Indonesian Journal of Cancer Chemoprevention

Vol. 3, No. 2, June 2012

The Official Journal of Indonesian Society for Cancer Chemoprevention
INDONESIAN JOURNAL OF CANCER CHEMOPREVENTION
ARTICLES

Antiproliferative Effect of Ethanolic Extract *Eugenia uniflora* Lam. Leaves on T47D Cells
(Nur Ismiyati, Dyaningtyas Dewi Pamungkas Putri, Siska Andrina Kusumastuti, and Rifki Febriannyah)
370 - 375

Secang (Coelalpinia sappan L.) Heartwood Ethanolic Extract Shows Activity as Doxorubicin Co-chemotherapeutic Agent by Apoptosis Induction on T47D Breast Cancer Cells
(Ika Nurzijah, Dyaningtyas Dewi P.Putri, Erlina Rivanti, and Edy Meiyanto)
376 - 383

Ethanolic Extract of Papaya (*Carica papaya*) Leaf Exhibits Estrogenic Effects In Vivo and In Silico
(Raisatun Nisa Sugiyanto, Rahmi Khamsita, Marvin Lambertus, Rohmad Yudi Utomo and Ratna Asmah Susidarti)
384 - 390

Ethanolic Extract of Mangosteen (*Garcinia mangostana*) Peel Inhibits T47D and Hela Cells Line Proliferation Via NF-κB Pathway Inhibition
(Erlina Rivanti, Annishfia Lailatur Rohmah, Herwandhani Putri, Prisnu Tirtanirmala, and Dyaningtyas Dewi Putri Pamungkas)
391 - 397

The Number of Macrophages and Heterophils on Chick Embryo Chorioallantoic Membrane After *Gynura procumbens* (Lour) Merr Extract Treatment and bFGF Induction
(Iwan Sahrial Hamid, Yuseni Kusuma P., Retno Bijanti, and E. and Bimo Aksono)
398 - 403

Hesperidin Increases Cytotoxic Effect of 5-Fluorouracil on WiDr Cells
(Yurista Gilang, Adam Hermawan, Aditya Fitriasari, and Riris Istighfari Jenie)
404 - 409
Preface

Indonesian Journal of Cancer Chemoprevention (IJCC) is an Indonesian leading journal in cancer chemoprevention with international level. We publish all aspects of cancer chemoprevention, including experimental and clinical pharmacology, cancer detections and also applications of stem cell technology, immunology research, in vitro and in silico exploration on chemoprevention mechanisms, screening of natural (plants, marine natural products, etc.) and synthetic chemopreventive agents, cultivation of chemopreventive plants and development of herbal dosage forms for chemoprevention, and development of herbal cosmetics formulation. The current issue of IJCC contains six articles with various topics.

An interesting approach involving in cancer chemoprevention is to inhibit angiogenesis which involve extensively in cancer disease. Hamid et al. showed that extract of Gymura procumbens, which is published before as potent cytotoxic agent, also perform as anti-angiogenic agent. Another interesting pathway is estrogenic pathway regulating many physiological functions and also involved in chemoprevention. Sugiyanto et al. reported that extract of Carica papaya leaves showed estrogenic effect which is might be due to its flavonoid content. This research revealed the potency of Carica papaya leaves to be developed as phytestrogen suplement. Other articles in this issue found the potency of some natural products as cytotoxic agent, such as Eugenia uniflora Lam. (Ismiyati et al.) and Caesalpinia sappan L. (Nurziah et al. and Rivanti et al.), while flavonoid hesperidin is potential to be developed as co-chemotherapeutic agent with 5-Fluorouracil (Gilang et al.).

We wish to thank the authors contributed in this issue. Editors encourage other researchers to explore more combination chemotherapy agent and molecular mechanisms, and published the articles in IJCC.

Sincerely,

Dr. Arry Yanuar, M.Si., Apt.
Editor-in-Chief, Indonesian Journal of Cancer Chemoprevention (IJCC)
AIMS

Indonesian Journal of Cancer Chemoprevention is a tri-annual international journal devoted to the publication of articles on all aspects of cancer chemoprevention including experimental and clinical pharmacology, especially concerning anti-oxidants, antiaging, anti-inflammation, anti-angiogenesis, and anti-carcinogenesis; cancer detection and also applications of stem cell technology; Immunology research, especially on immunomodulation; In vitro and in silico exploration on chemoprevention mechanisms; Screening of natural (plants, marine natural products, etc.) and synthetic chemopreventive agents; Cultivation of chemopreventive plants and development of herbal dosage forms for chemoprevention; and Development of herbal cosmetics formulation.

INSTRUCTIONS TO THE AUTHORS

Submission

Abstract was written in 1 space, one column, the manuscript 1.5 space with 1 column format, the overall amount of approximately 10 pages, with top and left of the format is 4 cm, right and bottom 3 cm from the edge of quarto paper (A4), must be clear for easy reading.

The manuscript must be written in clear and concise English and should comprise: (a) Title page; (b) Abstract; (c) Keywords; (d) Background; (e) Materials and Methods; (f) Results and Discussion; (g) Acknowledgement, if any; (h) References.

The manuscript

Title page
Title must be concise and informative.

First Author* 1*, Second Author, etc, (given name followed by surname), Times New Roman 12 pt, bold, double space, centered

*Institutional affiliation(s), Times New Roman 12 pt, double space, centered

*Corresponding author: contact of the corresponding author, affiliation, address (optional), phone number (optional), city, country, email address

Abstract and Keywords

Write the abstract using single spacing. The abstract provides a clear and concise summary of the information in an article. The abstract should include a background for the work, a brief description of the methods, a summary of the results, and a conclusion. They are indicative only and will not be used for citation purposes. The abstract should be between 200 and 300 words.

Keywords: provide a list of a most 5 key words for the abstract, separated by commas (,)

Introduction

The Introduction should state the purpose of the paper. It should not review the subject extensively

Materials and Methods

Materials and Methods should be described in detail sufficient to enable the work to be repeated, and suppliers of materials and equipment given, if necessary.

Results and Discussion

Results should be presented in logical sequence, with tables and illustration as appropriate. Discussion should emphasize the implication of the findings, their limitations, and relevance to other studies. It should not be a recapitulation of the results. The end of the discussion should implied conclusion of whole research.

Acknowledgement

Fill this with the acknowledgement section of your manuscript if any

References

The Harvard System is used. References in the text should be quoted in the following for single, two or more than two authors respectively: King (2000), Hanahan and Weinberg (1999), Choi et al. (2005). Multiple papers referred to together in the text should be given in chronological order.

The references should be listed alphabetically at the end of the paper. The journal titles should be abbreviated to conform to the style of Index Medicus. The layout should be as follows.

for books

for chapter in books

for proceedings

for official documents

Division of Drugs & Toxicology, 1994, *Drug Evaluation Annual,* New York: American Medical Association

Without author

Tables and figure

For each table and figures, provide a detail legend explaining the content of the table or figure
The Number of Macrophages and Heterophils on Chick Embryo Chorioallantoic Membrane After *Gynura procumbens* (Lour) Merr Extract Treatment and bFGF Induction

Iwan Sahrial Hamid¹, Yuseni Kusuma P., Retno Bijanti¹, E. Bimo Aksono¹

¹Division of Basic Veteriner, Faculty of Veterinary, Universitas Airlangga, Jl. Mulyorejo, Surabaya, 60115, Indonesia, Tel. +62-031-5992785
²Faculty of Veterinary, Universitas Airlangga, Surabaya, Jl. Mulyorejo, Surabaya, 60115 Indonesia, Tel. +62-031-5992785

Abstract

Angiogenesis (inhibition of new blood vessels formation) has become a strategy to inhibit cancer development. The aim of this experiment was to investigate antiangiogenic effect of *Gynura procumbens* (Lour) Merr focusing on the decreasing of the number of macrophages and heterophils on chick embryo chorioallantoic membrane. Nine-days-aged-eggs were divided into six groups (eight eggs each group). Group I (positive control) eggs were induced with bFGF + Tris HCl. Group II (negative control) eggs were treated with DMSO + Tris HCl. Group III (treatment I) eggs were induced with 60 ng bFGF and treated with ethanolic extract of *G. procumbens* leaves with the dose of 60 μg. The following treatment groups, i.e. group IV (treatment II), group V (treatment III), and group VI (treatment IV) were treated with increasing dose of extract, starting from 75 μg, 90 μg, and the last was 110 μg. Eggs were incubated until they reach the age of twelve days to observe macrophages, while to observe heterophils, eggs were incubated until the age of seventeen days. Based on haematoxylin-eosin staining, macrophages in the treatment groups were less than the control positive group (bFGF + Tris HCl), but based on giemsa staining, the effect of *Gynura procumbens* in decreasing the number of heterophils could not be observed because some blood smears. These analysis suggest that the ethanolic extract of *Gynura procumbens* leaves can perform as antiangiogenic agent decreasing the number of macrophages.

Keywords: antiangiogenic, macrophages, heterophils, *Gynura procumbens*

INTRODUCTION

Angiogenesis is new blood formation as part of normal process in the body, playing and important role in growth and development. Angiogenesis occurs during recovery, such as during the formation of new tissue after damage. Unfortunately, angiogenesis is also involved in carcinogenesis, that turns cancer into its uncontrolled malignant state (Folkman, 1998).

Angiogenesis involves cells engaged with inflammation, including macrophages and heterophils, facilitated by matrix metalloproteinase (MMP) (Zijlstra et al., 2004; Zijlstra et al., 2005). According to the study conducted by Deryugina and Quigley (2006) discussed in Ardi et al. (2007), the role of MMP in the development of tumour and metastasis is complex. MMP acts as the main mediator in growth factor activation, e.g. bFGF, receptor bioavailability and signaling, cell adhesion and motility, apoptosis and survival mechanism, angiogenesis and immune response, and also immune surveillance. To date, more than 20 proteases that belongs to MMP family have been discovered (Rundhaug, 2005). MMP-9 secreted by heterophils and MMP-13 secreted by macrophages as part of MMP family involved in angiogenesis, as proangiogenic proteinase (Zijlstra et al., 2004; Zijlstra et al., 2005).

Corresponding author e-mail: kelana_dawley68@yahoo.com
Plenty of strategies have been applied in cancer treatment. However, existing methods faced various clinical problems. Hence, novel strategies are being developed continuously. One strategy of suppressing carcinogenesis is by inhibiting angiogenesis. Jenie et al. (2006) reported that *G. procumbens* leaves possess antiangiogenic activity. *G. procumbens* also showed pharmacological effect to cancer, since its extract contains flavonoid, quercetin, polyphenol, alkaloid, and also other substances that are able to inhibit carcinogenesis (Hamid et al., 2009).

This study was conducted to observe *G. procumbens* leaf ethanolic extract's ability to suppress cancer growth by inhibiting angiogenesis. Antiangiogenic effect will be observed by evaluating its ability to decrease the number of macrophages and heterophils.

MATERIALS AND METHODS

Materials

Another chemicals used were ethanol 70%, sterile aquabidest, formaline buffer 10% for TAB chorioallantoic membrane preservation, haematoxylin-eosin for macrophage-histology and counting staining, and methanol-giems for heterophils counting staining (Thompson and Samuel, 1966).

Antiangiogenic Activity Observation

Eggshell were marked for air space boundary, embryo location, and the area above the embryo that later would be perforated with a 1x1 cm square window. The embryo location was detected by candling on the eggs. The pole of the eggshells containing air space and the eggshell part above the embryo was washed with ethanol 70%. Then, those two areas were perforated with a minidrill.

The air inside the air space was aspirated by using a rubber ball until the chorioallantoic that adhered to the egg membrane detached. Egg position was maintained horizontal during the process conducted in a dark room by candling, so that the chorioallantoic membrane and the artificial air space formed above the embryo could be seen. Next, eggs were washed with ethanol 70% again and kept horizontally in laminar air flow hood. Artificial air space were positioned at the upper part.

Eggshell above the embryo were perforated with a minidrill to make a 1 cm² hole. Test solution was implanted into formed chorioallantoic membrane through this window. There were 6 groups, each containing 8 eggs, half were for macrophages observation, while another four were for heterophils observation. Group 1 was implanted with paper disc containing 60 ng bFGF and tris-HCl as positive control. The 2nd group was implanted with paper disc containing tris-HCl and DMSO 2% as negative control. Group 3, as the first treatment group, was implanted with paper disc containing 60 ng bFGF and 60 µg *Gymnema procumbens* leave ethanolic extract (GLE). Another treatment groups were group 4, 5, and 6, implanted with paper disc containing 60 ng bFGF and 75 µg, 90 µg, and 110 µg GLE, respectively.

After treatment, eggs were incubated at 39°C and 60% RH for 72 hours (Ribatti et al., 1997). On the 13th day, four embryonic eggs from each group were kept in the freezer for 24 hours to kill the embryo. Following it, TAB was opened by cutting the shell into two, starting from the area that was close to the air space. Egg content was slowly extracted to prevent chorioallantoic membrane detachment. Chorioallantoic membrane around the paperdisc were then cut and kept in formaline buffer 10% for preservation. The membrane then were used to make the histopathology preparation stained with haematoxylin-eosin for macrophages number observation. Preparations were conducted in Laboratorium Patologi Fakultas Kedokteran Universitas Gadjah Mada.

The other four eggs remaining from each group were used for heterophils observation. Heterophils could be isolated from 17 days-aged TAB (Zijlstra et al., 2005). Embryonic chicken eggs were opened by cutting the shell. Blood was extracted from the blood vessel of the egg to be made into blood preparations with Romanowsky method. The preparations were then used for heterophils counting.

Observation was conducted by using Olympus ® CX-21 microscope with 1000x magnification on six different window of view. Data acquired was analyzed statistically by using One-way Analysis of Variance (ANOVA), continued with Duncan post-hoc test (p<0.05).
RESULTS AND DISCUSSION

Effect of GLE on Number of Macrophages

The result of hematoxylin-eosin-stained embryonic chicken egg chorionicallantoic membrane macrophage counting is shown on Table I. Histology observation is shown in Fig. 1.

Table 1. Effect of GLE on mean of macrophages number on each group. Differently superscripted mean shows significant different compared to each other (p < 0.05)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of Macrophages (x ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104.50 ± 16.46</td>
</tr>
<tr>
<td>2</td>
<td>21.50 ± 2.65</td>
</tr>
<tr>
<td>3</td>
<td>76.50 ± 6.56</td>
</tr>
<tr>
<td>4</td>
<td>50.25 ± 7.57</td>
</tr>
<tr>
<td>5</td>
<td>40.75 ± 2.87</td>
</tr>
<tr>
<td>6</td>
<td>24.00 ± 6.83</td>
</tr>
</tbody>
</table>

Figure 1. Histology observation on (A) Group 1 as positive control, (B) Group 2 as negative control, (C) Group 3, (D) Group 4, (E) Group 5, and (F) Group 6 as treatment groups. Preparations were stained with haematoxylin-eosin, 1000x magnification. Black arrows shown macrophages.
The mean of the number of macrophages of all GLE-treated groups (Group 3 to 6) with different doses, that are 60 μg, 75 μg, 90 μg, and 110 μg, respectively, showed a significant decrease compared to positive control group (Group 1) (p < 0.05). Moreover, Group 6, 110 μg GLE-treated group, had shown a decrease of the number of macrophage that is similar to its normal state, shown by Group 2 as the negative control group.

The number of macrophage in each GLE-treated group showed significant difference among each other (p < 0.05). These data showed that GLE could decrease the number of macrophages. It is possible that GLE contains certain substance(s) that possess an angiogenesis inhibitory activity by decreasing macrophages infiltration.

A component in G. procumbens having antiangiogenic activity is flavonoid. The study support the result reported by Jenie et al. (2006), proving that flavonoid contained in G. procumbens could inhibit angiogenesis of TAB chorioallantoic membrane. According to the study on Citrus reticulata conducted by Chrisnanto et al. (2008), treatment of Citrus reticulata peels extract containing a huge amount of tangeretin (a polymethoxy flavonoid) and nobiletin yield less number of macrophages compared to bFGF-only-treated group in microscopic observation of hematoxylin-eosin-stained TAB chorioallantoic membrane histopathological preparations. Macrophages are known to secrete angiogenic factors, such as VEGF, bFGF, and interleukin-8 (IL-8) that are able to induce angiogenesis and Tumor Necrosis Factor-α (TNF-α) that later would increase the number of VEGF, bFGF, and IL-8 receptors (Lee et al., 2006). The decrease of the number of macrophages could possibly occurred by cell cycle arrest induced by tangeretin (Chrisnanto et al., 2008).

It has been reported that several flavonoids, such as apigenin, genistein, and queretin were able to induce premictotic Growth phase-2/Mitotic phase (G2/M) arrest in several cell lines, while some others were also able to induce presynthetic Growth phase-1 (G1) arrest (Pan et al., 2002). Pan et al. (2002) also reported that tangeretin found in Citrus reticulata peels could induce G1 arrest by increasing Cyclin-dependent Kinase Inhibitors (CKIs), such as p27 and p21 in colon cancer cell lines. The possible mechanism of cell cycle arrest by the extract might be the same as the mechanism of cell cycle arrest by flavonoids contained in GLE.

GLE could possibly increase CKIs, such as p21, p27, and/or p57, inhibiting Cyclin-dependent Kinases (CDKs), that later would suppress cyclins expression or increase p53 level, resulting in cell cycle arrest (Meiynanto et al., 2007) and the decrease of the number of macrophages. p53 a regulatory protein that could induce p21 expression, hence causing G1 arrest (Meiynanto et al., 2007). G1 phase is the phase when cells are getting prepared for DNA synthesis together with RNA and protein biosynthesis (Hartono, 2009). Flavonoid contained in G. procumbens extract could also suppress topoisomerase I and II expression that play a role in DNA supercoil conversion. Topoisomerase inhibitor may stabilize topoisomerase complex, causing the formation of DNA nick hence undergoes a damage. DNA damage will further increase the expression of proapoptotic proteins, such as Bax and Bak, and decrease antiapoptotic proteins Bcl-2 and Bcl-XL (Ren et al., 2003). Here, we may see that flavonoids play a role in inducing apoptosis.

According to the discussion above, it is very likely that flavonoids in GLE could decrease the number of macrophages by similar mechanism.

Effect of GLE on the Number of Heterophils

The effect of GLE on heterophils could not be observed yet, since the preparations did not allow a valid observation, resulting in insufficient replication. The problem was caused by the lysed nucleus, causing it impossible to differ heterophils and the other leukocytes, worsen by the precipitated staining agent interfering cell observation.

Nucleus lysis may occur because of insufficient duration of fixation. The minimum duration of fixation is 5 minutes. It could be modified, depending on the quality of staining agent used (Bijanti et al., 2010). The precipitation of staining agent was caused by the solution that was kept uncovered, the solution that was not filtered properly prior to usage, and dirty object glass (WHO, 2006). The preparations also shown too intense blue color of the cells and blue background. Too intense blue color of the cells may caused by the blood smear that is too thick, insufficient time for the buffer to dissolve, too high buffer pH, too long...
staining duration, too high staining agent concentration and viscosity, impurities in staining agent stock, and light exposure on staining agent stock solution. The blue background yielded may be caused by the too quick fixation process and too long duration time prior to fixation (WHO, 2006).

This study concluded that GLE treatment could decrease the number of macrophages of bFGF-induced TAB chorioallantoic membrane histopathological preparations. Unfortunately, the effect of GLE on the number of heterophils could not be observed because of the improper preparation of the blood smears that did not allow a valid observation, resulting in insufficient replication.

REFERENCES

Hartono, N.W.B., 2009, Pengaruh Alpinia galanga (Lengkuas) terhadap Aktivitas Proliferasi Sel dan Indeks Apoptosis pada Adenokarsinoma Mama Mencit C3H [Tesis], Universitas Diponegoro.

KOMISI ETIK PENELITIAN
FAKULTAS KEDOKTERAN HEWAN UNIVERSITAS AIRLANGGA
Animal Care and Use Committee (ACUC)

KETERANGAN KELAIKAN ETIK
“ETHICAL CLEARANCE”

No : 175-KE

KOMISI ETIK PENELITIAN (ANIMAL CARE AND USE COMMITTEE)
FAKULTAS KEDOKTERAN HEWAN UNIVERSITAS AIRLANGGA SURABAYA,
TELAH MEMPELAJARI SECARA SEKSAWA RANCANGAN PENELITIAN YANG
DIUSULKAN, MAKA DENGAN INI MENYATAKAN BAHWA :

PENELITIAN BERJUDUL : THE NUMBER OF MACROPHAGES AND HETEROPHILS
ON CHICK EMBRYO CHORIOALLANTOIC MEMBRANE
AFTER GYNURA PROCUMBENS (LOUR) MERR
EXTRACT TREATMENT AND BFGF INDUCTION

PENELITI UTAMA : YUSENI KUSUMA P
UNIT/LEMBAGA/TEMPAT : FAKULTAS KEDOKTERAN HEWAN,
UNIVERSITAS AIRLANGGA
DINYATAKAN : LAIK ETIK

Surabaya, 14 Desember 2011

Mengetahui,
Dekan FKH - Unair, Ketua,
Prof. Romziah Sidik, Ph.D., drh.
Dr. E. Bimo Aksono H, M.Kes., Drh
NIP. 130 687 305 NIP. 132 014 464