#### PAPER • OPEN ACCESS

## Preface

To cite this article: 2020 J. Phys.: Conf. Ser. 1445 011001

View the article online for updates and enhancements.



# IOP ebooks<sup>™</sup>

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

# Preface

The International Symposium on Nanoscience & Nanotechnology in Life Sciences 2017 (ISNNLS 2017) took place between 28-29 November 2017 at Hotel Santika Premiere, Surabaya, Indonesia. The symposium was organized by the Research Center for Quantum Engineering Design and Faculty of Science and Technology, Universitas Airlangga, Indonesia. ISNNLS 2017 was the fourth annual symposium that initiated and previously held by Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Indonesia.

In the last decade, nanotechnology has advanced, and nanoscale materials are used in everything from chemical catalyst to antibacterial agents. The scientific program of the symposium included many topics in the field of nanotechnology and its role in life sciences. The symposium presented keynote speakers from notable experts of nanoscience and nanotechnology, i.e., Kyle E. Cordova from University of California, USA, Prof. Yoshitada Morikawa from Osaka University, Japan, Prof. Heni Rachmawati from Institut Teknologi Bandung, Indonesia, Dr. Tommy Julianto Bustami Effendi from Universiti Teknologi MARA, Malaysia, and Mochamad Zakki Fahmi, Ph.D. from Universitas Airlangga, Indonesia. ISNNLS 2017 facilitated researchers, scientists, and engineers to exchange ideas and discuss progress in four main tracks, chapter of modeling, chapter of synthesis, chapter of treatment and chapter of supporting.

More than 100 participants took part in the symposium. We received 46 submissions to all main tracks. Papers were evaluated to the high standard. Two reviewers from Program Committee and additional reviewers were assigned to review each article. After the completion of the peer review process, 29 papers were selected for publication in the Journal of Physics: Conference Series (JPCS).

We would like to thank all authors, program committee members, reviewers, and fellow members of the symposium committee for their contribution to the symposium. We also greatly appreciated the publication support from Center for Journals Development and Scientific Publications, Universitas Airlangga, Indonesia.

# Organization

## 1. Steering Committee

| Position | Name                       | Institution |
|----------|----------------------------|-------------|
| Head     | Prof. Hermawan K. Dipojono | ITB         |
|          | Prof. Win Darmanto         | UA          |
| Member   | Prof. Suprijadi            | ITB         |
|          | Prof. Moh. Yasin           | UA          |

## 2. Scientific Board

| Position        | Name                      | Institution |
|-----------------|---------------------------|-------------|
| Editor-in-chief | Prof. Yoshitada Morikawa  | OU          |
| Deputy          | Prof. Sulaiman W. Harun   | UM          |
| Member          | Prof. Heni Rachmawati     | ITB         |
|                 | Dr. Tommy J. B. Effendi   | UiTM        |
|                 | Mochamad Z. Fahmi, Ph.D   | ITB         |
|                 | Andi H. Zaidan, Ph.D      | UA          |
|                 | Prof. Brian Yuliarto      | ITB         |
|                 | Mohammad K. Agusta, Ph.D  | ITB         |
|                 | Triati D. K. Wungu, Ph.D  | ITB         |
|                 | Damar R. Adhika, Ph.D     | ITB         |
|                 | Benny Permana, Ph.D       | ITB         |
|                 | Fadjar Fathurrahman, Ph.D | ITB         |

## 3. Organizing Committee

| Position      | Name                     | Institution |
|---------------|--------------------------|-------------|
| Program Chair | Febdian Rusydi, Ph.D     | UA          |
| Deputy        | Adhitya G. Saputro, Ph.D | ITB         |
|               | Enggar Alfianto, M.Si    | ITATS       |
| Treasury      | Ira Puspitasari, Ph.D    | UA          |

## **Section A: Secretarial**

| Head   | Nufida Dwi Aisyah, S.Si    | UA  |
|--------|----------------------------|-----|
| Member | Etika D. Susanti, S.Si     | UA  |
|        | Viny V. Tanuwijaya, M.T    | ITB |
|        | Ema Rimawati               | ITB |
|        | Muhamad N. Romadhoni, S.Si | UA  |
|        | Roichatul Madinah, S.Si    | UA  |
|        | Rochmatun Nisa'            | UA  |
|        | Fitri N. Febriana, S.Si    | UA  |
|        | Husnul Khuluq              | UA  |
|        | Andri Wahyudianto          | UA  |

## **Section B: Publication**

| Head   | Rizka N. Fadilla, S.Si | UA |
|--------|------------------------|----|
| Member | Grendy Firmanda, S.Si  | UA |
|        | Isniar Wardani, S.Si   | UA |
|        | Binti Q. A'yuni, S.Si  | UA |
|        | Dalliyah A. Aminati    | UA |

## **Section C: Event**

| Head   | Astrid N. Jannah, S.Si    | UA  |
|--------|---------------------------|-----|
| Member | Novi Irvianty             | ITB |
|        | Syifa M. Restian          | ITB |
|        | Putri A. Lestari          | ITB |
|        | Maghfira Maulidiyah, S.Si | UA  |
|        | Dian E. Candrasari, S.Si  | UA  |
|        | Lafitara G. Arisha, S.Si  | UA  |
|        | Winda O. D. Cahyani, S.Si | UA  |
|        | Nikmatul Khoiroh, S.Si    | UA  |
|        | Muhammad C. E. Dien, S.Si | UA  |
|        | Beni Hamdani              | UA  |
|        | Ella Z. Fadilah           | UA  |
|        | Daysta A. Zahra           | UA  |
|        | Rachma Arinsyah           | UA  |
|        | Syahrul Munir, S.Si       | UA  |
|        | Soleha R. Junia, S.Si     | UA  |
|        | Billy Y. Wijoyo           | UA  |
|        | Hakam Pranatagama, S.Si   | UA  |
|        | Jeremy Pamungkas          | UA  |
|        | Samuel E. P. P. Masan     | UA  |
|        |                           |     |

### **Abbreviation list for Institution**

| ITB   | Institut Teknologi Bandung, Indonesia            |
|-------|--------------------------------------------------|
| UA    | Universitas Airlangga, Indonesia                 |
| OU    | Osaka University, Japan                          |
| UM    | Universiti Malaya, Malaysia                      |
| UITM  | Universiti Teknologi Mara, Malaysia              |
| ITATS | Institut Teknologi Adhi Tama Surabaya, Indonesia |

*NOTICE*: Access in China: Some users in China are being blocked by IOP's security software. Please contact china@ioppublishing.org

# Table of contents

# Volume 1445

## January 2020

♦ Previous issue
 Next issue ▶

## International Symposium on Nanoscience & Nanotechnology in Life Sciences 2017 28-29 November 2017, Surabaya, Indonesia

Accepted papers received: 24 December 2019 Published online: 27 January 2020

View all abstracts

| Preface           |                        |                                                   |        |
|-------------------|------------------------|---------------------------------------------------|--------|
| OPEN ACCESS       |                        |                                                   | 011001 |
| Preface           |                        |                                                   |        |
|                   | View article           | 🔁 PDF                                             |        |
| OPEN ACCESS       |                        |                                                   | 011002 |
| Peer review state | ment                   |                                                   |        |
|                   | View article           | 🔁 PDF                                             |        |
| Papers            |                        |                                                   |        |
| Modelling         |                        |                                                   |        |
| OPEN ACCESS       |                        |                                                   | 012001 |
| The Perovskite Ph | nase Optimize of Ba    | rium Titanate Nanoparticles                       |        |
| Jan Ady, Arum Nur | pratiwi, Aliyah and Wi | inda Apriliana                                    |        |
| ➡ View abstract   | View article           | 🔁 PDF                                             |        |
| OPEN ACCESS       |                        |                                                   | 012002 |
| Penetration Dept  | h of Free Falling Int  | ruder into a Particles Bed in Fluid-Immersed Two- |        |

Penetration Depth of Free Falling Intruder into a Particles Bed in Fluid-Immersed Two Dimension Spherical Particle System

S Viridi and T A Sanny

|                                                         | View article                                                      | PDF                                                                                              |            |
|---------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|
| OPEN ACCESS                                             |                                                                   |                                                                                                  | 012003     |
| In vitro study of Na<br>Substitute Associa              | ano Hydroxyapatite<br>ated- 3D printed B                          | e/Streptomycin -Gelatin-Based Injectable Bone<br>one Scaffold for Spinal Tuberculosis Case       |            |
| Inten Firdhausi War                                     | dhani, Rofi Mega Riz                                              | zki Samudra, Katherine and Dyah Hikmawati                                                        |            |
|                                                         | View article                                                      | PDF                                                                                              |            |
| OPEN ACCESS                                             |                                                                   |                                                                                                  | 012004     |
| Ultraviolet (UV) Ac<br>Extract to <i>Streptor</i>       | tivation Effect on A<br>coccus mutans                             | Intibacterial Agents of Red Betel ( <i>Piper Crocatum</i> )                                      | I          |
| Suryani Dyah Astuti<br>Moh. Yasin                       | , Rio Dysan Tirtana, /                                            | Amalia Fitriana Mahmud, Amiliyatul Mawaddah, Abdur                                               | achman and |
|                                                         | View article                                                      | PDF                                                                                              |            |
| OPEN ACCESS                                             |                                                                   |                                                                                                  | 012005     |
| A Computational T<br>Detected Sensor &<br>Configuration | Theory Study of Sub<br>based-on Fe <sub>3</sub> O <sub>4</sub> Na | rface Plasmon Resonance (SPR) Porcine Gelatine<br>anoparticle—CNT with ATR Method in Kretschmanr | 1          |
| Maulina Lutfiyah, W                                     | 'ahyu Aji Eko Prabow                                              | o and Asih Melati                                                                                |            |
|                                                         | View article                                                      | PDF                                                                                              |            |
| OPEN ACCESS                                             |                                                                   |                                                                                                  | 012006     |
| Implementation o<br>Density Functiona                   | f Go language to ca<br>I Theory (DFT)                             | alculate ground state energy of atoms based on                                                   |            |
| Lafitiara Gita Arisha                                   | , Enggar Alfianto and                                             | d Febdian Rusydi                                                                                 |            |
|                                                         | View article                                                      | PDF                                                                                              |            |
| OPEN ACCESS                                             |                                                                   |                                                                                                  | 012007     |
| Theoretical Investi<br>using First Princip              | gation of Fe and A<br>les Calculation                             | I Surface Structure in the Case of H Adsorption                                                  |            |
| N D Aisyah, D E Car                                     | ndrasari, A Stefanus,                                             | R Madinah, R Nisa' and A H Zaidan                                                                |            |
| ➡ View abstract                                         | View article                                                      | 🔁 PDF                                                                                            |            |
| OPEN ACCESS                                             |                                                                   |                                                                                                  | 012008     |
| Theoretical Study principles Calcula                    | on Radiationless D<br>tion                                        | Decay in Butadiene Isomerization Case using First-                                               |            |
| R N Fadilla, A N Jan                                    | nah, F N Febriana, S                                              | Munir and A H Zaidan                                                                             |            |
|                                                         | View article                                                      | PDF                                                                                              |            |
| OPEN ACCESS                                             |                                                                   |                                                                                                  | 012009     |
| Approximation Re                                        | ctangular Function                                                | as Potential Barrier                                                                             |            |
| I Wardani, N D Aisya                                    | ah and A Supardi                                                  |                                                                                                  |            |

| View abstract | View article | 🔁 PDF |
|---------------|--------------|-------|
|---------------|--------------|-------|

| OPEN ACCESS                               |                                            |                                                     | 012010 |
|-------------------------------------------|--------------------------------------------|-----------------------------------------------------|--------|
| The Effect of Basis<br>Isomerization      | s Set on Quantum 1                         | unneling Probability with the Case of trans-HCOH    |        |
| E D Susanti, S R Ju                       | nia, R N Fadilla and A                     | A Supardi                                           |        |
|                                           | View article                               | PDF                                                 |        |
| OPEN ACCESS                               |                                            |                                                     | 012011 |
| D-band Center Th<br>Al(100) Surfaces:     | eory for the Case of<br>A Density Functior | f Hydrogen Atom Adsorption on Fe(100) and nal Study |        |
| Wahyu Aji Eko Prab                        | owo, Nikmatul Khoir                        | oh, Satriyaji Wibisono and Adri Supardi             |        |
| ➡ View abstract                           | Tiew article                               | PDF                                                 |        |
| Synthesis                                 |                                            |                                                     |        |
| OPEN ACCESS                               |                                            |                                                     | 012012 |
| Physical Characte<br>Aerosolization Teo   | eristics of Erythropo<br>chnique           | etin Encapsulated into Alginate Polymer Using       |        |
| Dewi Melani Hariya                        | di, Noorma Rosita ar                       | nd Kamila Amalia                                    |        |
|                                           | View article                               | 🔁 PDF                                               |        |
| OPEN ACCESS                               |                                            |                                                     | 012013 |
| Synthesis of Alum                         | ninium Nanoparticle<br>E Kurpiawan         | es Using Electrochemical Method                     |        |
| <ul> <li>View abstract</li> </ul>         | View article                               |                                                     |        |
|                                           |                                            |                                                     |        |
| OPEN ACCESS                               |                                            |                                                     | 012014 |
| Synthesis of ZnO<br>(High Energy Milli    | Nanoparticles Usin<br>ng)                  | g Mechano-Chemical Method By Utilizing 3D HEM       |        |
| Siswanto and Maya                         | asari Hariyanto                            |                                                     |        |
|                                           | View article                               | PDF                                                 |        |
| OPEN ACCESS                               |                                            |                                                     | 012015 |
| Synthesis of Hydr<br>Substitution         | oxyapatite Based o                         | n Nano Coral Using precipitation Method For Bone    |        |
| Siswanto, Dyah Hik                        | mawati, N Benecdita                        | and Siti Nurmala                                    |        |
|                                           | Tiew article                               | PDF                                                 |        |
| OPEN ACCESS                               |                                            |                                                     | 012016 |
| Synthesis of SiO <sub>2</sub><br>Gelatine | – PVA – Gelatine N                         | lanocomposite Membrane by Handling of the           |        |

Jan Ady, Muhammad Abdul Aziz and Siti Nur Seha

| View abstract                            | View article                                | 🔁 PDF                                                                           |        |
|------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|--------|
| OPEN ACCESS                              |                                             |                                                                                 | 012017 |
| Temperature Effect<br>Characterization c | ct of Chemical Bath<br>of Zinc Oxide Nanor  | Deposition (CBD) to Fabrication and ods Thin Films Based Gas Sensing: Ethanol   |        |
| Adimas Ramadhan,                         | , Ni Luh Wulan Septia                       | ani, Wahyu Aji Eko Prabowo and Asih Melati                                      |        |
| ➡ View abstract                          | Tiew article                                | 🔁 PDF                                                                           |        |
| Treatment                                |                                             |                                                                                 |        |
| OPEN ACCESS                              |                                             |                                                                                 | 012018 |
| Hepato-Renal Pro<br>Extract in Streptoz  | tective Effects of M<br>cotocin-induced Dia | angosteen ( <i>Garcinia mangostana</i> L.) Pericarp<br>abetic Mice              |        |
| Saikhu Akhmad Hu                         | sen, Septian Hary Ka                        | lqutny, Arif Nur Muhammad Ansori,                                               |        |
| Raden Joko Kuncor                        | oningrat Susilo, Firas                      | s Khaleyla and Dwi Winarni                                                      |        |
| View abstract                            | View article                                | PDF                                                                             |        |
| OPEN ACCESS                              |                                             |                                                                                 | 012020 |
| Snedds (Self-nan<br>Extract on Cervica   | oemulsifying Drug I<br>I Cancer Cells (HeL  | Delivery System) Formulation of <i>Sarang Semut</i><br>a) with MTT Assay Method | 012020 |
| B H Nugroho, M R S                       | Syifaudin, L R Fauzi, E                     | Anggraini and H O Ritonga                                                       |        |
| View abstract                            | View article                                | 🔁 PDF                                                                           |        |
| OPEN ACCESS                              |                                             |                                                                                 | 012021 |
| Determination of I<br>Candidate of Phot  | Infrared Laser Ener<br>todynamic Therapy    | gy Dose for Cancer Cells Inactivation as a                                      |        |
| Septia Kholimatuss                       | a'diah, Suryani Dyah                        | Astuti and Retna Apsari                                                         |        |
| ➡ View abstract                          | View article                                | 🔁 PDF                                                                           |        |
| OPEN ACCESS                              |                                             |                                                                                 | 012022 |
| Electrospun Colla                        | gen-based Scaffold                          | d as Therapeutic Agent for Ocular Chemical Inju                                 | ry     |
| N A F Hasbiyani, D I                     | Hikmawati and Siswa                         | into                                                                            |        |
|                                          | View article                                | 🔁 PDF                                                                           |        |
| OPEN ACCESS                              |                                             |                                                                                 | 012023 |
| The Effect of Addit<br>as Bone Filler    | tive Substitute of M                        | gO Nanoparticle on the Characteristics of Expo                                  | rts    |
| Djony Izak Rudyardj                      | jo and Setiawan Wija                        | yanto                                                                           |        |
|                                          | View article                                | PDF                                                                             |        |
| Supporting                               |                                             |                                                                                 |        |

| The Influence of Solvent Parameters along Terminal Jet Radius and Fiber Diameter in |  |
|-------------------------------------------------------------------------------------|--|
| Electrospinning                                                                     |  |

P M Widartiningsih, F Iskandar, M M Munir and S Viridi

| View abstract | View article | 🔁 PDF |
|---------------|--------------|-------|
|---------------|--------------|-------|

| OPEN ACCESS                           |                                         |                                                      | 012026 |
|---------------------------------------|-----------------------------------------|------------------------------------------------------|--------|
| Expert System for<br>as Diagnosis Sup | Stroke Classification<br>porting Device | on Using Naive Bayes Classifier and Certainty Factor |        |
| Khusnul Ain, Hanik                    | B. Hidayati and Olivia                  | a Aulia Nastiti                                      |        |
| ➡ View abstract                       | Tiew article                            | PDF                                                  |        |
| OPEN ACCESS                           |                                         |                                                      | 012027 |
| Design Monitoring                     | g Electrical Power C                    | onsumtion at Computer Cluster                        |        |
| Enggar Alfianto, Sit                  | i Agustini, Syahri Muł                  | narom, Febdian Rusydi and Ira Puspitasari            |        |
|                                       | View article                            | PDF                                                  |        |
| OPEN ACCESS                           |                                         |                                                      | 012028 |
| Numerical Simula                      | ition of Spear Motic                    | on as Game Items                                     |        |
| R R Muhima, S Mar                     | di, M Hariadi and I P                   | uspitasari                                           |        |
|                                       | View article                            | PDF                                                  |        |
| OPEN ACCESS                           |                                         |                                                      | 012029 |
| Modeling Structur                     | re of Portable River                    | Bridge using Fiber – Reinforced Polymer (FRP)        |        |
| A Sa'diyah, A F Pras                  | setya and E Alfianto                    |                                                      |        |
|                                       | View article                            | PDF                                                  |        |
| JOURNAL LINKS                         |                                         |                                                      |        |
| Journal home                          |                                         |                                                      |        |
| Information for orga                  | anizers                                 |                                                      |        |
| Information for aut                   | nors                                    |                                                      |        |
| Search for publishe                   | d proceedings                           |                                                      |        |
| Contact us                            |                                         |                                                      |        |
|                                       |                                         |                                                      |        |

Reprint services from Curran Associates

#### PAPER • OPEN ACCESS

# Implementation of Go language to calculate ground state energy of atoms based on Density Functional Theory (DFT)

To cite this article: Lafitiara Gita Arisha et al 2020 J. Phys.: Conf. Ser. 1445 012006

View the article online for updates and enhancements.



This content was downloaded from IP address 182.1.70.117 on 04/03/2020 at 13:59

## Implementation of Go language to calculate ground state energy of atoms based on Density Functional Theory (DFT)

#### <sup>1</sup>Lafitiara Gita Arisha, <sup>2</sup>Enggar Alfianto, <sup>1</sup>Febdian Rusydi

<sup>1</sup>Theoretical Physics Research Group, Dep. of Physics, Fac. of Science and Technology, Airlangga University, Jl. Mulyorejo, Surabaya, Indonesia 60115 <sup>2</sup>Dep. of Computer System, Institut Teknologi Adhi Tama Surabaya, Jl Arif Rachman Hakim 100, Surabaya, Indonesia.60111

Email: rusydi@fst.unair.ac.id

Abstract. This study is using Go programming language that support parallel programming for numerical calculation. The program was created is designed for calculate ground-state energy of electron, which is based on Density Functional Theory (DFT). The basic mathematics of this program is using many basic concept of numerical mathematics (matrix calculation, Poisson solver, and standard routine of numerical mathematics).

#### 1. Research Background

Processor is the part of the computer that acts as the brain. The function of processor is to handle the speed of processing data, executing user commands, and the ability of the computer to run multiple tasks together (multi-task). Speed and multi-task are depends on a part of the processor called core. The processor expanding the development by add number of cores that construct it.

The development of the processor and the number of cores can increase the performance of calculation and reduce calculation time. It is because the elements of the processor can do different tasks at the same time (multi-tasking). The multi-tasking process is supported by many core systems. Multi core systems are the right solution when users want to increase high processing speeds, for example in numerical calculations.

In addition to cores, supporting programming languages also affect the speed of numerical calculations [7]. There are programming languages that are often used for numerical calculations, such as the Fortran, Python, Pascal, and C programming languages. Besides the programming language, there is a new programming language called Go. The process of Go language compilation is faster than C language [6]. In addition, the Go language also supports multiple core systems, making it suitable for numerical calculations. Error! Reference source not found.

This study utilizes the Go language as a programming language in DFT-based calculation programs. The aims of the program is to calculate the ground state energy of simple atoms

| International Symposium on Nanoscience & Na | notechnology in Life Sci | ences 2017       | IOP Publishing      |
|---------------------------------------------|--------------------------|------------------|---------------------|
| Journal of Physics: Conference Series       | 1445 (2020) 012006       | doi:10.1088/1742 | -6596/1445/1/012006 |

#### 2. Calculation method

The program is designed by implementing DFT to the Go programming language. The program divided into four processes that we specify, such as Figure 1. Process A determines the initial electron density ( $\rho_N$ ). Process B determines the potential energy of the electron (V). Process C determines the ground state energy ( $E_N$ ). The D process determines the new electron density ( $\rho_{N+1}$ ) for the iteration process. If the fourth process has finished, the program will iterate. The output in the fourth process will be input to the second process, replacing  $\rho_N$  in the first process.



Figure 1. Flow chart of the program based on DFT calculation

The flow chart that have designed is then used to build a ground state energy calculation program using the Go programming language. The program is tested on a number of selected atoms, such as: H, He, C, O, Cl, Fe, and Zn. The results of testing the calculation atoms compared with the results obtained using the C language program.

In addition to getting the energy, we also get the program calculation time. So we also compare the time needed by the Go language and the C language for the calculation of each atom.

#### 3. Result and discussion

#### 3.1. Flow diagram based on DFT

The flow of this program started with process A is to determine the initial electron density  $(\rho_N)$  of an atom tested. In Figure 2 shows the program flow to determine  $\rho_N$ . It is seen that to determine  $\rho_N$  requires an atomic number (Z), the maximum number of orbitals (nmax), the maximum number of angular momentum (lmax), and the number of electrons that fill each atomic skin (F [1] [n]) as input. We get this information from the atomic electron configuration tested.

Furthermore, these inputs are used in four stages. The first step to determine  $\rho_N$  is to determine the total energy for all orbitals (E). The Z and nmax values are used as inputs to calculate the energy of each orbital (En). Each En value is n = 0 until nmax is added up, then multiplied by the number of electrons filling the skin (F [1] [n]). So that we get total energy for all orbitals (E).

The second step is to calculate the total effective potential energy of the electron at all angular momentum, which we represent with  $V_0$ . Before getting the value  $V_0$ , we first calculate the effective potential energy value  $V_{eff}$  at each angular momentum.  $V_{eff}$  is calculated for each value of l, starting

| International Symposium on Nanoscience & N | Vanotechnology in Life Sci | ences 2017       | IOP Publishing      |
|--------------------------------------------|----------------------------|------------------|---------------------|
| Journal of Physics: Conference Series      | 1445 (2020) 012006         | doi:10.1088/1742 | -6596/1445/1/012006 |

from l = 0 to lmax. The value of  $V_{eff}$  for each *l* is summed then multiplied by the number of electrons filling the skin (F [l] [n]), to get the total potential effective energy ( $V_0$ ).

Then the third step is to solve the Schrödinger equation computationally. The values E and  $V_0$  obtained from the first and second processes we use to get the wave function  $(\psi_0(x))$ . From the value of  $\psi_0$  obtained in the fourth stage, we use it to determine  $\rho_N$ . The square of  $\psi_0$  gives the electron distribution, the total electron density is the sum of the squares  $\psi_0$  multiplied by the number of electrons that fill the F[[1] [n] orbitals. In mathematical form, electron density is written as follows





The process of B in this program flow is to determine the potential energy of the electron, such as Figure 3. There are three potential energy contributing here, Hartree potential energy  $(V_H)$ , potential electron energy with nucleus (V(r)), and *exchange-correlation* potential energy  $(V_{xc})$ . So that the total potential energy is the sum of the three potential energies.



Figure 3. B process for finding potential energy

| International Symposium on Nanoscience & N | anotechnology in Life Sci | ences 2017       | IOP Publishing       |
|--------------------------------------------|---------------------------|------------------|----------------------|
| Journal of Physics: Conference Series      | 1445 (2020) 012006        | doi:10.1088/1742 | 2-6596/1445/1/012006 |

 $V_H$  is potential energy from the interaction between electrons and electrons. This potential energy is obtained by solving the Poisson equation, with the form of the Poisson equation

$$\nabla^2 \phi(\vec{x}) = -4 \pi [kc] e \rho(\vec{x})$$

 $\phi(\vec{x})$  is electronic potential energy for one electron. So to find potential energy due to the interaction of electrons with other electrons, it needs to be multiplied by the electron density. The mathematical forms of  $V_H$  are as follows,

$$V_{H} = \frac{1}{2} \int \phi(\vec{x}) \rho(\vec{x}) \, dV$$

 $V_{XC}$  is the energy obtained from interactions aside from  $V_H$  and V(r). The mathematical form of energy exchange-correlation  $V_{XC} = f'_{XC} (\rho(\vec{x}))$  and  $f_{XC} = \epsilon_{XC} \rho$ . is the mathematical form of the chosen exchange-correlation. We chose the VWN exchange correlation, with a mathematical form

$$\varepsilon = A \left[ \ln \frac{x^2}{X(x)} + \frac{2b}{Q} \tan^{-1} \left( \frac{Q}{2x+b} \right) - \frac{bx_0}{X(x_0)} \left( \ln \frac{(x-x_0)^2}{X(x)} + \frac{2(b+2x_0)}{Q} \tan^{-1} \left( \frac{Q}{2x+b} \right) \right) \right]$$

if  $V_{XC}$  is added to other potential energy it will get total potential energy value,

$$V = V(r) + V_H + V_{XC}$$

The C process in this program is to determine the  $E_N$  basic state energy, such as Figure 4 left. If you want to know the energy value, you can use the Schrödinger equation by knowing the value of the wave function and potential energy. Because we already know these two values, we can get the value of  $E_N$ , using the Schrödinger equation

$$\left(\frac{d^2}{dx^2} + V\right)\psi_0 = E_N\psi_0$$

The fourth process in Figure 4 right of the program flow is to determine the new electron density for the iteration process. The iteration process is carried out to correct the values previously obtained. Because this program is based on an approach, we do iterations as a step to get closer results.



Figure 4. Left: C Process, Finding ground-state energy. Right: D Process, routine to finding new density

#### 3.2. Program Testing

Based on the program flow that we have designed, we have realized the flow into a DFT-based numerical calculation program. The program that we designed uses the Go programming language. The reason we chose the Go programming language was because according to Peiyi Tang's paper from the Department of Computer Science, the University of Arkansas stated that parallel programming using Go language was easier and more efficient.

We present the program calculation results with the Go language in Table 1. The parameters of the program calculation results that we have tabulated in the table consist of energy values, program calculation time, program number to achieve convergent values, and time taken for the program once

iteration. The value we get from the Go language is then displayed in graphical form to see the relationship between the energy value of the program's ability to iterate.

| Table 1. The program calculation value |        |                                |             |             |                |
|----------------------------------------|--------|--------------------------------|-------------|-------------|----------------|
|                                        | Atomio | Groundstate energy calculation |             |             |                |
| Atom                                   | Number | Value (Hartree)                | Calcualtion | Ν           | Iteration time |
|                                        | Number | value (Halliee)                | time (s)    | Convergence |                |
| Hydrogen (H)                           | 1      | -0.44567056136                 | 11.76       | 25          | 0.10 - 0.23    |
| Helium (He)                            | 2      | -2.83483568022                 | 12.12       | 29          | 0.10 - 0.23    |
| Carbon (C)                             | 6      | -37.4257485949                 | 32.83       | 32          | 0.10 - 1.00    |
| Oxygen (())                            | 8      | -74.4730768471                 | 34.97       | 34          | 0.10 - 1.01    |
| Chlorine (Cl)                          | 17     | -458.664179537                 | 53.55       | 36          | 0.09 - 1.01    |
| Iron (Fe)                              | 26     | -1261.09305585                 | 15.58       | 36          | 0.09 - 1.01    |
| Zink (Zn)                              | 30     | -1776.57384967                 | 16.66       | 37          | 0.09 - 1.01    |

Figure 5 shows the graphical relationship between atomic number and iteration convergence. The atomic number axis and Y axis indicate the number of iterations needed by the program to reach convergence. It is seen that the larger the atomic number, the program will need more iterations to achieve convergent values. So the calculated time needed to calculate a large atomic number takes longer.



Figure 5. Relation between atomic number and confergence of the calculation

#### 4. Conclution

The Go language program made gives H-atom energy results of -0.45 Hartree with a time of 11.76 seconds; He atom of -2.83 Hartree with a time of 12.12; C atom of -37.43 Hartree with a time of 32.83 seconds; O atom of -74.47 Hartree with 34.97 seconds; Cl at -458.66 Hartree with a time of 53.55 seconds; Fe at -1261.09 Hartree with a time of 15.58 seconds; Zn at -1776.57 Hartree with 16.66 seconds for Zn atoms.

#### References

- [1] Aisyah, N. D., Fadilla, R. N., Dipojono, H. K., & Rusydi, F. (2017). A Theoretical Study of Monodeuteriation Effect on the Rearrangement of Trans-HCOH to H 2 CO via Quantum Tunneling with DFT and WKB Approximation. Procedia Engineering, 170, 119-123.
- [2] Balbaert, I. (2012). The Way to Go a Thorough Introduction to the Go Programming Language. iUniverse.
- [3] ALFIANTO, E., et al. Implementation of density functional theory method on object-oriented programming (C++) to calculate energy band structure using the projector augmented wave (PAW). In: *Journal of Physics: Conference Series*. IOP Publishing, 2017. p. 012043.
- [4] Fadilla, R. N., Aisyah, N. D., Dipojono, H. K., & Rusydi, F. (2017). A Theoretical Study of the Rearranging Trans-HCOH to H 2 CO via Quantum Tunneling with DFT and WKB Approximation. Procedia Engineering, 170, 113-118.
- [5] Fadilla, R. N., Aisyah, N. D., Dipojono, H. K., & Rusydi, F. (2017). The first-principle study on the stability of trans-HCOH in various solvents. International Conference on Physical Instrumentation and Advanced Materials27 October 2016, Hotel Santika Premiere, Surabaya, Indonesia. 853. Surabaya: IOP Publishing Ltd.
- [6] I. Balbaert, The Way to Go a Thorough Introduction to the Go Programming Language, iUniverse, 2012
- [7] L. Prechelt, "An Empirical Comparison of C, C++, Java, Perl, Phyton, Rexx, and Tcl," 2000.
- [8] Prechelt, L. (2000). An Empirical Comparison of C, C++, Java, Perl, Phyton, Rexx, and Tcl.
- [9] Schreiner, P. R., Resienauer, H. P., Pickard IV, F. C., Simmonett, A. C., Allen, W. D., Matyus, E., et al. (2008). Capture of hydroxymethylene and its fast disappearance through tunneling. Nature, 453(12 June), 906.
- [10] Tang, P. (2010). Multi-core Parallel Programming in Go.