INDONESIAN ANDROLOGY AND BIOMEDICAL JOURNAL

DEPARTMENT OF MEDICAL BIOLOGY
FACULTY OF MEDICINE
UNIVERSITAS AIRLANGGA

https://e-journal3.unair.ac.id/public/journals3/cover_issue_3_en_US.jpg
Editorial Team

Editor in Chief

1. Dr. Reny I’tishom, M.Si, (Scopus ID 57209243610) Universitas Airlangga, Surabaya, Indonesia

Editorials Board

1. Muhammad Miftahussurur, dr., M.Kes., Ph.D., Sp.PD., KGEH, (Scopus ID 56323903000, Sinta ID 6031037) Universitas Airlangga, Surabaya, Indonesia
2. Dr. Purwo Sri Rejeki, dr., M.Kes, (Scopus ID 57208052652, Sinta ID 6067303) Universitas Airlangga, Surabaya, Indonesia
3. Viskasari P. Kalanjati, dr., M.Kes., PA(K), Ph.D, (Scopus ID 54388384000, Sinta ID 5975075) Universitas Airlangga, Surabaya, Indonesia
4. Prof. Delvac Oceandy, dr., Ph.D, (Scopus ID 6506557120) University of Manchester, United Kingdom
5. Dr. Taufiqurrohman, dr., Sp.And(K), Universitas Sultan Agung, Semarang, Indonesia
6. Hamdani Lunardhi, dr., M.Kes., Sp.And(K), (Scopus ID 6504794051) Universitas Airlangga, Surabaya, Indonesia
7. Hermina Novida, dr., Sp.PD., KEMD, (Scopus ID 57189611999, Sinta ID 6068294) Universitas Airlangga, Surabaya, Indonesia
8. Bella Amanda, dr., (Scopus ID 57204057678, Sinta ID 6718864) Universitas Airlangga, Surabaya, Indonesia

Associate Editor

1. Agustinus, dr., Sp.And(K), (Scopus ID 57210640000) Universitas Airlangga, Surabaya, Indonesia

Section Editor

1. Cennikon Pakpahan, dr., (Sinta ID 5719866) Universitas Airlangga, Surabaya, Indonesia
Layout Editor

1. Norma Dyanti Aisyah, S.Tr.Batra, Universitas Airlangga, Surabaya, Indonesia

Assistant Editor

1. Marianne Ingrid Aror, dr. Universitas Airlangga, Surabaya, Indonesia

Instruction for Author

Online Submission
Guide for Author

Journal Policy

Focus and Scope
Peer Review Process
Publication Ethics
Publication Frequency
Article Processing Charges
Open Access Policy
Plagiarism Screening
Copyright Notice
Archiving
Repository Policy

People

Editorial Team
Peer Reviewers

https://jurnal3.untar.ac.id/index.php/1/editoral_team
Vol. 1 No. 2 (2020): December

Published: 2020-11-10

Articles

Correlation Between Diabetes Mellitus and Clinical Outcome of Patients with Acute Coronary Syndrome Underwent Percutaneous Coronary Intervention Therapy in Dr Soetomo Surabaya Hospital
Alanna Sarl Pratikto, I Gde Rurus Suryawan, Andianto, Purwo Sri Rejeki
36-41

Case Report: A Woman 27 Year Old with Mosaic Turner Syndrome Associate Hypogonadotropic Hypogonadism
Cennikom Pakpahan, Bella Amanda, Berliana Hamidah, Rina Yudiwati
42-47

Vaginismus and Infertility
Rossy Sintya Marchasari, A. Marinata, Reny Itishom
48-53
Post-orgasmic Illness Syndrome: A Closer Look
William, Cennikon Pakpahan, Raditya Ibrahim
54-59

Computer Assisted Sperm Analysis: A Review
Agustinus, Cennikon Pakpahan
60-66

Instruction for Author
Online Submission
Guide for Author

Journal Policy
Focus and Scope
Peer Review Process
Publication Ethics
Publication Frequency
Article Processing Charges
Open Access Policy
Plagiarism Screening
Copyright Notice
Archiving
Repository Policy

People
Editorial Team
Peer Reviewers

https://journal.bunr.ac.id/index.php/abu/issueView3
Indonesian Andrology and Biomedical Journal (e-ISSN: 2746-4474) is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.
Correlation Between Diabetes Mellitus and Clinical Outcome of Patients with Acute Coronary Syndrome Underwent Percutaneous Coronary Intervention Therapy In Dr Soetomo Surabaya Hospital

Alanna Sari Pratikto¹, I Gde Rurus Suryawana², Andi Astutiko³, Puwo Sri Rejeki³

¹ Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
² Department of Cardiology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo Hospital, Surabaya, Indonesia
³ Department of Physiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

Received date: Sep 14, 2020; Revised date: Sep 24, 2020; Accepted date: Oct 7, 2020

ABSTRACT

Introduction: Coronary heart diseases continue to be the rising cause of mortality amongst Indonesian population, alongside with the increasing number of diabetic patients. The first line management of ACS is percutaneous coronary intervention (PCI), however previous have shown that diabetic patients have worse outcomes after therapy compared to non-diabetic patients. This study aims to compare the clinical outcomes between acute coronary syndrome (ACS) patients with diabetes and those without diabetes following percutaneous coronary intervention therapy.

Methods: This study used cross sectional observational approach collecting records of ACS patients that underwent percutaneous coronary intervention in RSUD Dr Soetomo Surabaya from January 2018 to December 2019. Data regarding a patient’s age, gender, diabetic status, location of lesion, revascularization status and clinical outcome were collected. Those with missing or incomplete data were excluded from the study. A total of 55 patients were included and analyzed.

Results: amongst 55 patients that underwent PCI observed, 23 were diabetic and 32 were non-diabetic. Study has shown that diabetic patients have higher mortality rate compared to those without diabetes (6 patients vs. 1 patient, p=0.072) however based on the result analysis the p value of >0.05 showed no significant relationship between patients’ diabetic status and the clinical outcome following PCI therapy. Study has also shown that diabetic patients are more likely to undergo staged PCI (56.5%), than total revascularization PCI.

Conclusion: Study has found that diabetic ACS has a higher mortality rate compared to those without diabetes, however analytical studies found no significant relationship between the two variables. Further studies should be performed with higher number of patients to accurately investigate the relationship between diabetes mellitus and PCI outcomes.

Keywords: Acute Coronary Syndrome, Diabetes Mellitus, Percutaneous Coronary Intervention, Mortality

Corresponding author: annapratikto@gmail.com
INTRODUCTION

Coronary heart diseases continue to be the leading cause of mortality amongst Indonesian population, alongside with the increasing number of diabetic patients, with PERKI claiming that 15 in 1000 Indonesians suffer from coronary heart diseases. Acute coronary syndrome is one of those said coronary diseases. Acute coronary syndrome is a spectrum of acute and severe manifestations which is an emergency condition of the coronary due to an imbalance between myocardial oxygen demand and blood flow. Due to the proatherosclerotic, proinflammatory, and prothrombic factors of diabetes, acute coronary syndrome patients with diabetes are more at risk of further complications. A study conducted in 2007 claimed that ACS patients with diabetes mellitus are at a higher risk of 30-day mortality. The first line management for ACS is percutaneous coronary intervention (PCI), in which a stent or balloon might be with means of revascularization to salvage the myocardium. Diabetes mellitus is linked with a poorer outcome after PCI procedure, however this phenomenon has not yet been entirely studied, therefore this study aims to compare the clinical outcomes between ACS patients with diabetes and those without diabetes following percutaneous coronary intervention therapy in RSUD Dr Soetomo Surabaya.

METHODS

This was a cross-sectional observational descriptive study. Secondary data were collected from medical records of patients who underwent PCI in Pusri Pelayanan Jantung Terpadu RSUD Dr Soetomo, Surabaya from July 2019 to June 2020. Data observed include age, gender, diabetic status, complications, location of coronary lesion, revascularization status, length of stay, and clinical outcomes, which are recovery or inhospital mortality.

Data were obtained using random sampling technique according to inclusion criterias, data that were incomplete were excluded from the study. Inclusion criterias include patients that were diagnosed with ACS in Dr Soetomo Hospital Surabaya in the 2018-2020 period.

Ethical approval was given by Komite Etik Penelitian Kesehatan RSUD Dr Soetomo Surabaya with number 1877/KEPK/III/2020. The correlation between diabetic status and location of coronary lesion, the correlation between diabetic status and ACS complication, and the correlation between diabetic status and clinical outcome were determined by chi-square test. P values less than 0.05 were considered statistically significant. SPSS software (Statistical Package for the Social Sciences) for windows version 16 was used for statistical analysis.

RESULTS

Baseline Characteristics of patients

Fifty five patients were enrolled in this study. Study shows that from the baseline characteristics of 55 patients (table 1) the majority of patients were in the age range of 51-60, with 87.3% of total patients were male. Study shows that the mean age for female patients were slightly older than male patients (67 vs. 55). The involvement of coronary artery Left Main (LM), Left Anterior Descending (LAD), Left Circumflex Artery (LCX), and
Right Coronary Artery (RCA) were 1.8%; 89.1%; 30.9%; and 47.3% in all patients respectively. The mean length of stay for total patients was 6 days.

The study included 55 patients, in which are then grouped into two categories, diabetic and non-diabetic (Table 1). Slightly less than half of the total population were diabetic (42%), with the majority of patients were male (87.3%) and were in the age group of 51-60 year old. Diabetic patients showed a higher mean age compared to non-diabetic patients (65 vs 54), and was dominated by male patients (17 patients). Amongst diabetic patients, a significant lesion in the LAD was the most common location for coronary lesion (82.6%).

Coronary artery involvement and diabetes mellitus

Table 1 shows that the involvement of LM coronary artery is more prevalent in the diabetic group (4.3%), while the involvement of LAD artery is more common in the non-diabetic group (93.8%) than in the diabetic group (82.6%). It also shows that involvement of LCX artery is more prevalent in the diabetic group (39.1%) than in the non-diabetic group (25.0%), and the involvement of RCA artery is more common in the diabetic group (60.9%) than in the non-diabetic group (37.5%). However, based in the analysis using chi square test, it is shown that there was significant relationship between diabetes mellitus and the involvement of coronary arteries because all the resulting p value was more than 0.05.

<table>
<thead>
<tr>
<th></th>
<th>Diabetic (n=23)</th>
<th>Non-Diabetic (n=22)</th>
<th>Total</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 - 40</td>
<td>6 (4)</td>
<td>1 (5)</td>
<td>7</td>
<td>0.418</td>
</tr>
<tr>
<td>41 - 50</td>
<td>13 (2)</td>
<td>4 (12)</td>
<td>17</td>
<td>0.223</td>
</tr>
<tr>
<td>51 - 60</td>
<td>10 (43.5)</td>
<td>17 (53.1)</td>
<td>27</td>
<td>0.376</td>
</tr>
<tr>
<td>61 - 70</td>
<td>4 (17.4)</td>
<td>5 (15.6)</td>
<td>9</td>
<td>0.107</td>
</tr>
<tr>
<td>> 80</td>
<td>4 (17.4)</td>
<td>1 (3.1)</td>
<td>5</td>
<td>0.688</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>22</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>17 (73.9)</td>
<td>31 (96.9)</td>
<td>48</td>
<td>0.873</td>
</tr>
<tr>
<td>Female</td>
<td>6 (26.1)</td>
<td>1 (3.1)</td>
<td>7</td>
<td>0.127</td>
</tr>
<tr>
<td>LM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant</td>
<td>1 (4.3)</td>
<td>0 (0)</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>Non-significant</td>
<td>22 (95.7)</td>
<td>32 (100)</td>
<td>54</td>
<td>0.376</td>
</tr>
<tr>
<td>LAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant</td>
<td>19 (82.6)</td>
<td>30 (93.8)</td>
<td>49</td>
<td>0.891</td>
</tr>
<tr>
<td>Non-significant</td>
<td>4 (17.4)</td>
<td>2 (6.2)</td>
<td>6</td>
<td>0.169</td>
</tr>
<tr>
<td>LCX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant</td>
<td>9 (39.1)</td>
<td>8 (25.0)</td>
<td>17</td>
<td>0.309</td>
</tr>
<tr>
<td>Non-significant</td>
<td>14 (60.9)</td>
<td>24 (75.0)</td>
<td>38</td>
<td>0.691</td>
</tr>
<tr>
<td>RCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant</td>
<td>14 (60.9)</td>
<td>12 (37.5)</td>
<td>26</td>
<td>0.473</td>
</tr>
<tr>
<td>Non-significant</td>
<td>9 (39.1)</td>
<td>20 (62.5)</td>
<td>29</td>
<td>0.527</td>
</tr>
<tr>
<td>Length of stay (days)</td>
<td>8 ± 5</td>
<td>5 ± 3</td>
<td>6 ± 4</td>
<td></td>
</tr>
</tbody>
</table>

Source: Research Data, Processed

ACS complication and diabetes mellitus

The study showed that the complication of heart failure is more prevalent within the non-diabetic group (9.4%), and cardiogenic shock being more prevalent in the diabetic group (13%). The correlation between diabetes mellitus and ACS complication was assessed by chi square test in Table 2. It showed no significant correlation between the two variables (p=0.05, p=0.688).

Source: Research Data, Processed
Diabetes mellitus and clinical outcome after PCI

Results of this study showed that following PCI procedure, the number of inhospital mortality is more prevalent in the diabetic group (21.7%) than in the non-diabetic group (5 patients vs. 1 patient) (table 3). The correlation between diabetes mellitus and clinical outcome after PCI procedure was assessed using chi square test. It showed no significant correlation between the two variables (p=0.05, p=0.072).

<table>
<thead>
<tr>
<th>Table 2. ACS complication and diabetes mellitus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS Complication</td>
</tr>
<tr>
<td>n (%)</td>
</tr>
<tr>
<td>Diabetic</td>
</tr>
<tr>
<td>Non-Diabetic</td>
</tr>
<tr>
<td>Source: Research Data. Processed</td>
</tr>
</tbody>
</table>

Diabetes mellitus and revascularization status

Results of this study showed that diabetic patients are more likely to undergo staged revascularization compared to non-diabetic patients. The correlation between diabetes mellitus and revascularization status was analyzed using the chi square test in table 5, with the result showing no significant relationship between the two variables (p=0.05, p=0.24).

<table>
<thead>
<tr>
<th>Table 4. ACS complications and clinical outcome after PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS Complications</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cardiogenic shock</td>
</tr>
<tr>
<td>Heart failure</td>
</tr>
<tr>
<td>No symptoms of</td>
</tr>
<tr>
<td>complications</td>
</tr>
<tr>
<td>Source: Research Data. Processed</td>
</tr>
</tbody>
</table>

ACS complications and clinical outcome after PCI

Study showed that ACS patients who already had gone through cardiogenic shock are 14 times more likely to experience inhospital mortality following a PCI procedure. The correlation between ACS complications and clinical outcomes after PCI was analyzed with logistic regression test in table 4. It showed a significant correlation between the two variables (p=0.05, p=0.222).

<table>
<thead>
<tr>
<th>Table 5. Diabetes mellitus and revascularization status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revascularization Status</td>
</tr>
<tr>
<td>Diabetic</td>
</tr>
<tr>
<td>Non-Diabetic</td>
</tr>
<tr>
<td>Source: Research Data. Processed</td>
</tr>
</tbody>
</table>

Diabetes mellitus and length of stay

Result of this study showed that there was no significant difference between the average length of stay of diabetic patients and non-diabetic patients (Table 6), (8 days vs 5 days). The correlation between diabetes mellitus and length of stay was assessed using Mann Whitney test, with the result showing no significant relationship between the two variables (p=0.45; p=0.360).

<table>
<thead>
<tr>
<th>Table 6. Diabetes mellitus and length of stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Stay</td>
</tr>
<tr>
<td>Median (days)</td>
</tr>
<tr>
<td>Diabetic</td>
</tr>
<tr>
<td>Non-diabetic</td>
</tr>
</tbody>
</table>

Source: Research Data, Processed

DISCUSSION

In this study, it was found that the mean age for ACS patients was 56 years, with the number of inhospital mortality following a PCI procedure being higher amongst diabetic patients. The most common age group for ACS patients was 51-60 years, this goes in line with a previous study that showed the most common age group for ACS patients being 56-65 years old. Female patients were shown to have a higher mean age than male patients, this might be supported by a study that claimed menopausal women have a higher risk of suffering from coronary heart diseases than pre-menopausal women due to the reduced protective role of estrogen against cardiovascular diseases.

In this study it was found that the coronary arteries involved were dominated by LAD, both in diabetic and non-diabetic patients. This is in accordance with the findings previously made by Hedge et al, in which research shows that coronary arteries that are often involved in ACS patients are LAD then followed by LCX and RCA. Study shows that involvement of the LAD artery are more common in non-diabetic patients than in diabetic patients, this may be due to the population of diabetic patients in this study being only 42%.

This study showed that the complication of cardiogenic shock is more prevalent in diabetic patients than it is in non-diabetic patients. This is in line with a previous study that claimed diabetic patients being more susceptible to recurring and multivesselable lesions that increase the likelihood of reinfract. This reinfraction alongside with the worsening of cardiac output will then worsen the incidence of ischemia. Prolonged ischemia will then cause further myocardial dysfunction which can result in cardiogenic shock.

Results of this study showed that diabetic patients are more susceptible of inhospital mortality, with the mortality number being higher in diabetic patients than in non-diabetic patients, which is in line with previous studies that claimed diabetic patients are more prone to worse outcomes than non-diabetic patients. However the total number of inhospital mortality is relatively small, and this study did not acquire any data regarding 30-days nor 6 months post PCI procedure. The PRESTO trial conducted in 2004 claimed that In-hospital adverse events are relatively rare in the short term for both diabetic and non-diabetic patients, but long-term clinical outcomes show worse outcomes in diabetic patients. The PRESTO
Trial showed that in the nine-month follow-up period after the procedure, adverse events were more common in patients with diabetes mellitus compared to those without diabetes mellitus. This study showed that patients with more severe complications are at higher risk of inhospital mortality, with the presentation of cardiogenic shock being linked with a 14 times higher chance of inhospital mortality. This goes in line with the theory of patients with higher Killip score being linked with a higher mortality rate. Study showed that diabetic patients are more likely to undergo staged revascularization because of their multivessel lesions. There were no significant difference in the length of stay between diabetic patients and non-diabetic patients, which contradicts previous claims that stated diabetic patients having a longer length of stay compared to non-diabetic patients.

CONCLUSION

Acute coronary syndrome patients with diabetes mellitus showed to have a higher in-hospital mortality rate following a PCI procedure than those without diabetes mellitus. Diabetic ACS patients were more prone to a staged revascularization procedure despite there was no significant correlation found between the two variables. Further and more thorough studies with more samples are needed to achieve a more in-depth analysis regarding this topic.

Acknowledgement

Special thanks to the staff of medical records of RSUD Dr Soetomo Surabaya for their assistance in this study.

Conflict of Interest

The author stated there is no conflict of interest in this study.

REFERENCES

