Judul Artikel: Erythrocyte-superoxide dismutase (SOD1) among elite combat sport athletes running intensive training program and the association with micronutrient intake

ERYTHROCYTE-SUPEROXIDE DISMUTASE (SOD1) AMONG ELITE COMBAT SPORT ATHLETES RUNNING AN INTENSIVE TRAINING PROGRAM AND THE ASSOCIATION WITH MICRONUTRIENT INTAKE

Abstract

Background: The improved consumption of high intensity antioxidants of high intensity and long-term exercise seems still hasve shown any consistent results. Also, there is a possibility that Ecombat sport athletes may have an-impacts on their everyday nutritional practices of athletes, including dietary antioxidant.

Objective: to investigate the correlation between micronutrient intake and erythrocyte SOD among elite combat sport athletes running intensive sport training program

Methods: InThis was a cross sectional study, where 49 professional combat sport athletes (karate, pencak silat, judo, and wrestling) participated. Furthermore, Ffood record methedwas obtained 3×24 hours, while-assess micronutrient intake and erythrocyte SOD level assessment requiredwere measurementd by spectrophotometry.

Results: The subjects-age of subjects were 23.08 ± 4.32 years, wereencompassing elite athletes performing a routine sport training routinely $20-26 \mathrm{~h} / \mathrm{w}$ for one years. In addition, All subjectseveryone demonstrated a high erythrocyte SOD levels, with a mean of $2280.69 \pm$ 285.65 U/g Hb. Meanwhile, M most subjects showedexhibited micronutrient intakes that were lower than the dietary recommendation; $97.5 \%, 85 \%, 27.5 \%, 77 \%, 47.5 \%$, of vitamin E , vitamin C , vitamin A, Zn, and Cu , respectively=, and Ano significant correlation was reported between micronutrients intake againstnd erythrocyte SOD levels-was reported, exceptspecially for the females-subjects, showedwhere a significant positive correlation ($\mathrm{r}=$ $0.538, \mathrm{p}=0.04$) was established between-against vitamin C intake-and erythrocyte SOD levels.

Conclusions: It was established that Eelite combat sport athletes whe-training intensively at the sport training program demonstrated high erythrocyte SOD levels. 7 Also, the low nutrient intake should be neededrecorded requires the-to invitation ofe dietetics professionals as sport nutrition consultant. In addition, it is strongly supported forthat athletes to intakeingest food rich in antioxidants, especially vitamin C for females-athletes, in order to maintain high antioxidant capacity.

Keywords-: combat sports; athletes; erythrocyte SOD levels; antioxidant; micronutrient intake; Vitamin C; intensive training

INTRODUCTION

High intensity exercise is a potential source efor producing reactive oxygen species (ROS) production-as fuel-metabolism fuel required inte muscle activity. Therefore,Reactive oxygen species induced by intensive training and not following uped bywith an increment inasing antioxidant capacity willtends to generate oxidative stress, thatwhich has the propensity to-ean impact on health conditions, subsequentlyand later continue leading to a decline inreasing the athletes' performance of athletes-(Deaton \& Marlin 2004). Furthermore, During intensive exercise, most ROS isare generated during intensive trainings in the asform of radical superoxide $(\mathrm{O} 2) \dot{\%}_{2}$ which requirestherefore, the superoxide dismutase (SOD); whichto neutralize thes O 2 -in cells, $\dot{\text { ans }}$ one of the antioxidants that is often associated with exercise and sport (Metin et.al 2003) . In addition, One of SOD classes thata widely distributioned in this class, and which comprises 90% of the total SOD_{2} includes Cu, Zn superoxide dismutase (SOD1) (Noor et._al 2002).

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Font: Italic

During the exercise process, it is possible to induce oxidative stress ean be induced-throughby excessover oxygen uptake. This makes Eerythrocyte is-vulnerable, to oxidative stress sincedue to the-it continuouses exposure to oxygen , $_{2}$ and high concentrations of polyunsaturated fatty acids, and also haem iron. Furthermore, oxidativethe damage ensued has been known toean impair erythrocyte deformability, that which is responsible toeause hypoxia in the working muscle-during exercise., Alalthough an increase in erythrecyteits turnover increase tends to to-facilitate better efficiency in oxygen transport-oxygen more efficient during exercise, followed with the possibility of depleting antioxidants in erythrocyte can be depleted during that condition (Smith 1995). ECombat sports are in the category of polycyclic sports, which involvesing all the body limbs, encompassingwith a lot of repetitive movements (short sequences), including; attacking and defending, movements-interrupted by a recovery period. Furthermore,Combat spertsthey also involve aerobic and anaerobic metabolism, and nd-the the high intensity of intermittent exercise of high intensity further enhances thein these sports potential toly increases ROS within the body (Burke \& Cox 2009; Pesic et._al 2012).

In response to conditions of strenuous exercise, there is a tendency of temporary decrease in the body's antioxidant capacity may be temporarily decreased-during and immediately post exerciseafter training, whichand increases againsubsequently, during through the recovery period (Fisher\&Bloomer 2009). HoweverMeanwhile, studies abouton antioxidants among athletes have previously been conducted, but the results obtained tend to bey still showed inconsistent-results. Metin et al., study showedReports have shown a higher level of erythrocyte SOD levels inөf athletes were higher than those of in people living a sedentary people-lifestyle, pursuing regular activities (Metin et.al 2003). Jemili et al., (2017) studyexplained the tendency for-found intense specific training program to improved the prooxidant-antioxidant balance, and also increase-in superoxide dismutase activity after 3-
month specific training in elite karate athletes-(Jemili et.al 2017). However, the conflicting findings were reported by Jurgenson, et al., (2019), thatwhich showed a significant decline in antioxidant capacity decreased significantly after 12-week of supervised strength training in competitive powerlifting athletes-(Jurgensen et.al 2019)., while Ho et al., (2007)study also revealed a lower erythrocyte SOD during heavy training had lower erythrocyte SOD_{2}, in contrast withan sedentary peopleindividuals-(Ho et.al 2007). Conversely, Bundo and

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic
prevalence of rapid weight loss, estimated to be (about $60-90 \%$,) among combat sport athletes which possiblymay have an impacts on theireveryday nutritional practices, including dietary antioxidant(Franchini et.al 2019).

Since Despite the antioxidant capacity in athletes still show conflicting findings on athlete antioxidant capacity, and partieularly erythrocyte $S O D$ in particular ihas not beenyet widely studied, and the nutritional problem among combat sport athletes is stillremains a concern-. Hence, fit is interesting to conduct further studiesy aonbout nutritional intake in combat sport athletes, $_{2}$ and also investigate itshe correlation between micronutrient intake withand erythrocyte SOD among the elite combat sportcategory athletes, running intensive sport training program

MATERIALS AND METHODS

Participants and Study Design

This iwas an observational study with methodology design is cross sectional methodology design. In addition, Ddata collection was conducted from August to December 2014 at the sports training center inof East Java, Indonesia, where. We recruited athletes of martial arts that-registered aswith the athletes groups of Indonesian national sports committee were recruited at East Java, Indonesia. Furthermore, Tthe specific combat sports involved in this study wereinclude pencak silat (Indonesian martial arts), Judo (modern martial art), karate, and wrestling, and:_Fromonly 40 out of a total of 49 professional combat sport athletes, 40 met the research criteria and were willing to participate in the researchstudy, by signing informed consent form. Thise Informed- was ascertained by the signing of an informed consent form, whicheonsent was arranged according to the ethical standards laid down in the Declaration of Helsinki, and the Ethical Committee of Faculty of Public Health, Universitas

Airlangga, and-approved the protocol of study was approved with ethical number is 480 KEPK and signature of informed consent was obtained from all subjects.

The inclusion criteria includedwere combat sports athletes followingon an intensive sport training program (name istermed puslatda), havethat are physically fit andwith no health problems, bybased on medicaldector examination, and also not preparing for competition. In this studyaddition, we cannotit was not possible to restrict all supplements because during an intense training program, all athletes gotwere provided thea specific supplementstype from the Indonesian national sports committee. The supplements- wereencompassing B-complex vitamin" 1000 mg (vitamin B1 100 mg , B6 200 mg , B12 200 mcg) and glucosamine sulfate $1500 \mathrm{mg}_{2}$ thatwhich mustought to be takeningested once daily-for every day. SөFurthermore, the exclusion criteria wasinclude active smokers, consumption ofing antioxidant supplements within the last 2 weeks, suffering from any inflammatory diseases, such ase.g., asthma, chronic diarrhea, asthma, chronic prolonged cough or allergies. However, we found four athletes were identified to have taken antioxidant supplements, and were consequently have excluded these participants.

Data collection and characteristic data of subjects

Data collection was conducted through (1) structured interview, in order to getobtain the characteristics data, including age, gender, sport experience, and years of training. (2) Food record method of 3×24 hours, in an attempt to assess macronutrient and micronutrient intake. (3) Anthropometry measurement tfor-assess body composition evaluation (4) laboratory tests, including erythrocyte SOD, hemoglobin, and malondialdehyde (MDA) plasma.

The Bbasic characteristic data were-reported in this studyin relationed withe the subjects' activities areinclude (1) sport experience-and total training. The-, which is definedition of sport experience iby thes how-length ofeng time is-subjectss in the first time-actively training in the specific sport, right from the first incidence. In addition, there is also a probability that t may be-they have been involved in the sport since-childhoodren. (2) Years of training (total training), which refers to the number of years the athlete had-ofbeen fraining-participation in this exercise as a competitive combater

Intensive Training Program

All subjects in this study awere professional and elite athletes, that-ready to partake part-in the sport competition, both at the national and international level. This also involved those Ppreparing for the 2016 The-National Sports Week (Indonesian: Pekan Olahraga Nasional, $P O N)_{\text {, }}$ which is a multi-sport event held every four years in Indonesia.: In addition, theIndonesian national sports committee at East Java; obligated elite athletesthem to follow up intensive sport training program \bar{z}_{2} Hhence, all subjects participated in this program sinceright from onea year ago. Therefore, further Iinformation aboutbased on duration, frequency, and intensity of intensive training-were obtained through direct interviews with athletes, and also from secondary data sources, efe.g., the training schedule of each sport. Moreover, Tthe coach of eaan ch-individualtype sports_game arranged a draft of one-week intensive training program., Howeverand, there is the similarities were identified in the trainingexercise trend amongst allat each type's sports as they; it contained physical exercise and specific exercises, encompassing-each combat sport-techniquess as well ands coordination, balance, and-flexibility exercises, and muscular power. ThereforeAthletes training commenceded every day, except for Sunday, with two sessions per day; encompassing physical trainingactivities atin the morning for 2 h and specific
atin the afternoon for $2-3 \mathrm{~h}$, with medium tountil high intensity. These were Aall trainings startedinitiated with a warm up, and terminatedend final with cooling down-, and Forthe draft example efor Judo sport, the draft of intense training program is reported in table 1

Table 1

Anthropometryi Measurements

Body composition was measured using bioelectric impedance analysis (BIA), with seca brand 515/514 type of stainless steel electrodes-, then Aanthropometry meastrements-was conductedcalculated in the morning day after a 8 h -overnight fasting, andprior to before blood sampling measurementevaluation. Furthermore, Body-weight, body-height, body mass index (BMI), fat free mass, and fat mass were recorded from all subjects and analyzed in this study.

Blood sampling Measurements

Blood sampling was conducted at 8 a.m after an 8 h-overnight fasting. Fasting blood samples were collected-into "BD VacutainerTM" test-tubes ${ }_{2}$ - and were keptplaced atin a $4{ }^{\circ} \mathrm{C}$ compartment at all time. Therefore, Pplasma was obtained from the heparinized-treated blood samples within 30 min after blood collection-by centrifugation ($15 \mathrm{~min}, 1000 \times \mathrm{g}, 4^{\circ} \mathrm{C}$) $=$ Plasma and erythrocytes were, thus separatinged andthe erythrocytes, which were then washed three times with $0.9 \% \mathrm{NaCl}$ solution, and then-hemolyzed with four volumes of cold distilled water. ThesePrepared samples were further maintained or stored fat $\left.-20{ }^{\circ} \mathrm{C}\right)_{2}$ beforeprior to furthersubsequent analyses.

The SOD activity was evaluated in the erythrocyte samples (cell lysates), by using the commercially available RANSOD Kit (Randox Laboratories), and SOD-the levels recorded were expressed asin unit per gram of hemoglobin ($\mathrm{U} / \mathrm{g} \mathrm{Hb}$).The examination of Erythrocyte SOD level is conducted by, utilizing the spectrophotometric method by usingwith a multiple
wavelength spectrophotometer tool [18]. Furthermore, its Econcentration of hemoglobin-was determined byusing the cyanmethemoglobin method, where and the color of cyanmethemoglobin fiwas read in a photoelectric colorimeter at 540 nm-against a standard solution, at 540 nm [19].

Dietary intake

Macronutrient and micronutrient intake assessment was earriedconducted by food record at 3×24 hours. A week before blood sampling began;, as all subjects were givenprovided with a food record sheet for this purpose a week prior to the commencement of sampling. Therefore, the nutritionist gavepassed the information on how to record foods-correctly input data, including details on portion and size of the foods-consumed, by demonstrating a food model and the Indonesian food book. In addition, Fthe subjects were asked to record all foodcuisine and drinks censtmed-ingestedin three days ofin enea week (not necessarily consecutive)-on the food record sheet., which was clarified Aat the day data collection-of food record, by the nutritionist elarified the data by askingthrough direct questioningly to subjects. In addition For micronutrient intake analysis, beside to mean and standard deviation, we also reported these-nutrient based on adequate intake in comparison withed to the Indonesian recommended dietary allowance (RDA) were adopted in micronutrient intake analysis.

Statistical analyses

We applied SPSS 21 was employed forin statistical analysis during this study, with the consideration of a a-significance limit of less than 5% was considered statistically significant. Therefore, the Fe determination ofe whether the data distribution is normal or abnormal, werequired the use ofd the Shapiro-wilk test-.--Meanwhile, Data with categorically scaled data were presented as number and percentages, andwhile continuous variables were reported as
mean and standard deviation. Furthermore, findependent samples t-test and Mann- Whitney were usedadopted in theto analysis ofze sex differences for anthropometry and also data obtained from laboratory measurements. Subsequently, Θ one-way ANOVA test-and post hoc tests were performed to identify the type sport difference for theose variables evaluatedFinally, while assess the correlation between SOD levels with micronutrient intake, was analyzed using the conducted Pearson test or Spearman test.

RESULTS

From-A total of 4049 athletes out of 49 efrom four different sports, registered as members of sports-training center inof East Java Indonesia,-40 met the study criteria and were willing to participate in the research by signing informed consent. In addition, out A total of the nine athletes did-that did not meet study criteriathe specification, \div four subjects-wereas_currently taking on antioxidant supplements, and-while others had gonetravelled overseas to fan participate in competitions whenduring the time of data collection-was implemented. Furthermore, Aall subjects awere identified as professional athletes routinely performing sport training routinely for 4.05 ± 2.69 years, and had a mean of sport experience of 10.62 ± 2.9 years. In addition, A total of 26 athletesparticipants (65%) were male, and-mostly eame-from the wrestling athletessport. Male is-, although they were dominant in almost of eachmost, sports except Judo-, and Tthe mean age of subjects was 23.08 ± 4.32 years, with the majority of subjects- (70%) ibeings in the age group ofbetween 20 and -29 years. Also, Tthe mean θf BMI iwas recorded as $24.29 \pm 3.72 \mathrm{~kg} / \mathrm{m}_{2}^{2}$ and most subjects (62.5%) hadexhibited normal BMHlevels-, while Tthe mean ofvalue obtained for body fat on all subjects were $19.37 \pm$ 8.47%, with higher fat mass found inthe females- having a relatively higher valuethan male athletes. Since fat mass is more prevalent in female athletes, it is not somewhat surprising that , especially those in the game of Judoka-was dominant in women had the highest averages of
fat mass. Furthermore, Fthe characteristics data and body composition weare reported atin

Table 2

Table 2

From-The dietary method, it can beindicates the-seen macronutrient and micronutrient consumedintake byby subjects=, where Fthe mean energy intake was $2408.04 \pm 801.96 \mathrm{mg} / \mathrm{d}\rangle$ which those intakeswas-were higher in male than female=, and-_Ssimilar results were showndemonstrated by with carbohydrate, fat and protein-that higher significantly in male athletes. In addition, the $M \underline{m}$ icronutrient intake-assessed in this study included antioxidants (vitamins $\mathrm{A}, \mathrm{E}, \mathrm{C}$) , as well as the Cu and Zn , intake which are known components of enzymatic erythrocyte $(S O D)_{=,}$, and There is-no significant different in consumption was $\neq f$ mieronutrient intake identified in accordanceing withe gender, although and wrestlers tend to portrayhad superiority-intake of both macronutrient and micronutrient in contrast withthan others. Furthermore, Mmost ef participants subjectsalso had vitamin E, vitamin-and C, as well asnd zinc intakes that were less than the RDA specification-, while the value obtained Ffor vitamin A and copper, indicated that 72.5% and 52.5% of subjects respectively wereingested sufficient elassified amountsas sufficient intake (Table 3)

Table 3

The mean erythrocyte SOD offor all subjectsparticipants wasere $2280.69 \pm 285.65 \mathrm{U} / \mathrm{g} \mathrm{Hb}$, and thesewhich values-did not differ significantly ($\mathrm{p}>0.05$) between males and females, subjects as well as betweenamongst type sports type. In addition, Tthe mean Hb was 15.53 ± 1.37, and all subjects were assessed as notn--anemica, based on- Fthe reported of blood sampling ean be-showneen in Table 4

Table 4

By r Ranking using the Spearman correlation test, showed no significant association between the micronutrient intake and -erythrocyte SOD levels, both-based on both gender and sports type, Howeverespecially on female, there iwas a significant-substantial correlation between vitamin C and SOD levels $(\mathrm{r}=0.538, \mathrm{p}=0.047)$, especially with the females.

Table 5

DISCUSSION

In t This study, we investigatedvolved some types of combat sports (karate, pencak silat, judo, and wrestling), in erderan attempt to giveprovide a general description about combat sp on nutrient intake among these athletes, ort generally. Since based on the prevalence of body weight and nutritional problems-is prevalent in almost type of combat sport, we tried to describe nutrient intake among these athletes. Furthermore, we specifieally measured erythrocyte SOD (SOD1) was specifically measured as a parameter for antioxidant capacity, and andsubsequently associated with micronutrient intake, becauseas a result of its widely distribution,ed and comprises with 90% of total SOD is Cu, Zn superoxide dismutase (SOD1) content (Noor et.al 2002).

In this study, we This research involved the recruitment ofed combat sport athletes (karate, pencak silat, judo, and wrestling) that were registered as members of the Indonesian national sports committee , at $_{2}$ East Java, Indonesia-. Furthermore, Aall subjects were evaluated to have been runningparticipating in an intensive exercise program at the sport training center, whenduring the period of data collection-conducted. BeforePrior to entering a sport-training center, all athletes must follow a series of medical and laboratory examinations were conducted by professional doctor, in order to prove that they are-physically and mentally
healthy. FurthermereIn addition, atmost ef subjectsparticipants (92.5%) awere less than 30 years of aged, with a mean age of 23.08 ± 4.32 years $=_{2}$-It means the study participants representinged the young and healthy elite athletes.

This findings are similar to most studies on combat sports, which involves young participants, such as studiesas observed by Radovanovic et al., (2012) on judo athletes aged 20 ± 1.3 years (Radovanovic et.al 2012), Pesic et al., (2012) on karate athletes-sportspersons aged 16 to 30 years (Pesic et.al 2012), Rynkiewicz et al., (2010) on sumo wrestlers with an average age of 23 ± 6.6 years.(Rynkiewicz et.al 2010). In addition, Tthe mean age 20.8 ± 1.1 years ofn weight lifters was studied by Ho et al., (2007) and Rousseau et al., (2004) on the competitive athletes age 26.8 ± 6.8 of those thatwhe follow routine training-similar to those in study ((Ho-et.al) 2007, Rosseau et.al 2004). Moreover, $Y y$ youth is a golden period for an-athletes, where the age range efabout 20 years has been established to beis the most productive-age for athletes $\mathfrak{z f o r}$ being the best and getobtain their highest achievements. This was confirmed by Tthe reported of Indonesian national sports, which confirmedstated that thata mostbulk of the numerous gold trophies wasere achieved - attained by young athletes (Record M 2014).

This study involved 40 athletes $\overline{\%}$ where 26 athletes-(65%) awere male, while-and 14 athletes (35\%) awere females--, which is reinforced by the data obtained from the Indonesian national sports-data, showinged theat more sports are-dominancent followed byof males-athletes than female ones. MeanwhileIn combat sports, there are actually no restrictions orto agender specificity-gender for participain combat sportsnts-, although this gender discrepancy was observed in-From the all four eombat sports-types studied-in this research, male athletes were more dominant;, except Judo, enly in one combat sport athletes, which werehad more female athletes-participantsted, namely, judo. Furthermore, Tthe measurement of body composition
showeddemonstrated $24.29 \pm 3.72 \mathrm{~kg} / \mathrm{m}^{2}$ as the mean body mass index (BMI), was 24.29 ± 3.72 $\mathrm{kg} / \mathrm{m}^{2}$ andand an average body fat of all athletes wabouts $19.37 \pm 8: 47 \%$ was recorded in, wiboth higher fat mass categories found both in male and female athletesparticipants, although: Oonly 30% revealed fat masswere observed to be within the normal limits, while others surpassed. Thise category of "high fat mass" in this study might bewas probably due to the high fat-intake of fat, whichsince it contributed to about $35.95 \pm 8.18 \%$ of the total energy (data was shown)-, therefore, concernsing about obtaining ideal levelsvalues-of body fat and the consequent lean body mass shouldought to be the attention for for healthy and the best performance (Burke \& Cox 2009).

Each sport in this study hads each-a training program with active exercise schedule were activeconducted 5-6 days per week for an average of training-period of was 4-5 hours per daily-, Hhence, the total duration of training was about 20-26 hours per week. These Bdata based onabout duration, frequency and training intensity in this study demonstratesd that the characteristics of the subjects asre professional athletes. Furthermore, wequestions were asked about sport experience, that centered on themeans lengthengtime of time sincefrom when the athletes first participated in the specificir sports. The mean of sport experience was, and an average value of 10.62 ± 2.9 years was obtained. It supposed that they, depicting their actively in the sport-participation asince children. In Indonesiaaddition, combat sport is considered as one of the highly most favoritespreferred sport in Indonesia, often followed by children ${ }_{2}$ and it also and confershave many numerous health advantages for health (Burke \& Cox 2009, Record M 2014). Meanwhile, Pprevious study reported combat sport-represented it as an effective method for enhancing muscular power and flexibility in young athletes aged between 8 and 12 years (Padulo et._al 2014) $)_{2}$ Furthermoreand Ju et al.; reported combat
trainingthe propensity to facilitated the onset of an earlier secondary saccade ensetin children aged 9-12 years [24].

Based on the data obtainedF from food records of $3 \times 24 h$, it ean bewas seenestablished that dietary of carbohydrate, fat, and protein were $230.63 \pm 116.95 \mathrm{~g}, 130.46 \pm 41.27 \mathrm{~g}$, and $89.71 \pm 33.98 \mathrm{~g}$, respectively-. - TheseThese findings awere generally lower than the records obtained from previous studies-, including Braakhuis et al, (2013) on professional rower athletes with carbohydrate intake of $510 \pm 190 \mathrm{~g}, 170 \pm 70 \mathrm{~g}_{2}$ protein, and $110 \pm 45 \mathrm{~g}$ fat intake of $\underline{510 \pm 190 \mathrm{~g}, 170 \pm 70 \mathrm{~g} \text { and } 110 \pm 45 \mathrm{~g} \text {, respectively(Braakhuis et.al 2013). Also, a study }}$ conducted by Pettersson, (2013) study aton combat sport athletes withexhibited a total intake of carbehydrates, protein and fat are $-5.5 \pm 3.5 \mathrm{~g} / \mathrm{kgBW}, 1.4 \pm 0.8 \mathrm{~g} / \mathrm{kgBW}$ and $1.1 \pm 0.8 \mathrm{~g} / \mathrm{KgBW}$, for carbohydrates, protein and fat, respectively-(Petterson et.al 2013). According to the sports nutrition guidelines, theseis findings showedindicate that fat intakeconsumption is relatively high, while that fore carbohydrate intake is slightly lower-, and it has been established that Ecombat sport-athletes often adoptedpplied the-restrictions efin diet food intake in an attempt ftor loseing weight, by limiting their carbohydrate intake as low as possible (Petterson et.al 2013). Data obtained Ffrom the interview, showed it can-the possibility beto concluded tha almost all subjectsparticipants applied the weight loss program only on the day before the competition. Furthermore, from recall it-clearly showed the incorrect application of at nutrition by combat sport athletes have not applied yet sport nutrition correctly., although Tthe guideline of nutrition in combat sport explained theat it is importancet forin goals achievementing goals. This specifically requires-for fuel obtained from energy and macronutrient intakeconsumption, which is derived from a variety of food in the-everyday diet. In addition, O n days wheren high intensity training is undertaken, demands fuel

Comment [E1]: I cannot resolve this word

Formatted: Font: Italic
requirements concerning macronutrient intake is very the usefulness of fuel supplies, in order to support training performance (Burke \& Cox 2009).

The Aanalysis of antioxidant intake, based on the recommendedation dietary allowance (RDA) demonstrated 85% for vitamin C intake-and 77.5% for zinc, and allintake of the subjects awere classified in the "less" category, indeed all subjectsand a (97.5%) for-showed vitamin E was intakealso less than the recommended-requirementamount. Theseis findings are similar to Rousseau et al., (2004), which foundshowing that vitamin C intake to beis only 40% of RDA, while vitamin E intake inwas 81% ofor athletes, which is under $2 / 3$ of theRDA recommendation, as well asnd beta carotene intake-at 43% under $2 / 3$ RDA. Meanwhile, , and 60% of athletes tend tode not reach theRDA specification for vitamin C, and 81% for vitamin E-(Rosseau et.al 2004). However, eurthe finding of this study is lower than Pesic et al., the value recorded in the investigation conductedstudy on karate athletes, which showeds vitamin E intake at $22.4 \pm 9.8 \mathrm{mg} /$ day, andvitamin C at $22.4 \pm 9.8 \mathrm{mg} /$ day and $215 \pm 79 \mathrm{mg} /$ day, respectively, and also beta carotene at $4.5 \pm 3.2 \mathrm{mg} /$ day (Pesic et.al 2012). Braakhwis et al., $\underline{\underline{I n}}$ addition, a study on rowers demonstrated a vitamin C consumption rate of $210 \pm 249 \mathrm{mg} / \mathrm{day}$, vitamin E at $14 \pm 8 \mathrm{mg} / \mathrm{day}_{2}$ and beta carotene of $4.9 \pm 2.5 \mathrm{mg} /$ day (Braakhuis et.al 2013)=, and it has been established that the Rrestrictions efin food intakediet for participants of combat sports-athletes will result in lowthe reduction of energy eanf macronutrient intake, alsosubsequently affectleading to a decline in thes low-antioxidant intakepresent (Petterson et. al 2013 ${ }_{2}$, . Carlshon et.al 2010)

Erythrocyte SOD levels stediedevaluated in this researchstudy arewas in thea form of SOD isoenzymes located in the cytosol, namelyincluding, $\mathrm{CuZn}-\mathrm{SOD}$ (SOD1) $\bar{\tau}_{2}$, Since CuZn -thus, based on its compositionSOD consists of Cu and Zn , theseis trace mineral therefore plays an
important role in erythrocyte SOD-its activities. Our-Furthermore, findings showed-only 52.5% of copper and 22.5% of -zinc intake were recorded, and subsequently classified in the "sufficient" category. This finding, although the value is lower than the record of Koury et al., (2004), which study showed 27% and 2% of athletes had a lesser zinc and copper intake, in contrast lower than with recommended valuesation, respectively (Koury et.al 2004). Ho et al., study demonstrated Also, low SOD activities in long distance runners-athletes were evaluated to be probably caused by the eopper and zinc-deficiency of these elements $\%$ and those minerals were estimated theto be loss was estimated to have ensued through sweat and urine excretion (Ho et.al 2007). Kikukawa and Kobayashi, $\underline{\underline{n}}$ addition, another report-study also showed that a significant increase of their average levels of Zn and Cu -in urine, increased significantly-measured after exercise (kikukawa et.al 2002), whileand Resina et al.,(1990) reported-testified that male runners had lower serum levels of serum-than the control group/ non-athletes(Resina et.al 1990).

Erythrocyte SOD levels in this study-recorded were a representations SOD levels θ for athletes runninghave - anrun intensive training program. In this study, of which all subjects participants representeddemonstrated a high erythrocyte SOD levelsvalue (> $1601 \mathrm{U} / \mathrm{g} \mathrm{Hb}$), with mean of $2280.69 \pm 285.65 \mathrm{U} / \mathrm{g} \mathrm{Hb}$. These results obtained suggest that-the adequate endogen antioxidant defence responseded adequately to intensive training program towards the strenuous exercise-, The increasedand this elevation in antioxidant-capacity relating towas also sports activities is also-revealed by previous studies, both in athletes and non--athletes. Carlshon et al.,(2010) studyshowed -the propensity forat regular exercise to increases blood levelsantioxidant capacity in younger athletes-(Carlshon et.al 2010), while- Jemili et al., study(2017) foundreported the capacity for intense specific training programs to improved the prooxidant-antioxidant balance, subsequently and increasinge thein activity of superoxide
dismutase activity after 3-month-specific training in elite karate athletes-(Jemili et.al 2017). However, theThe increasingintensification of antioxidant capascity in non--athletes wasere proven in a study by Berzosa et al., (2011)study that, which showed the enhanced probability for acute exercise (cycloergometric tests) led-to an-augmentation ofthe antioxidant enzyme activities iofn untrained men-(Berzosa et.al 2011). Also, Tthe elevationed of SOD activity after a single bout exercise in healthy women iwas also proven byin an investigation conducted by Yimcharoen et al., (Yimeharoen et.al-2019).

The increase efin antioxidant capacity related exercises seems still have been observed to show\# inconsistent results-, as Jurgenson et al., (2019) revealed a significant decline in the antioxidant eapacity-volume recorded decreased signifieantly after 12 -week of supervised strength training in competitive powerlifting athletes(Jurgenson et.al 2019). Also, Bundo and Anthony, (2016) study reported there was noabsence of a significant change in SOD activityies after 3 months of a supervised exercise program in healthy volunteers-(Bundo \& Anthony T 2016)., while Pesic et al., (2012)study revealed-established thatduring training process both in the state of rest and after the loading, there was no significantly changed toin oxidative stress and SOD activity during a training process, both in state of rest and after loading(Pesic et.al 2012), and also that: Tthe increasingelevations of SOD levelsobserved were not eausedas a result byof long-time intensive trainingexercise, but eaused by-high physical loading.

The Aanalysis of SOD activity based on gender and sport types in this study showed no statistically significant differenceee. Otr findings, which differs from the report by Dopsaj et al., stwhereudy showed significanta variation in values-difference of SOD activity was observed between the karate professionals and wrestlers (73 ± 37 vs. $103 \pm 30, \mathrm{p}<0.05$) .

Therefore, the high SOD-activity in wrestlers eouldis possibly-be associated with the longterm impact of wrestlingthe sport, asbeing a type of strenuous exercise (Dopsaj et.al 2013). Moreover, Oother reasons efor the high SOD levelsvalues obtained in this current study differs from previous studies-are likelyprobably due to the differencesdiscrepancy in the production of ROS formed, the differentvariation in modes and intensity of training performed, as well as the interaction betweenof SOD withand other antioxidants within the body, such asencompassing vitamin C, vitamin-E, andvitamin A. This andwas also due to its collaboration with micro minerals, including zinc (Zn) and copper (Cu) required by the SOD enzyme, namely zinc (Zn) and copper (Cu), as well asnd alse the increasingelevation in the potential loss of minerals throughim sweat and urine (Metin et._al 2003, Ho et._al 2007, Bundo \& Anthony T 2016).

TheBy useing of the Spearman rank correlation test, there is showed no significant correlation between the consumption of micronutrients intake and erythrocyte SOD levels. However, althoughthe significant result seems on female subjects, a where there is a significant substantial positive correlationrelationship ($\mathrm{r}=0.538, \mathrm{p}=0.047$) was identified betweenwith vitamin C with erythrocyte SOD Levelin female participants. In addition, Manynumerous athletes, particularly female, awere considered to be ata a greater risk of iron depletion, ed which maywith a possibility of leading into iren-deficiency (with or without anemia) $)_{2}=$ Aalthough the mean Hb wereof 15.53 ± 1.37 recorded fromand all subjects were were assessed as non-t anemica, but mean Hb atand the females-subjects had a significantly lower value than-in contrast withose male (Table 5). Hence, the results obtained are possibly explained by the capability forSince vitamin C to enhances iron absorption, and the closely related mechanism betweenof hemoglobin and red blood cell, it might explain the result (Alaunyte et.al 2015). Furthermore, A another reason is centered of the fact that vitamin C is

Formatted: Font: Italic
Formatted: Font: Italic
stored in the adrenal gland, and is subsequently released during periods of stressful periods, in an attempt to confer protection against oxidative stress-. This assumption is backed up by a Ppreviousevious studyinvestigation, which showeded vitamin C intake-its correlatione withe total antioxidant capacity amongst competitive rowers [14]. Furthermore, Yimcharoen et al., (2019)study reported the probability of improved antioxidant capacity inat healthy women that performed moderate intensity cycling, reportedusing supplementations withcontaining ascorbic acid-improve antioxidant capacity (Yimeharoen et.al 2019).

An One of the important things inaspect of this study is the established fact that all subjectsparticipants consumed multivitamin B supplements (Vitamin-B1, B6, and B12) every daily duringas the sport programming. FurthermoreIn this finding, these have also been identified as responsible for the change in SOD activity, which was is-categorized as high, although the intake of micronutrient intake iwas low, migh be caused the effect of this supplement. Ford et al., provided evidence for the efficacy of high-dose B-group supplementation in reducing oxidative stress, and subsequentlythough increasing the affiliated oxidative metabolism. SinceTherefore, the ease of tolerating antioxidant-rich foods is well tolerated and haveits impact on performance_, it is supposed to ingested makes it aantioxidant rich foods preferred choice ratherover than supplements (Koivisto et. al 2018)

The fact that the study participants represent theing young and healthy elite athletes might determines the erythrocyte quality=, as its Erythrocyte deformability is highly influenced by age. Also, andthe endurance rate of thein sport thattends to suggests the capability of the erythrocyte system mayto adapt to changing conditions, such asincluding adolescence, with the onset effects-of sex hormones or physical exercise effects (Tomschi et.al 2018).

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Font: Italic

Strength

To the best of our knowledge, t This is the first study providingsupplying data on SOD1 among elite athletes running an intensive training program for a long time (one year). AlthoughIn addition, variations were identifiedthe in the characteristics of each combat sport are different, especially in terms ofen specific exercises, but the duration and frequency of training iswere similar-each other, it-indicatingmeans wthe controlled of these variables. Moreover,For most studies, it is tend to only focus and involved-on athletes involved infrom one type of combat sport, in this study, but this current investigation entailedwe_recruitinged somea typesvariety, including of combat sports (karate, pencak silat, judo, and wrestling) in orderan-order to provide a general-give description-about combat sport generally. Finally, we specifically meastred-erythrocyte SOD (SOD1) was specifically measured as an indicator of antioxidant capacity-at combat sport athletes, which was-and further analyzed thein association with the intake of micronutrient-intake as antioxidants, including vitamin C , vitamin E, vitamin A and micro minerals (zinc (Zn) and copper $(\mathrm{Cu}))$ required by the SOD enzyme, namely zine (Zn) and copper (which collectively Cu) serve as sources of antioxidants

Limitations.

Erythrocyte SOD levels recordedin this study wasere measured only once, exactly one year after athletes havethe-inception of thetrained intensive training program, and- Nno prior data or information about was made availablethese values before training. IndeedTherefore, weit is can mnot possible to draw conclusionsded whetheron SOD1 levels its increase or declinerease. Moreover, the study only adopted SOD in the evaluation of antioxidant capacity in response to high intensity and the longtime training program-is not only SOD, where it is plausible to measure other-antioxidant markers, such asencompassing glutathione peroxidase (GPx), and catalase (CAT), based on; sincethe records from previous studies whichy reported
a markedthe increaseing in the their individual concentrationsef SOD, CAT, GPX concentration in response to regular high-intensity and or prolong duration exercise (Jemili et.al 2017, Braakhuis et.al 2013).

Conclusions

This study involved young elite combat sport athletes that runparticipating in an intensive sport training program-, and it was established that Aall subjects hadd high erythrocyte SOD levels. A high intensity and long term exercise training program might be associated with high erythrocyte SOD levels in combat sports athletes. In addition, Mmost subjectsparticipants were observed to have netincorrectly applied yethe spert-stipulated sport nutrition-correctly;, encompassing the intake of macronutrient and micronutrients, intake is still-which were lower than the recommendation. TheThis low-shortfallnutrient intake both macronutrient and micronmtrient intake shouldought to beattract the attention by sport committee attention, therefore requiring theto invitation ofe dietetics professionals as sport nutrition consultant, in an attempt to solve the nutrition-problem with diet. Furthermore, Tthere is a possibility for the total of low intake to could cause depletion efin vitamin/mineral status, especially with vitamin C forin female athletes=, which is why It is recommended for athletes-thete intake of food rich in antioxidants is highly recommended to maintain high antioxidant capacityactivity.

Acknowledgements

We would like to thankThe authors are grateful to all participants in this study, including the athletes, the coaches, and the sport committee for taking part in this study., We also areas well as the-grateful to research assistants helping that collected and analyzed these-the relevant
data. This researchstudy was funded by Universitas Airlangga, through the Faculty Prime Research Grant in 2014.

Conflict of interest

The au

