Three novel quinolinone alkaloids from the leaves of *Melicope denhamii*

Ratih Dewi Saputri, Rurini Retnowati, Unang Supratman, Tjitjik Srie Tjahjandarie & Mulyadi Tanjung

To cite this article: Ratih Dewi Saputri, Rurini Retnowati, Unang Supratman, Tjitjik Srie Tjahjandarie & Mulyadi Tanjung (2021): Three novel quinolinone alkaloids from the leaves of *Melicope denhamii*, Natural Product Research, DOI: 10.1080/14786419.2021.1960524

To link to this article: https://doi.org/10.1080/14786419.2021.1960524
Three novel quinolinone alkaloids from the leaves of *Melicope denhamii*

Ratih Dewi Saputria, Rurini Retnowati, Unang Supratman, Tjitjik Srie Tjahjandarie and Mulyadi Tanjung

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia; Natural Products Chemistry Research Group, Organic Chemistry Division, Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

ABSTRACT

Three previously unreported quinolinone alkaloids: melicodenines J-L (1-3) and six known compounds (4-9), were isolated from the leaves of *Melicope denhamii* (Seem) T.G. Hartley. The structures of three quinolinone alkaloids were identified based on HRESIMS and NMR spectra. Compounds 1-9 were assayed in three cancer cells (MCF-7, HeLa, and P-388). Compounds 1 and 5 showed high cytotoxic activity against HeLa cells with IC_{50} values of 1.8 and 0.8 \(\mu \)M, respectively.

ARTICLE HISTORY

Received 12 May 2021
Accepted 18 July 2021

KEYWORDS

Melicope denhamii; melicodenines J-L; quinolinone adduct; cytotoxic

1. Introduction

M. denhamii (Seem) T.G. Hartley (Rutaceae) is one small tree indigenous to Java Islands, Indonesia. The *Melicope* genus produces alkaloids (Chen et al. 2003; Nakashima et al. 2011), flavonoids (Saputri et al. 2018), and phenylpropanoids (Nakashima et al. 2012), with terpenyl side chain in the aromatic ring. Many alkaloids from *Melicope* show biological activities as cytotoxic agents (Chen et al. 2003; Nakashima et al. 2012), and antimalaria (Rasamison et al. 2016). Recently studies on *Melicope* resulted in the hybrid compound by [2 + 2] cycloaddition and a Diels-Alder adduct from incorporated phenylpropanoid-phenylpropanoid, alkaloid-alkaloid, alkaloid-benzopyran, and alkaloid-phenylpropanoid derivatives (Nakashima et al. 2011, 2012; George et al. 2016; Saputri et al. 2021). Three new compounds, melicodenine J (1) is a [2 + 2] cycloaddition, melicodenines K (2), and L (3) are Diels-Alder adduct...
derivatives were isolated from *M. denhamii* leaves. The cytotoxic activities of their isolates (1-9) against MCF-7, HeLa, and P-388 cancer cell lines were reported in this study.

2. Result and discussion

Melicodenine J (1) was isolated as a yellow amorphous solid and showed a positive ion peak [M+H]+ at m/z 458.1613, consistent with the molecular composition C27H23NO6. The UV exhibited maximum absorption (λmax 219, 259, 292, 320, and 334 nm), indicating a typical quinolinone alkaloid-coumarin (Nakashima et al. 2012). The IR measurement showed absorption bands for conjugated carbonyl at 1627 cm−1, aromatic ring at 1595 cm−1, and ether at 1128 cm−1. The 1H NMR spectrum of 1 showed four protons (δH 5.41 (1H, dd, J = 6.7, 2.6 Hz, H-2’), δH 4.75 (1H, t, J = 6.7 Hz, H-3’), δH 4.08 (1H, t, J = 9.5 Hz, H-4), δH 3.10 (1H, dd, J = 9.5, 6.7 Hz, H-3)] were characteristics of a 1,2,3,4-tetrasubstituted cyclobutane ring. A signal at δH 5.41 indicates an oxymethine attached to the cyclobutane ring (Holla et al. 2012; Nakashima et al. 2012).

Four signals of a 1,2-disubstituted benzene [δH 7.90 (1H, dd, J = 8.0, 1.2 Hz, H-10), δH 7.43 (1H, dt, J = 8.5, 1.2 Hz, H-8), δH 7.15 (1H, t, J = 8.0 Hz, H-9), δH 7.08 (1H, d, J = 8.5 Hz, H-7)], two methyls [δH 1.73 (3H, s, H-11), δH 1.20 (3H, s, H-12)] along with a N-methyl signal at δH 3.38 suggested that the partial structure of 1 as a N-methylflindersin moiety (Kamperdick et al. 1999). A signal of aromatic at δH 5.94 (1H, s, H-9’), two signals of cis vinylic [δH 7.85 (1H, d, J = 9.6 Hz, H-5’), δH 5.95 (1H, d, J = 9.6 Hz, H-6’) and a methoxyl at δH 4.25 (3H, s, 4′-OCH3) recommended that the other partial structure of 1 as a bergapten moiety (Saputri et al. 2021). Based on the 1H NMR data suggested that the structure of 1 is a [2 + 2] cycloaddition product between N-methylflindersin with bergapten (Nakashima et al. 2012). The 13C NMR and HMOC spectra of 1 exhibited the signals of 27 carbons were completely separated, including four methyls [δC 25.4, 25.5, 29.0, 58.4], 11 methines [δC 35.5, 43.2, 45.0, 85.1, 90.5, 109.5, 113.5, 121.6, 123.1, 130.7, 139.5], five quaternary carbons [δC 104.4, 105.2, 107.3, 116.2, 138.5], one oxycarbon [δC 75.5], two carbonyls [δC 161.8, 162.2], and four oxyaryls [δC 152.6, 156.5, 156.6, 168.6]. The HMBC spectrum, an N-methyl signal at δH 3.38, showed a correlation with a carbonyl [δC 162.2 (C-5)] and a quaternary carbon [δC 138.5 (C-6a)]. An aromatic signal at δH 7.90 (H-10) correlated to C-6a and a methine carbon [δC 130.7 (C-8)]. Two methyl signals at δH 1.73 (H-11) and δH 1.20 (H-12) correlated to an oxycarbon [δC 75.5 (C-2)], and a methine carbon [δC 45.0 (C-3)] proved that a part of the structure of N-methylflindersin. A signal of vinylic at δH 7.85 (H-5’) showed correlation with a lactone carbonyl [δC 161.8 (C-7’)], two oxyaryls [(δC 152.6 (C-4’), and (δC 156.5, C-8a)], A methoxyl at δH 4.25 (4′-OCH3) correlated to C-4’ verified the location of the methoxyl group at C-4’. One proton of aromatic at δH 5.94 (H-9’) showed correlation with two oxyaryls [(δC 168.6, C-9a), C-8a]], two quaternary carbons [(δC 104.4, C-3a), and (δC 107.3, C-4a)] and carbonyl carbon (δC 161.8, C-7’) reinforced the other partial structure of 1 as a bergapten (Saputri et al. 2021). An oxymethine proton at δH 5.41 (H-2’) correlated to a methine carbon δC 35.5 (C-4). A signal at δH 4.75 (H-3’) correlated to C-3a, C-4a, C-4′, and C-9a (a part of bergapten), C-3, and C-4 (a part of N-methylflindersin). A methine signal of a cyclobutane ring at δH 3.10 (H-3) correlated to
C-4, C-3α, and a methine, δC 85.1 (C-2'). A methine signal of a cyclobutane ring at δH 4.08 (H-4) correlated to C-4a and C-2'. In the NOESY spectrum, an oxymethine (H-2') correlated to H-3 and H-3', and a methine proton (H-3) correlated to H-4 and H-3' revealed the signal that a 1,2,3,4-tetrasubstituted cyclobutane ring is a cis orientation. Consequently, the structure of melicodenine J is shown in Figure 1.

Melicodenine K (2) was isolated as colorless oil in which showed an ion peak [M + H]+ at m/z 464.2080 corresponding to a molecular composition C27H30NO6 by the combination of HRESIMS spectra and NMR data. The IR spectrum showed bands of conjugated carbonyl (1639 cm⁻¹), aromatic (1502 and 1485 cm⁻¹), and ether (1112 cm⁻¹) groups. The 1H NMR spectrum of 2, showing four aromatic signals [δH 7.52 (1H, dd, J = 8.6, 1.2 Hz, H-10), δH 7.46 (1H, t, J = 7.7 Hz, H-8), δH 7.35 (1H, d, J = 8.6 Hz, H-7), δH 7.15 (1H, t, J = 7.7 Hz, H-9)], an N-methyl signal at δH 3.80, a vinylic at δH 6.97 (1H, s, H-4), and two methyls [δH 1.49 (3H, s, H-11), δH 0.88 (3H, s, H-12)] indicating for a 3-isoprenyl-1-methyl 2-quinolinone moiety (Chen et al. 2003). The 1H NMR spectrum of 2 also exhibited two protons of aromatic [δH 6.57 (1H, s, H-3'), δH 6.13 (1H, s, H-6')], two methines [δH 4.82 (1H, s, H-7'), δH 3.19 (1H, dd, J = 9.8, 6.0 Hz, H-8')], splitting two signals of a methylene [δH 3.51 (1H, dd, J = 8.3, 6.0 Hz, H-9α), δH 3.38 (1H, d, J = 9.8 Hz, H-9β)], two methoxyls [δH 3.95 (3H, s, 2'-OCH3), δH 3.30 (3H, s, 9'-OCH3)], and splitting two signals of a methylenedioxy [δH 5.79 (1H, d, J = 1.2 Hz), δH 5.75 (1H, d, J = 1.2 Hz)] characteristics for a melicodin A moiety (Nakashima et al. 2012). Compound 2 indicated that 27 carbon signals were utterly separated in the 13C NMR spectra, including five methyl carbons, two methylene carbons, nine methine carbons, one carbonyl carbon, and ten quaternary carbons. From the NMR (1H, 13C) NMR spectrum exhibited that the structure of 2 is a Diels-Alder adduct moiety and was confirmed by HMBC spectrum (Nakashima et al., 2012; George et al. 2016). The HMBC correlation, an N-methyl at δH 3.80, and an aromatic at δH 7.46 (H-8) very similar to 1. A vinylic signal at δH 6.97 (H-4) correlated to δC 71.6 (C-2), δC 139.7 (C-3), δC 39.1 (C-8'), and δC 160.6 (C-5). Two methyls at δH 0.88 (H-12) and δH 1.49 (H-11) correlated to C-2, indicating the 3-isopropyl-1-methyl 2-quinolinone moiety. Two signals of aromatic at δH 6.57 (H-3'), and δH 6.13 (H-6') correlated to δC 150.8 (C-2'), δC 147.0 (C-4'), and δC 140.7 (C-5'). A methylenedioxy signal [δH 5.79 and δH 5.75] correlated to C-4', C-5' indicated fused at C-4' and C-5', a methoxyl at δH 3.95 (2'-OCH3) correlated to C-2'. A methoxyl signal at δH 3.30 (9'-OCH3) correlated to δC 76.2 (C-9'). Two signals of an aromatic, a methylenedioxy, two methoxyls are the signal of a melicodin A moiety. A methine at δH 4.82 (H-7') correlated to δC 149.3 (C-10b), δC 124.9 (C-4'a), δC 119.2 (C-1'), δC 108.5 (C-6'), C-8', and C-9'. A methine signal at δH 3.19 (H-8') correlated to C-3, δC 115.6 (C-4), C-10b, C-1', δC 34.7 (C-7'), and C-9'. The correlation of three methines [(δH 4.82 (H-7'), δH 3.19 (H-8'), and δH 6.97 (H-4')], indicating the structure of 2 are Diels–Alder adduct. The NOE spectrum, the proton signal at H-3' correlated with H-8' and 2'-OCH3 exhibited that the proton signal at H-7' and H-8' revealed trans orientation, and the relative configuration of 2 was similar to melicodenine H (Nakashima et al. 2012). The structure of melicodenine K (2) is shown in the Figure 1.

Melicodenine L (3) was obtained as a yellowish oil, showing an ion peak [M + H]+ at m/z 448.1752, conforms for a molecular composition C26H23NO5 through HRESIMS spectra. The UV (λmax 226, 246, 259, 265, 309 nm), IR (1636, 1600, 1552, and 1119), and NMR (1H and 13C) of 3 had very identical with 2. The significant difference in the 1D and 2D NMR, compound 3 showed an acetyl group at δH 2.45 (H-1), δC 25.8 (C-1), and δC 198.2 (C-2). The HMBC and HMOC experiments assigned the acetyl group at C-1
and C-2. The methyl proton at $\delta_H 2.45$ correlated with a carbonyl [$\delta_C 198.2$ (C-2)] in the HMBC spectrum. A signal of α,β-unsaturated ketone at $\delta_H 8.09$ (H-4) correlated to C-2, $\delta_C 146.2$ (C-10b), $\delta_C 135.9$ (C-3), $\delta_C 160.2$ (C-5), and $\delta_C 37.3$ (C-8'). The NOE spectrum of 3, showing the relative configurations very similar to melicodenine K. Therefore, the structure of melicodenine L (3) in Figure 1. In conclusion, melicodenine L (3) is demethylation and is followed by an oxidation reaction of 2.

Six known compounds, melicodenine E (4), F (5), melicobisquinolinone B (6), N-methylflindersin (7), melicodin A (8), and bergapten (9), elucidating by comparing their NMR spectra based on the chemical shift that reported (Johns et al. 1968; Kamperdick et al., 1999; Nakashima et al. 2011, 2012).

In vitro evaluation against MCF-7, HeLa, and P-388 for their activities in accord with the MTT method (Table 1) uses artonin E and doxorubicin as a positive control. The cells without active compound as a negative control (Tanjung et al. 2018; Tjahjandarie et al. 2021). Melicodenines J (1) and F (5) exhibited very high activity against HeLa.

Table 1. Cytotoxic activities of the isolated compounds from M. denhamii.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>MCF-7</th>
<th>HeLa</th>
<th>P-388</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melicodenine J (1)</td>
<td>>100</td>
<td>1.8 ± 0.02</td>
<td>>100</td>
</tr>
<tr>
<td>Melicodenine K (2)</td>
<td>>100</td>
<td>62.9 ± 1.45</td>
<td>29.1 ± 1.10</td>
</tr>
<tr>
<td>Melicodenine L (3)</td>
<td>>100</td>
<td>40.9 ± 1.13</td>
<td>>100</td>
</tr>
<tr>
<td>Melicodenine E (4)</td>
<td>>100</td>
<td>>100</td>
<td>11.9 ± 0.87</td>
</tr>
<tr>
<td>Melicodenine F (5)</td>
<td>>100</td>
<td>0.8 ± 0.15</td>
<td>38.3 ± 1.42</td>
</tr>
<tr>
<td>Melicobisquinolinone B (6)</td>
<td>>100</td>
<td>>100</td>
<td>13.9 ± 0.65</td>
</tr>
<tr>
<td>N-methylflindersin (7)</td>
<td>>100</td>
<td>>100</td>
<td>87.2 ± 0.30</td>
</tr>
<tr>
<td>Melicodin A (8)</td>
<td>15.0 ± 0.15</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Bergapten (9)</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>0.8 ± 0.02</td>
<td>0.9 ± 0.04</td>
<td>–</td>
</tr>
<tr>
<td>Artonin E</td>
<td>–</td>
<td>–</td>
<td>1.3 ± 0.07</td>
</tr>
</tbody>
</table>
type Diels-Alder adduct (2, 3, 6), a type monomer, was inactive (7-9). However, compounds 1-9 were inactive on MCF-7 and P-388 cancer cells (Table 1). A type [2+2] cycloaddition adduct (1, 4, 5) plays a key role for the cytotoxic effect. The effect of the bond angle of the cyclobutane ring more than active the cyclohexene ring inhibiting the growth of HeLa cells.

3. Experimental

3.1. Plant material

The collecting of the fresh leaves of M. denhamii came from Tanah Merah, Bangkalan, Madura Island, East Java, Indonesia, in Feb 2016. The plant was identified by a senior botanist (I. Rachman) from the Bogoriense Herbarium, Indonesia. A specimen (MD 20171207) was deposited as a reference.

3.2. Extraction and isolation

The dried leaves of M. denhamii (3.1 kg), extracted with MeOH two times (10 L, each for three days) at room temperature, and the MeOH extract (100 g) treated with 5% aqueous H₂SO₄ (pH 3-4) and then partitioned with n-hexane (18 g), and EtOAc (15 g), respectively. The acid layer was treated with NH₄OH (pH 8-9) and extracted with EtOAc to give alkaloid extract (1 g). The alkaloid extract (4.8 g), fractionated by radial planar chromatography on silica gel, using a gradient of n-hexane-EtOAc (from 9:1 to 1:1 v/v) to afford two significant fractions, A (188 mg) and B (450 mg). Purification of fraction A by radial planar chromatography, eluted with n-hexane-acetone (from 9:1 to 4:1 v/v), gave compound 7 (88 mg). Fraction B (450 mg), further separated by CC chromatography on Sephadex LH-20, eluted with methanol, gave two subfractions, B₁ (253 mg) and B₂ (75 mg). Subfraction B₁ separated with radial planar chromatography, eluted with n-hexane-EtOAc (from 9:1 to 7:3 v/v), gave compounds 1 (9.8 mg), 6 (25 mg), and 2 (6.2 mg). Similarly, subfraction B₂ separated by the same method, eluted with n-hexane-CHCl₃ (from 7:3 to 3:7 v/v), afforded compound 3 (4.8 mg), compound 4 (5 mg), and compound 5 (6 mg). The EtOAc extract (14 g), fractionated by VLC on silica gel, using a gradient of n-hexane-EtOAc (from 9:1 to 3:7 v/v), gave four significant fractions, C-F. Fraction C (800 mg) further separated by radial planar chromatography on silica gel, eluted with n-hexane-CHCl₃ (4:1 to 1:1 v/v), afforded compound 8 (27 mg). Fraction E (205 mg) by the same method, eluted with n-hexane-diisopropyl ether (7:3 to 3:7 v/v), afforded compound 9 (16 mg).

3.3. Spectral data

Melicodenine J (1): yellow solid, m.p. 224-225°C, [α]D²⁰ = + 6° (c 0.0005, MeOH): UV (MeOH) λmax (log ε) 219 (4.48), 259 (3.83), 292 (3.83), 320 (4.06), and 334 nm (4.03). IR (KBr) νmax (cm⁻¹) 1627, 1595, 1461, and 1128. ¹H-NMR (CDCl₃, 410 MHz), δH ppm: 7.90 (1H, dd, J = 8.0, 1.2 Hz, H-10), 7.85 (1H, d, J = 9.6 Hz, H-5'), 7.43 (1H, dt, J = 8.5, 1.2 Hz, H-8), 7.15 (1H, t, J = 8.0 Hz, H-9), 7.08 (1H, d, J = 8.5 Hz, H-7), 5.95 (1H, d, J = 9.6 Hz, H-6'), 5.94 (1H, t, H-9'), 5.41 (1H, dd, J = 6.7, 2.6 Hz, H-2'), 4.75 (1H, t,
J = 6.7 Hz, H-3'), 4.25 (3H, s, 4'-OCH3), 4.08 (1H, t, J = 9.5 Hz, H-4), 3.38 (3H, s, N-CH3), 3.10 (1H, dd, J = 9.5, 6.7 Hz, H-3), 1.73 (3H, s, H-11), 1.20 (3H, s, H-12). 13C-NMR (CDCl3, 100 MHz), δC ppm: 168.6 (C-9a), 162.2 (C-5), 161.8 (C-7'), 156.6 (C-10b), 156.5 (C-8a), 152.6 (C-4'), 139.5 (C-5'), 138.5 (C-6a), 130.7 (C-8), 123.1 (C-10), 121.6 (C-9), 116.2 (C-10a), 113.5 (C-7), 109.5 (C-6'), 107.3 (C-4a), 105.2 (C-4a), 104.4 (C-3a), 90.5 (C-9'), 85.1 (C-2'), 75.5 (C-2), 45.0 (C-3), 43.2 (C-3'), 35.5 (C-4), 29.0 (6-NCH3), 25.5 (C-11), 25.4 (C-12). HRESIMS m/z 458.1613 [M + H]+ calculated for C27H23NO6 m/z 458.1604.

Melicodenine K (2): colorless oil, [α]20 D = + 8° (c 0.0005, MeOH): UV (MeOH) λmax (log ε) 229 (3.99), 259 (3.60), 308 (3.51), 325 (3.46), 359 (3.56) and 377 nm (4.41). IR (KBr) νmax (cm⁻¹) 1639, 1502, 1485, and 1112. 1H-NMR (CDCl3, 400 MHz), δH ppm: 7.52 (1H, dd, J = 8.6, 1.2, H-10), 7.46 (1H, t, J = 7.7 Hz, H-8), 7.35 (1H, d, J = 8.6 Hz, H-7), 7.15 (1H, t, J = 7.7 Hz, H-9), 6.97 (1H, s, H-4), 6.57 (1H, s, H-3'), 6.13 (1H, s, H-6'), 5.79 and 5.75 (2H, d, J = 1.2 Hz, 4'-O-CH2-O-5'), 4.82 (1H, s, H-7'), 3.95 (3H, s, 2'-OCH3), 3.80 (3H, s, N-CH3), 3.51 (1H, dd, J = 8.3, 6.0 Hz, H-9'a), 3.38 (1H, t, J = 9.8 Hz, H-9'b), 3.30 (3H, s, 9'-OCH3), 3.19 (1H, dd, J = 9.8, 6.0 Hz, H-8'), 1.49 (3H, s, H-11), 0.88 (3H, s, H-12). 13C-NMR (CDCl3, 100 MHz), δC ppm: 160.6 (C-5), 150.8 (C-2'), 149.3 (C-10b), 147.0 (C-4'), 140.7 (C-5'), 139.7 (C-3), 139.3 (C-6a), 129.8 (C-8), 124.9 (C-4a/C-10), 122.5 (C-9), 120.2 (C-10a), 119.2 (C-1'), 115.6 (C-4), 114.5 (C-7), 108.5 (C-6'), 101.1 (4'-O-CH2-O-5'), 94.4 (C-3'), 76.2 (C-9'), 71.6 (C-2), 59.0 (9'-OCH3), 56.6 (2'-OCH3), 39.1 (C-8'), 34.7 (C-7'), 30.0 (C-11), 29.9 (6-NCH3), 29.2 (C-12), HRESIMS m/z 464.2080 [M + H]+ calculated for C27H33NO6 m/z 464.2073.

Melicodenine K (3): yellowish oil, [α]20 D = – 8° (c 0.0005, MeOH): UV (MeOH) λmax (log ε) 226 (4.38), 246 (4.20), 259 (4.07), 265 (3.65), and 309 nm (3.96). IR (KBr) νmax (cm⁻¹) 1636, 1600, 1552, and 1119. 1H-NMR (CDCl3, 400 MHz), δH ppm: 8.09 (1H, s, H-4), 7.68 (1H, d, J = 8.1 Hz, H-10), 7.52 (1H, t, J = 7.8 Hz, H-8), 7.36 (1H, d, J = 8.6 Hz, H-7), 7.15 (1H, t, J = 7.8 Hz, H-9), 6.56 (1H, s, H-3'), 6.10 (1H, s, H-6'), 5.79 and 5.75 (2H, s, 4'-O-CH2-O-5'), 5.36 (1H, s, H-7'), 3.96 (3H, s, 2'-OCH3), 3.81 (3H, s, 6-NCH3), 3.51 (1H, dd, J = 9.7, 4.4 Hz, H-8'), 3.38 (1H, t, J = 9.8 Hz, H-9'b), 3.25 (1H, dd, J = 10.1, 4.4 Hz, H-9'a), 3.16 (1H, t, J = 10.1 Hz, H-9'b), 2.45 (3H, s, H-1'). 13C-NMR (CDCl3, 100 MHz), δC ppm: 198.2 (C-2), 160.2 (C-5), 150.6 (C-2'), 147.1 (C-4'), 146.2 (C-10b), 140.9 (C-5'), 140.4 (C-6a), 135.9 (C-3), 133.1 (C-4), 131.5 (C-8), 126.3 (C-10), 123.7 (C-4a), 123.0 (C-9), 120.5 (C-1'), 120.0 (C-10a), 114.7 (C-7), 107.8 (C-6'), 101.1 (4'-O-CH2-O-5'), 95.0 (C-3'), 72.5 (C-9'), 58.2 (9'-OCH3), 56.7 (2'-OCH3), 37.3 (C-8'), 33.0 (C-7'), 30.0 (6-NCH3), 25.8 (C-1). HRESIMS m/z 448.1752 [M + H]+ calculated for C26H25NO6 m/z 448.1760.

4. Conclusions

In summary, three unreported quinolinone alkaloids: melicodenes J-L (1-3), along with six known compounds (4-9), were isolated from Melicope denhamii leaves. The cytotoxicity activity of compounds (1-9) was evaluated against MCF-7, HeLa, and P-388 cells. Compounds 1 and 5 showed high activity against HeLa cells.

Disclosure statement

No potential conflict of interest was reported by the authors.
Funding

This research financially supported by Universitas Airlangga, Surabaya, Indonesia (Hibah Mandat 2019 by Tjitjik Srie Tjahjandarie).

References

