SALAHUDDIN DARUSMAN, KOEKOEH SANTOSO
Gambaran Leukosit Setelah Pemberian Nanoenkapulasi Andaliman (Zantoxylum acanthopodium DC.) pada Burung Puyuh Pascainduksi Imunosupresan Deksametasan
(LEUCOCYTS PROFILE AFTER SUPPLEMENTATION OF NANOENCAPSULATION ZANTHOXYLUM ACANTHOPODIUM IN QUAILS POST INDUCTION BY DEXAMETHASONE IMMUNOSUPRESANT)........... 309-318

SUPARDI RUSDIANA, LISA PRAHARANI
Analisis Usaha Sapi Perah Kembar di Kecamatan Lembang Kabupaten Bandung Jawa Barat
(BUSINESS OF DAIRY COW TWIN IN LEMBANG DISTRICT, BANDUNG REGENCY, WEST JAVA)........... 319-332
Aktivitas Antimikrob Cuka Apel terhadap Multidrug Resistance Staphylococcus aureus yang Diisolasi dari Luka Infeksi Anjing di Surabaya

(ANTIMICROBIAL ACTIVITY OF APPLE VINEGAR AGAINST MULTIDRUG RESISTANCE STAPHYLOCOCCUS AUREUS ISOLATED FROM DOG INFECTION WOUNDS IN SURABAYA)

Elisa Herina Dimariwu¹, Wiwiek Tyasningsih², Jola Rahmahani³, Rahaju Erna awati³, Mustofa Helmi Effendi³, Didik Handijato⁴

¹Program Magister, Ilmu Penyakit dan Kesehatan Masyarakat Veteriner, ²Departemen Mikrobiologi Veteriner, ³Departemen Kesehatan Masyarakat Veteriner, ⁴Fakultas Kedokteran Hewan, Universitas Airlangga, Kampus C, Jl. Mulyorejo, Kota Surabaya, Jawa Timur, Indonesia 60115
Telepon. +62 31 5992785, 5993016; Fax. +62 31 5993015
Email: elisa.herina@gmail.com

ABSTRAK

Kata-kata kunci: Staphylococcus aureus; antimikrobial; cuka apel; Surabaya

ABSTRACT

Staphylococcus aureus is one of the normal flora that can cause infection in injured skin. Resistance to antibiotics has an impact on the difficulty of therapeutic treatment so that other alternatives are needed. The purpose of this study was to observe the effectiveness of apple vinegar as an antimicrobial against Multidrug Resistant Staphylococcus aureus isolated from infection wounds in dogs in Surabaya. The methods in this study were the isolation of bacteria from 30 samples of dog festering wounds on Manitol Salt Agar (MSA) media and identification through macroscopic, microscopic, catalase tests, coagulase tests, hemolysis tests on Blood Agar media, and Voges-Proskauer (VP) tests. Bacteria that have included the S. aureus criteria were followed by sensitivity tests to the antibiotics Amoxicillin, Ampicillin, Gentamicin, Chloramphenicol, and Ciprofloxacin. Apple vinegar activity test was carried out using disk
diffusion method against Multidrug Resistant Staphylococcus aureus. The results showed that of the seven S. aureus isolates, there were two isolates belonging to the Multidrug Resistant S. aureus. The results of the apple vinegar activity test showed the presence of antimicrobial activity shown by the formation of a clear zone around the paper disk with an average diameter of 24.06 mm at a concentration of 90%. The conclusion shows that apple vinegar has antimicrobial activity against Multidrug Resistant S. aureus which is isolated from dog festering wounds in Surabaya.

Keywords: Staphylococcus aureus; antimicrobial; apple vinegar; Surabaya

PENDAHULUAN

Bakteri Staphylococcus aureus merupakan flora normal pada permukaan kulit yang dapat menyebabkan infeksi pada kulit. Apabila terjadi luka maka S. aureus dapat menimbulkan infeksi berupa radang bernanah. Penyakit yang sering disebabkan oleh S. aureus pada hewan kesejahteraan adalah staphylococcal folliculitis pada anjing. Infeksi S. aureus dari kulit dapat berlanjut menjadi impetigo (pengerusan kulit) atau cellulitis (peradangan jaringan penghubung di bawah kulit, menurun pada pembengkakan dan kemerahan pada area tersebut) (Quinn et al., 2002). Sebagian besar anjing pernah mengalami infeksi bakteri pada kulit dan dilaporkan lebih dari 10% disebabkan oleh S. aureus (Loeffler et al., 2009).

Resistensi antibiotik merupakan ketahanan kuman terhadap antibiotik yang digunakan untuk mengobati suatu penyakit infeksi. Resistensi isolat S. aureus terhadap beberapa jenis antibiotik telah banyak dilaporkan sehingga menimbulkan kekhawatiran jika terjadi zoonosis (Khusna et al., 2016). Semakin banyak patogen yang resisten terhadap lebih dari satu antibiotik, semakin banyak waktu dan biaya yang harus dikeluarkan melalui penambahan dosis antibiotik yang dipakai, sehingga memerlukan alternatif lain yakni melalui penggunaan bahan obat herbal (Margiorakos, 2011). Salah satu alternatif yang dapat digunakan untuk pengobatan luka infeksi adalah cuka apel.

Berdasarkan laporan bawasannya daya antibakteri cuka apel kemasan, efektif dalam membunuh bakteri S. aureus isolat ATCC 25923 hingga konsentrasi 40% secara in vitro. Dengan acuan tersebut peneliti ingin mengetahui efektivitas antibakteri cuka apel terhadap Multidrug Resistant Staphylococcus aureus yang diisolasi dari luka bernanah pada anjing di Surabaya.
METODE PENELITIAN

Koleksi Sampel
Sebanyak 30 sampel luka bernanah didapatkan dari anjing yang mengalami infeksi kulit di beberapa tempat yakni klinik hewan, dokter hewan praktisi dan Rumah Sakit Hewan Universitas Airlangga, di wilayah Kota Surabaya. Pengambilan sampel dilakukan dengan cara mengusapkan cotton bud steril ke permukaan luka pada bagian luka yang bernanah kemudian dimasukkan ke dalam tabung steril berisi NaCl 0,9%, disimpan dalam termos es dan segera dibawakan ke Laboratorium Mikrobiologi dan Mikologi, Departemen Mikrobiologi Veteriner, Fakultas Kedokteran Hewan, Universitas Airlangga.

Isolasi dan Identifikasi
Sampel swab yang diperoleh ditumbuhkan pada Manitol Salt Agar (MSA) dan dinukasini pada suhu 37°C selama 24 jam. Koloni bakteri terduga yang tumbuh pada MSA dipilih dengan ciri-ciri koloni berwarna kuning, cembung, bulat halus, dan berkilia. Tahap selanjutnya yaitu pememeriksaan mikroskopis dengan metode pendarah Gram untuk melihat morfologi bakteri dengan karakteristik bakteri berwarna ungu yang menunjukkan Gram positif, bentuk bulat, dan bergerombol seperti anggur (Carroll et al., 2015). Koloni yang telah diuji secara mikroskopis menunjukkan karakteristik dari bakteri S. aureus dilakukan pemupukan pada media agar untuk dilakukan pemurnian (Khusdor et al., 2012). Hasil pemurnian bakteri yang tumbuh tersebut dilakukan uji identifikasi selanjutnya yaitu pendarah Gram, uji hemolisis pada media agar darah, uji katalase untuk mengetahui adanya gelembung gas yang membedakan bakteri S. aureus dengan Streptococcus sp., dan kemudian koloni dengan hasil uji katalase positif selanjutnya dilakukan uji koagulase untuk menentukan S. aureus ditandai dengan terdapat penggumpalan plasma darah kelinci. Hasil koagulase oleh S. aureus dilakukan uji Voges-Proskauer (VP) dengan menanamkan isolat pada media VP dalam tabung dan dinukasini pada suhu 37°C selama 48 jam. Pertumbuhan bakteri ditandai dengan menjadi keruh, kemudian ditambahkan cea- reagens, terdapat adanya larutan KOH 40% dalam aquades steril dan e-naphtol 5% dalam etanol 96%, yang bertindak sebagai katalis. Larutan yang telah ditambah reagens kemudian dihomogenkan sehingga menunjukkan perubahan warna menjadi merah yang menunjukkan adanya kandungan asetalin yang diproduksi oleh bakteri dalam larutan (Carroll et al., 2015).

Uji Sensitivitas

Pembuatan Suspensi Bakteri
Pembuatan suspensi bakteri S. aureus isolat lapangan yang resisten dengan beberapa antibiotik dengan cara biakan S. aureus diambil sebanyak satu mata sengkelit kemudian dibubukkan dalam media pertumbuhan Nutrient Agar (NA) dengan cara streak dan dinukusini pada suhu 37°C selama 24 jam. Empat sampel lima koloni diambil dan ditanam ke dalam 4 mL larutan Physiological Zoth (PZ), dicampur hingga merata menggunakan vortex hingga diperoleh kekeruhan sesuai standar Mc.
Farland no. 0,5. Menurut Whitman dan Nair (2010) kekeruhan suspensi bakteri disesuaikan dengan standar Mc. Farland no. 0,5 yang memiliki jumlah bakteri 1,5 x 10^6 sel/mL.

Pengenceran Cuka Apel

Cuka diencerkan dengan aquades steril sehingga diperoleh cuka apel dengan konsentrasi 70%, 30%, 90%, 100%. Konsentrasi 100% yakni 1000 mL cuka apel, konsentrasi 90% terdiri dari 900 mL cuka apel yang ditambah 100 mL aquades steril, konsentrasi 80% terdiri dari 800 mL cuka apel yang ditambah 200 mL aquades steril, sedangkan konsentrasi 70% terdiri dari 700 mL cuka apel yang ditambah 300 mL aquades steril.

Uji Aktivitas Cuka Apel Terhadap MRSA Menggunakan Metode Difusi Cakram

Analisis Data

Data hasil uji kepekaan antibiotik dinyatakan secara deskriptif, sedangkan data hasil penelitian efektivitas antibakteri cuka apel terhadap *multidrug resistance Staphylococcus aureus* dianalisis dengan menggunakan metode Kruskal Wallis dilanjutkan dengan uji *Mann Whitney* dengan signifikansi (α = 5%). Analisis statistika dilakukan dengan menggunakan program SPSS for windows 11,5.

HASIL DAN PEMBAHASAN

Isolasi dan Identifikasi S. aureus

Isolasi dan identifikasi bakteri patogen merupakan hal yang penting dan termasuk langkah standar untuk diagnosis di dalam manajemen penyakit infeksi yang berasal dari bakteri (Kateete et al., 2010). Hasil isolasi dan identifikasi dari 30 sampel luka infeksi pada anjing yang diperoleh dari klinik hewan dan RSH di Surabaya menunjukkan tujuh isolat positif bakteri *S. aureus* (23%). Rincian mengenai interpretasi hasil penelitian isolasi dan identifikasi berdasarkan karakterisasi sifat *S. aureus* disajikan pada Tabel 1. Hal ini sesuai dengan laporan Nagori dan Solanki (2011) yang menyatakan bahwa salah satu bakteri penyebab luka infeksi yaitu *S. aureus*, dan pada penelitian yang dilakukan Loeffler et al. (2009) infeksi yang disebabkan oleh *S. aureus* pada anjing dilaporkan lebih dari 10%.

Uji Kepekaan Isolat S. aureus Terhadap Antibiotik

Hasil uji kepekaan lima antibiotik terhadap tujuh isolat *S. aureus* yang menunjukkan sifat *Multidrug resistant* ada dua isolat dengan menunjukkan hasil resisten lebih dari tiga golongan antibiotik yang berbeda, isolat yang pertama resisten terhadap antibiotik *Amoxicillin, Ampicillin, Gentamicin, Chloramphenicol*, dan *Ciprofloxacin*, sedangkan isolat yang kedua hanya sensitif terhadap antibiotik *Gentamicin* saja. Hasil uji kepekaan antibiotic tersebut disajikan pada Tabel 2 dan Gambar 1.

Uji Aktivitas Cuka Apel terhadap MRSA

Hasil uji aktivitas antimikroba cuka apel terhadap *Multidrug Resistant Staphylococcus aureus* menunjukkan adanya aktivitasnya zona bening disekitar *paper disk* pada konsentrasi
<table>
<thead>
<tr>
<th>No. Sampel</th>
<th>Asal Sampel dari Klinik</th>
<th>Isolasi pada Media MSA</th>
<th>Mikroskopis (Gram positif, bulat, dan bergerombol)</th>
<th>Katalase</th>
<th>Koagulase</th>
<th>Hemolisis</th>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cat Dog</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>911</td>
<td>+</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>911</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>911</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>911</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>911</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>911</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>911</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>911</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>911</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>911</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>911</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>911</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Yuppie</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Yuppie</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Yuppie</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>Yuppie</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>RSH</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>IntimediPet</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>IntimediPet</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>IntimediPet</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>RSH</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>La Femur</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>La Femur</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>Yuppie</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>RSH</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>RSH</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>RSH</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>RSH</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>Cava Pet Care</td>
<td>-</td>
<td>(tidak dilanjutkan)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Keterangan: VP= Voges–Proskauer; MSA= Mannitol Salt Agar

100%, 90%, 80% terhadap isolat lapangan Multidrug Resistant Staphylococcus aureus. Hasil yang diperoleh dari penelitian efektivitas cuka apel terhadap Multidrug Resistant Staphylococcus aureus dengan lima perlakuan dan lima ulangan ditunjukkan pada Tabel 3. Hasil analisis data diameter zona bening yang terbentuk dari efektivitas cuka apel terhadap Multidrug Resistant Staphylococcus aureus menunjukkan bahwa pemberian cuka apel konsentrasi 100%, 90%, dan kontrol positif terdapat perbedaan yang sangat nyata (p<0,01), sedangkan pada konsentrasi 80% dan 70% tidak terdapat perbedaan yang nyata (p>0,05) dibandingkan dengan P1 kontrol positif (p>0,05). Berdasarkan uji kepekaan antibiotik menggunakan cakram antibiotik diperoleh hasil bakteri yang digunakan resisten terhadap Amoxicillin, Ampicillin, Gentamicin, Chloramphenicol, dan Ciprofloxacin (Gambar 2). Antibiotik yang masih sensitif Vancomycin. Vancomycin bekerja dengan cara menghambat sintesis dinding sel bakteri dengan cara mengikat rantai terminal D-Ala-D-Ala pada peptidoglikan yang baru terbentuk. Oleh sebab itu, diperlukan upaya mencari bahan herbal yang dapat digunakan untuk terapi pada infeksi
Gambar 1. Hasil uji deteksi positif Multidrug Resistant Staphylococcus aureus dengan metode difusi disk Kirby-Bauer.
Keterangan: AML = Amoxycillin 25 \(\mu g \); AMP = Ampicillin 10 \(\mu g \); CN = Chloramphenicol 30 \(\mu g \); Cip = Gentamicin 10; Ciprofloxacin 5

Gambar 2. Uji aktivitas cuka apel terhadap Multidrug Resistant Staphylococcus aureus.

Tabel 2. Hasil uji kepekaan antibiotik terhadap isolat bakteri Staphylococcus aureus

<table>
<thead>
<tr>
<th>No. Sampel</th>
<th>Disks Antibiotik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amoxycillin (25 (\mu g))</td>
</tr>
<tr>
<td>2</td>
<td>12 (R)</td>
</tr>
<tr>
<td>4</td>
<td>24(R)</td>
</tr>
<tr>
<td>8</td>
<td>23(R)</td>
</tr>
<tr>
<td>11</td>
<td>21(R)</td>
</tr>
<tr>
<td>12</td>
<td>12(R)</td>
</tr>
<tr>
<td>18</td>
<td>15(R)</td>
</tr>
<tr>
<td>22</td>
<td>16(R)</td>
</tr>
</tbody>
</table>

Keterangan: S adalah Sensitif dan R adalah resisten. Diameter zona hambat pada tabel di atas dalam satuan mili meter (mm) berdasarkan CLSI (2016)

<table>
<thead>
<tr>
<th>No.</th>
<th>Perlakuan</th>
<th>Diameter Zona Bening ((\pm SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>P1 (Kontrol Positif)</td>
<td>20,40± 0,54772</td>
</tr>
<tr>
<td>2.</td>
<td>P2 (Konsentrasi 100%)</td>
<td>25,16± 1,22801</td>
</tr>
<tr>
<td>3.</td>
<td>P3 (Konsentrasi 90%)</td>
<td>24,06± 1,03681</td>
</tr>
<tr>
<td>4.</td>
<td>P4 (Konsentrasi 80%)</td>
<td>21,44± 0,97365</td>
</tr>
<tr>
<td>5.</td>
<td>P5 (Konsentrasi 70%)</td>
<td>20,24± 0,90167</td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan perbedaan yang nyata \(p<0,05 \)
bakteri Multidrug Resistant Staphylo-coccus aureus, salah satunya dengan menggu-nakan cuka apel.

Metode yang digunakan untuk menguji aktivitas antimikroba cuka apel terhadap bakteri Multidrug Resistant Staphylococcus aureus pada penelitian ini menggunakan uji difusi cakram dengan paper disk. Terbentuknya aktivitas antimikroba ditandai dengan munculnya zona bening di sekitar paper disk. Penggunaan kontrol antibiotik vancomycin digunakan untuk membandingkan pertumbuhan bakteri pada kontrol positif dalam medium padat (Carroll et al., 2016).

Cuka apel berdasarkan penelitian sebelumnya memiliki efek antimikroba terhadap bakteri S. aureus ATCC 25923 dapat membunuh dengan rentang konsentrasi cuka apel 40%. Pada penelitian ini, hasil konsentrasi yang efektif dalam menghambat pertumbuhan bakteri Multidrug Resistant Staphylococcus aureus, yaitu hingga 90%. Konsentrasi tersebut cukup tinggi. Salah satu pertimbangan yang harus diperhitungkan bahwa bakteri yang digunakan adalah bakteri Multidrug Resistant Staphylococcus aureus yang telah mengalami resistensi pada lemah dari tiga golongan antibiotik yang berbeda.

Efektivitas cuka apel dalam menghambat pertumbuhan mikroorganisme diketahui karena adanya kandungan senyawa aktif flavonoid, tanin, dan asam asetat. Senyawa aktif tersebut mendingatur membran sel bakteri dan menghambat enzim pembentuk sel sel bakteri sehingga metabolisme mikroorganisme menjadi terganggu.

SIMPULAN

Berdasarkan hasil uji kepekaan antibiotik membutuhkan bahwa cuka apel memiliki sifat antimikrob terhadap bakteri Multidrug Resistant Staphylococcus aureus.

SARAN

Perlu dilakukan penelitian kandungan bahan aktif pada cuka apel dan mekanisme pasti cara bekerja cuka apel terhadap bakteri Multidrug Resistant Staphylococcus aureus di samping itu, perlu dilakukan uji toksisitas cuka apel untuk mengetahui efek samping apabila digunakan sebagai obat herbal.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Klinik Hewan: Cat Dog, 911, Yuppie, Intimedit, La Femur, Cava Pet Care, dan Rumah Sakit Hewan Universitas Airlangga Surabaya.

DAFTAR PUSTAKA

First Isolation of MRSA ST398 from UK animals. *J Hosp Infect* 72(3): 269-271

