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Abstract. Kaplan developed the early deterministic mathematical model of the spread of HIV spread amongst
IDUs (injecting drug users). This was followed by Greenhalgh and Hay, who extended the Kaplan model by
considering some realistic assumptions. The models detailed the dynamic of probability of exposure to HIV of
an IDU after they had used contaminated needles, and the dynamic of the IDU fraction subject to HIV infection.
The model from Greenhalgh and Hay has two equilibria (fixed points), namely the HIV-free equilibrium and the
HIV-endemic equilibrium. Greenhalgh and Hay demonstrated the global stability of the fixed points for some
specific conditions. If the specific condition was not satisfied, Greenhalgh and Hay left it as an open problem.
In this paper, we show that the dynamics of HIV spread among injecting drug users completely results from the
basic reproduction number by constructing suitable Lyapunov functions, which resolves the open problem. We
also apply the model to describe HIV/AIDS spread in a real case. The predicted result agrees with the data.
Keywords: HIV; injecting drug users; global stability; basic reproduction number; parameter estimation.
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1. INTRODUCTION

The retrovirus HIV (Human Immunodeficiency Virus) causes AIDS (Acquired Immune De-
ficiency Syndrome), a disease caused by damage to the immune system. HIV only lives in
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cells or live media. HIV is found in bodily fluids which contain white blood cells, e.g. blood,
placental fluid, semen, spinal fluid, vaginal fluid, breast milk, and cerebrospinal fluid. HIV is
transmitted when bodily fluids which contain HIV mix, for instance during sexual intercourse
with someone with the infection, if contaminated needles and piercing tools are shared (for
example those used for tattoos, piercings, and shaving), or through blood products containing
HIV, i.e. transfusions. Pregnant women living with HIV could transmit the virus to her fetus
or baby. According to the UNAIDS report, there were 37.9 million (32.7-44.0 million) people
living with HIV worldwide at the end of 2018 [1].

There are a number of mathematical models which describe the spread of HIV, including HIV
transmission in NSW prison [2], HIV spread because of heterosexual contact [3, 4], and HIV
spread amongst injecting drug users [5, 6, 9]. Kaplan constructed an early HI'V mathematical
model amongst IDUs [5, 6]. Kaplan made the assumption that populations in which HIV/AIDS
spread consisted of constant people. Kaplan assumed that the IDU populations were homo-
geneous and only injected drugs in places such as “shooting galleries”. A shooting gallery
is where drug users can gather to inject and share drug injection equipment. Kaplan’s model
is deterministic. The model consisted of two ordinary differential equations. The differential
equation described the fraction of injecting drug user population with HIV infection at time t
(the prevalence of HIV infection) and the probability that an injecting drug user will be exposed
to HIV as a result of using contaminated equipment. This probability could be considered as
the proportion of infected (contaminated) needles.

Using some assumptions, Kaplan suggested the following mathematical model [35, 6]:

d

~ d_f = Ay —2Ayx[l—(1—y)(1-0)],
d.‘

) d_i = Aax(l—y)—py.

Here x(t) and y(t) are the proportion of infected (contaminated) needles and the fraction of
infected, injecting drug users at time ¢, respectively. In eq. (1) and eq. (2), ¥ is the gallery ratio
(ratio between a number of IDU and number of shooting galleries), A is the injecting rate of
IDU, 6 is the probability of a contaminated needle becoming an uncontaminated needle after

use by an uninfected IDU. In this model, & is the probability of an uninfected addict becoming
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infected because of using a contaminated needle. The 'birth’ rate and the 'death’ rate of IDUs
were assumed to have the same value u.

In 1997, Greenhalgh and Hay altered the Kaplan model by adding some more realistic assump-

tions. Greenhalgh and Hay suggested the following mathematical model [6]:

3) L~ (o-m)y-px1-)
dy ‘ ‘
4) i vx(1—y)—py,

where (x,y) € Q=[0,1] x [0,1]. All parameters &, T, p, v, pare positive and ¢ < 7. Two equi-
libria form the model: the HIV-free equilibrium E; = (0,0) and the HIV-endemic equilibrium

E> = (x2, y2) where x; and y, were given by

_ov-pu _oV-p

(5) X - :
™ oV —pU+TU

The HIV-endemic equilibrium E» exists when the basic reproduction number Ry := g—ﬁ >1.A
dynamical model’s basic reproduction number can be determined by a Next-Generation Oper-
ator [7, 8]. Greenhalgh and Hay found that the HIV-free equilibrium E; was asymptotically,
locally stable whenever Ry < 1 and it was unstable whenever Ry > 1. Also, the HIV-endemic
equilibrium E; was asymptotically, locally stable whenever Ry > 1. Moreover, Greenhalgh and
Hay proved that the HIV-free equilibrium £ and the endemic equilibrium E; are asymptoti-
cally, globally stable for specific conditions. The following theorem came from Greenhalgh

and Hay [6].

Theorem 1.1. The HIV-free equilibrium E| is globally asymptotically stable if (a) Ry < 1, or
(b) Ro=1and T > p.

Theorem 1.2. The endemic equilibrium E, is globally asymptotically stable if Ry > 1 and T > p.

For p = 7, Greenhalgh and Hay left it as an open problem. Case p > T could occur when the
proportion of those infected who were aware of their infection (p) is higher than the probability
of a contaminated needle becoming an uncontaminated needle after use by an infected addict
(0). In this paper, we demonstrated that Greenhalgh & Hay’s HIV-free equilibrium model is

asymptotically, globally stable whenever RO < 1 and 7 < p. We also demonstrate that the
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endemic equilibrium is asymptotically, globally stable whenever Ry > 1 (no matter whether
either 7> p or T < p).

This rest of this article is organized thus: Section 2 presents Greenhalgh and Hay’s model of
global stability of the HIV-free equilibrium by using a suitable Lyapunov function. Next, the
global stability of the HIV-endemic equilibrium of Greenhalgh and Hay model is presented in
Section 3. Applying the Greenhalgh and Hay model to HIV/AIDS spread data is shown in

Section 4. Finally, the last section features the conclusion.

2. GLOBAL STABILITY OF THE HIV-FREE EQUILIBRIUM
Here we shall show the global stability of the disease-free equilibrium for the case Ryp < 1. We

start by presenting the following Lemma.

Lemma 2.1. Suppose Ry < 1. Then the following statements hold:

(a) xt =—[p (1 —y)+1y]x? + Ouxy.
(b) yy = —[vx+ u]y> 4 vxy.
(c) x+ %_}T‘ =—p(1—Rg)x(1—y)— Txy.

Proof:
(a) By performing algebraic manipulation for x , we found that
x=—[p(l—y)+1y]x+0Y¥
This yields
xi=—[p (1 —y)+1y]x* + oxy.
(b) By performing algebraic manipulation for y , we found that
y=—(vx+u)y+vx.

Hence we find
yy = — [vx+ p]y* + vay.

(c) Suppose Ry < 1. Then

X+ %x =oy+(px—1x)y—px— % (vx(1=y)—py)
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(p O"D)x+ (p GD)X o
= — —_— _— y— y
H w/ !

= —p(1—=Ro)x(1—y) —Txy.

The disease-free equilibrium £ global stability is shown in the following theorem.

Theorem 2.2. Suppose Ry < 1. Thus, the HIV-free equilibrium E| = (0,0) is asymptotically,
globally stable in Q.

Proof: We have defined a Lyapunov function U : Q — R by

T T (o]
Uxy)=—x+—y"+x+ "

4o 4v-
Then U is in the C* class function on the domain Q. The HIV-free equilibrium (E,) is the
global minimum of U. Moreover, U is a definite positive function around E; where for every
(x,y) € Q\{E1}, U(x,y) > U(E;) =0. The time derivative of U computed alongside the

mathematical model solutions in (3)-(4), is given by the following expression

dUu = it T Vi o
dt 20 v TR

By using Lemma 2.1, we found that

& (1) + Dl o (vt )y~ p (1= Ro)x(1 —).

Since all model parameters are positive, and every variable is non-negative, therefore % <0
for Ry < 1. Also, % =0 if and only if (x,y) = E;. Thus, the greatest compact invariant set in
{(x,y) eQ: % =01} is the singleton {E; } . By LaSalle’s invariance principle [10] then implies
that the disease free equilibrium E is asymptotically, globally stable in Q. [1

Remarks: Any functions U (x,y) = nx? —|—ny2 +x+ %y where m >0, n >0, mo +nv =T are

also Lyapunov functions for proving the disease’s global stability of free equilibrium Ej.

3. GLOBAL STABILITY OF ENDEMIC EQUILIBRIUM

Here, we demonstrate endemic equilibrium’s global stability for the case Ry > | using Dulac

criterion and a Lyapunov function.
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Theorem 3.1. If Ry > 1 then the endemic equilibrium Ej is globally asymptotically stable in

Q\{E1}.

Proof: Suppose f (x,y) = x and g (x,y) = y. We found that

| af, 9
(©6) a—j: a—iz—[p(l—.va)-‘l—(VH#)<0-

Therefore, the mathematical model in equations (3)-(4) does not have any periodic solution in
Q[I1, 12, 13]. Since E, is asymptotically, locally stable whenever R > 1, then by applying the
classical Poincare-Bendixson theorem, the endemic equilibrium E> is asymptotically, globally
stable in Q\ {E;}. O

Now, we show the endemic equilibrium’s global stability whenever it exists by using a Lya-

punov function. We present the following lemma.

Lemma 3.2. Suppose Ry > 1. Then the following statement are hold:

(a) x=—[p(1=y)+ 1y (x—x2) +p3 (y —y2).

(b) x= —G% (x—x) + (0 —Tx+px) (y—y2).

(¢) y=pu32 (x—x2) = (vx+u) (y—y2).

(d) y=v(1=y)(x—x2) = V2 (y—y2).

(e) Let F = [x—xz + % (y —_}-‘2):| (X—i— %}) Then

Fo=—[-pRo—1)(1=y)+0](x—x2)" = Fp (Ro— Dx+ 2] (v —2)’
=P (Ro—1) 32 (x—x2) (y—y2).
Proof: Let R > 1. Then, the endemic equilibrium E; given in (5) is exist. Moreover suppose

flxy)=xand g(x,y) = y.

(a) By using Taylor theorem, ¥ = f (x,y) could be represented as
1 5 1 5
fy) = fele—x2) + fy (y=32) + 5 (0 —22) "+ fay (0= 22) (0 = 32) + 5. iy (0 —2)7,
where all partial derivatives of are evaluated at E>. By direct calculation, we found that

fr=—lp(1—=y)+1y], fr=0—tx+px, fix =0, fiy=p =T, fry =0.
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Hence X could be represented as

i=—[p(I=y2)+1y2] (x —x2) + (0 — T2+ px2) (y —y2) + (p — 7) (x —x2) (y —y2)

From equilibrium condition, ¢ — Tx2 + px2 = p)‘—f Hence we found

£=—[p(1—y)+ 1] (x—x2) +p’:—§ (v—y2).

(b) From Lemma 3.2.(a), we found that

i==[p(l=y2)+ oy (x—x2) + (0 -2+ px2) (y —y2) + (P — T) (x —x2) (y —»2)

=—[p(1=y2)+1y2] (x —x2) + (0 — Tx+ px) (y = 32) -

From equilibrium condition, p (1 —y2)+1Ty2 =06

-

ie)

. Hence we found

-
[

V2

x=—0—=(x—x)+(c—tx+px)(y—y2).

X2

(c) By using Taylor theorem, y = g (x, y) could be represented as
§003) = g (v 2) 8, (0 —32) + 8t 12+ (1—2) (5 =32) + 38— 32)°
where all partial derivatives of are evaluated at E>. By direct calculation, we found that
gx=V(I—y), &y =—(vx+11).80 =0, gy = =V, 8y, =0.

Hence y could be represented as

y=V(l=y)(x—x) = (va+ 1) (y—y2) =V (x—x2) (y = y2).-

From equilibrium condition, v(1—y) = pu2

. Hence we found

[y

(d) From Lemma 3.2.(¢), we found that

y=v(l=y)(x—x2) = (vio+ ) (y—y2) —v(x—x2) (y—y2)

=v(1=y)(x—xz) = (vxa+u)(y—y2).

From equilibrium condition, vax; + i = v)‘—f Hence we found

y=v(1=y) (=) =2 (y=ya).
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(e) F could be decomposed as F = Fj + F> + F3 + F4 where

2
c c 2
Fi=x-—x)t K= E(I—Xz)_i’fs = EO’—J’z)L Fy= EU’—J’O)J’-

From Lemma 3.2(a)-(d), we found that

A=—lp(1-)+0] (-0 +p 2 (v=2)-3).
F_Zﬂ(l—}-‘)(X—Xz)z—%%(X—Xz)(.v—_?»’z):

F = —%QE(X—Iz)(J’—J’zHg(G — x4 px) (y —y2)°,
F4=%zﬁ(x—xz)ﬁx’—.x’zJ—E—j(meu)b’—J’z)z-

After cancelling identical terms with opposite signs, we found that

c oV

F = — [(p - %) (1—y)+ ‘L’_}-} (x—x2)*— = (Ix—px—k ‘L'X) (y—y2)?

u
_ (ﬂ_p) E(x—xz)(}-‘—}?)-

u y2
Hence
F = —[—p(Rn—1)(1—_v)+r_vl(x—xzf—g[p(Rn—1)x+rx1(_v—_vzf
P (Ro—1) 2 (x—x2) (y —y2) .0

In the following theory, the endemic equilibrium E, global stability is shown by building a

suitable Lyapunov function.

Theorem 3.3. Assume that Ry > 1. Thus, the endemic equilibrium E» = (x2,y2) is asymptoti-

cally, globally stable in Q\{E,}.

Proof: We have defined the Lyapunov function V : Q — R by
2
1 o B

V(x:y):E(Rn— 1) (x—xz)z—k% x—xz+H(_}-‘—y2)

Then V is a member of C* function set on the domain Q. In addition, the endemic equilibrium

E; is the global minimum of V on Q. Moreover, V is definite positive function around E, where
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forevery (x,y) € Q\Ea, V (x,y) > 0. The time derivative of V computed along solutions of the

mathematical model in (3)-(4), is given by the expression

C;_‘:: (Ro—1) (x —x2) x+ (X—X2)+%(_}’—_}’2):| (JH_ E_}:‘) _

By using Lemma 3.2, we found that

= ~(Ro-Dlp(1-3)+ )=+ (R~ NP2 (x=1) (= 32)

+(Ro=1)p(1—y)— 1] (x —x2)? —Elp (Ro— D)x+1x] (y —y2)?

—p (Ro— lJi—i(x—xz) (y—»2).

Hence we found

dv c
7 = Roor—x)* = x(p (Ro—1)+7) (r-32)%

Since every parameter in the model is positive and every variable is non-negative, then % <0
for Ry > 1. Moreover, % =0 if and only if (x,y) = (0,0) = E; or (x,y) = (x2,y2) = E>.
Thus, the greatest compact invariant set in { (x,y) € Q\{E;}: % = 0} is the singleton {E;}.
By LaSalle’s invariance principle [10] then the implication is that endemic equilibrium E; is

asymptotically, globally stable in Q\{FE;}. O

4. APPLICATION OF THE MODEL

Here we applied the Greenhalgh and Hay mathematical model in eq. (3)-(4) for describing
the spread of HIV/AIDS in Jawa Timur (East Java) province, Indonesia. To apply the model,

HIV/AIDS spread in Jawa Timur province adheres to the following assumption:

(1) Number of injecting drug user is assumed to be constant.
(2) Number of the needle is assumed to be constant.
(3) HIV/AIDS spread could only be transmitted by sharing needles amongst injecting drug

users.

The amount of cumulative HIV/AIDS case (z) at time ¢ in Jawa Timur province is presented in

Table 1, the data of which was compiled from the Health Profile of Jawa Timur 2011-2018 [14].




10 WINDARTO, ERIDANI

TABLE 1. Cumulative HIV/AIDS (z(t)) in Jawa Timur province

Year | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018

t 0 1 2 3 4 5 6 7

z(t) | 11585 | 15681 | 20030 | 26433 | 32646 | 36881 | 44949 | 53641

Here, our objective is to predict the basic reproductive ratio Rp from the Table 1 data. Therefore,
every parameter (G, T, p, v, i) in the Greenhalgh and Hay model in eq. (3)-(4) is estimated from
the data. Unfortunately, the number of the injecting drug users (N) and dynamics of the needle
are unknown. By defining y (t) = % then number of cumulative HIV/AIDS case in the Table

1 could be transformed into dimensionless variable y(f). The parameters o, 7, p, v, u and the

initial values x(0), y(0) are estimated such that the mean average percentage error (MAPE)

% (1) = Nyi(1)
z(t)

is minimum. Here ¥;(¢) is the proportion of HIV-infected IDUs (injecting drug users) at time

1 ?
MAPE = 3 i)::n * 100%

i predicted from the model.

Because the mathematical models in eq. (3)-(4) are nonlinear differential equations, the mod-
els’ analytical solutions cannot be obtained. As such, a heuristic method, for example a genetic
algorithm method can be used for estimating parameter values from the non-linear model dif-
ferential equations. Here, we used continuous genetic algorithm, because the algorithm has a
larger suitable mutation rate than the binary genetic algorithm [15, 16]. Table 2 shows the esti-
mation results of parameters in the Greenhalgh and Hay mathematical model in Eq. (3)-(4) for
various mutation rate (m) using a continuous genetic algorithm .

The Table 2 results are the best values from seven times implementation of continuous genetic
algorithm. It can be seen from the table that the minimum value of normalized residual sum
of square is attained when the mutation rate is 0.5. Therefore, we obtain the parameter values
of the mathematical model in equations. (3)-(4) are x(0) = 0.088779, y(0) = 0.073013, ¢ =
3.2430, T = 8.8956, p = 4.0158, v = 0.4332 and x = 0.0125. Hence, we found that the basic
reproductive ratio of HIV/AIDS spread in Jawa Timur province predicted from the model is

Ry = g—; = 27.985. In addition, by assuming that number of injecting drug users (IDUs) is
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constant, we could predict the number of the injecting drug users (N). Here we found that
z(0)

N = == = 158671 IDUs.

¥0)

TABLE 2. Predicted parameter values

m

x(0)

y(0)

c

T

P

v

u

MAPE

0.1

0.118593

0.086516

2.3790

4.7432

1.2892

0.2773

0.0193

1.764 %

0.2

0.119980

0.079262

3.4187

6.0882

3.3441

0.3379

0.0141

1.723 %

0.3

0.123532

0.071872

4.4768

8.7402

4.4420

0.3310

0.0125

1.738 %

0.4

0.091608

0.101401

2.5473

5.9607

3.9028

0.5549

0.0127

1.768 %

0.5

0.088779

0.073013

3.2430

8.8956

4.0158

0.4332

0.0125

1.722 %

Figure | presents the dynamic of infected IDUs predicted from the model. As previously pre-
dicted by the analytical result, the dynamic of infected IDUs tends towards the endemic equilib-
rium when the basic reproductive ratio is more than one. From a practical point of view, harm
reduction programs e.g. methadone therapy or needle exchange programs should be used to

control and reduce the spread of HIV/AIDS among injecting drug users.

Cumulative cases of HV/AIDS
140 000

O O O data /,..-—-"'""
model /
om0 4 S IS AR EE— / ...............
100 000 /f ......
2 /
g soom
= (
]
5
2 epogo
c
40 000 = R o S i M s
20 000
o - - ; :
0 2 4 -] 10 12 14 18 18 20 22 24
time (year)

FIGURE 1. The dynamics of infected IDUs predicted from the model
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5. CONCLUSION

We have proved the global stability of equilibria in a mathematical model of the spread of HIV
spread amongst injecting drug users. We have shown that the mathematical model’s global
stability was completely determined by the basic reproduction number, which is either equal
or less than one, the disease-free equilibrium is asymptotically, globally stable in the feasible
region. The proof is completed by constructing a suitable Lyapunov function. Furthermore, if
the basic reproduction number is more than one, then the endemic equilibrium is asymptotically,
globally stable in the feasible region, provided that the initial value is not located at the disease-
free equilibrium. This was proved by the construction of a suitable Lyapunov function and
combination of Dulac function and Poincare-Bendixon theorem. We also applied the model to

describe HIV/AIDS spread in a real case. The predicted model result agrees with the data.
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