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Abstract. Investment casting of an orthopedic implant plate based on stainless steel 316L was 
considered an economical process. Nevertheless, the mechanical properties of the investment casting 
product were found to be inferior as compared to the implant plate fabricated with other methods such 
as forging due to their differences in the microstructure. Investment casting mostly produced coarser 
grain as compared to those with forging or rolled process. In order to improve their mechanical 
properties, cold-rolling followed by a repetitive thermal cycling process is proposed. The goal is to 
generate finer grain size through recrystallization process leading to nucleation of new grain during 
the thermal cycling process thus increasing their strength. Stainless steel 316L was cold-rolled to 52% 
reduction in thickness and this process generate stored strain energy in the form of dislocation density 
in the material. The thermal cycling treatment performed within several cycles after cold rolling 
enabling gradual disperse of stored strain energy that facilitates the recrystallization process that 
initiates new grain formation. The short holding time within several cycles limits the grain growth 
that normally occurs during annealing. It was found that thermal cycling treatment at a temperature 
of 950 oC for 35 seconds within four cycles led to the formation of finer grain size of 22 µm on 
average as compared to the initial investment casting average grain size of 290 µm. The hardness also 
increases to 253 HV0.3 in this condition as compared to 155 HV0.3 of investment casting products. 
Lower thermal cycling temperature than 950 oC during the test did not result in grain refinement thus 
indicating that strain energy relieves were not enough to aid the recrystallization process. 

Introduction 
In a case where bone fracture happens, an orthopedic surgeon occasionally installs temporary 

orthopedic implant plates to hold and support the broken bone after returning the bone into their 
original position. Austenitic stainless steel 316L is commonly selected due to its high strength, high 
fracture toughness, high corrosion resistance, and good ductility. It is also more economical options 
as compared to other biometal implant materials such as titanium alloy or cobalt alloy [1]. The 316L 
implant can be manufactured by investment casting, CNC machining or forging process. The 
investment casting 316L is more economical but generally produces lower mechanical properties as 
compared to other manufacturing methods due to the existence of internal defects such as porosity or 
impurities. 

Several treatments such as cold rolling (CR), strain-induced metastable α’ martensite (SIM) 
generation, grain size refinement through cold rolling-annealing (CRA), severe plastic deformation 
(SPD) and thermo-mechanical treatment (TMT) can be employed to austenitic stainless steel to 
improve their mechanical properties [2][3]. These methods mostly utilize the metastable condition of 
austenitic phase that can be transformed into α’ martensite during cold deformation and 
recrystallization of new finer grain during subsequent annealing or thermomechanical processing. 
Nevertheless, the transformation to SIM during cold deformation is much more difficult on those 
highly stable austenitic stainless steel such as 304L and 316L. Thus the treatment can only depend on 
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the availability of stored strain energy generated after cold deformation in the form of dislocation 
density. The availability of stored strain energy will accelerate recrystallization kinetics during 
thermal cycling procedures by imposing strain heterogeneity in the microstructures [4]. The higher 
the stored energy, the easier the recrystallization to take place within lower temperatures due to many 
stored energy being released during exposure to elevated temperature [5]. Repetitive thermal process 
after cold deformation will gradually release stored strain energy thus recrystallization of newer grain 
can occurs in each cycle [5]. Nanda [6] indicates that after severe cold rolling of 70% thickness 
reduction followed by repetitive thermal cycling at 900o C, the grain size of 316L was reduced to  
0.8 - 1.2 µm from 90-120 µm previously. The tensile strength also improved from 590 MPa to  
1220 MPa. In this research, a lower cold rolling reduction of 52% followed by repetitive thermal 
cycling temperature at 850, 900 and 950 oC was investigated in order to found at which thermal 
cycling temperature the recrystallization of new grain begins to emerge in relation to their stored 
strain energy.  

The amount of stored strain energy in steel after the cold-rolling process can be calculated as ρ 
dislocation density (m-2) influenced by hardness value using linear Bailey-Hirsch relationship, as 
shown in Eq. 1 [7]. 

𝐻𝐻𝐻𝐻 (𝐺𝐺𝐺𝐺𝐺𝐺) =  0.7 + 1.5𝐺𝐺𝐺𝐺𝜌𝜌1 2�       (Eq. 1) 
where HV is Vicker hardness measured in 316L (GPa),  G is iron shear modulus of 80 GPa and b is 
burger vector of FCC structures of austenitic stainless steel which is 2.49Å. 

Experimental Procedure 
Austenitic stainless steel 316L implant plates utilized in this experiment was supplied by PT 

Pelopor Teknologi Implantindo, Mojokerto, Indonesia. The sample was solution-annealed at 
temperature of 1150 oC within 1 hour and quenched in water after casting process in order to 
homogenize their microstructures. The thickness was 4.3 mm with a length of 200 mm. SpectroMax 
Optical Emission Spectroscopy (Ametex, Germany) reveals the chemical composition of 316L as 
listed in Table 1. The investment casting 316L implant plate undergoes 20 passes of unidirectional 
cold rolling until approximately 50% reduction in thickness is attained as shown in Fig. 1. The 
thickness was reduced from 4.3 mm to 2.05 mm. 
 

 
 

A b 
Fig. 1. (a) As-cast implant plate 316L and (b) implant plate 316L after 50% reduction by cold rolling 

 
Table 1. Chemical composition of austenitic stainless steel 316L 

Chemical Composition 
C Cr Ni Mo Mn P S N Cu Fe 
0.01 15.79 13.51 3.71 0.91 0.02 0.005 0.124 0.12 65.10 
 
The cold-rolled sample was cut into 30 x 18 mm and then thermally cycled in different 

temperatures of 850o C, 900o C and 950o C with holding time of 35 seconds and repeated within four 
cycles. Fig. 2 illustrate the process employed in this experiment. All of the samples including the 
investment-casting and the cold-rolled were grind and polished stepwise using SiC grit paper prior to 
microstructure examination using Olympus Stereo Microscope and SEM Hitachi FlexSEM 1000. The 
average grain size measurement was calculated based on the standard linear intercept method 
according to ASTM E 112. Microvickers hardness testing was employed according to ASTM E92 
taken at 10 different points to generate average hardness value using a load of 1 Newton with a dwell 
time of 10 s. 
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Fig. 2. Schematic process employed during the experiments. 

Result and Discussion 
Dislocation density 

Based on the actual measured thickness, 52% of thickness reduction was achieved after several 
steps of cold-rolling process. Eq. 1 deliver the dislocation density based on measured hardness at 52% 
cold reduction of 407 HV0.3 (3.98 GPa) with a value of dislocation density of 1.22 x 1016 m-2. 

The microstructural changes due to cold-rolling process were presented in Fig 3. The investment 
casting produces dendritic microstructure as seen in Fig 3a. The cold rolling at 52% of thickness 
reduction reveals angular grain of medium sphericity not the elongated grain such as mostly detected 
in cold rolling of steel in Fig 3b. The average grain size measurement provides 290 µm and 198 µm 
values of the investment casting and cold rolled at 52% in thickness reduction samples respectively.  
 

  
a b 

Fig. 3. (a) As-cast 316L dendritic microstructures and (b) after cold-rolling with 52% in thickness reduction 
 

The hardness value for each sample tested during these experiments was shown in Fig. 4. The 
investment casting sample only had hardness value of 155 HV0.3 and the value increased to 407 HV0.3 
after being cold-rolled to 52% reduction in thickness. The high hardness indicates that the material 
has substantial residual stress or stored strain energy generated after several passes of cold-rolling 
process. After thermal cycling treatment, the hardness had decreased as the stored strain energy is 
gradually being released due to elevated temperature exposures. Thermal cycling at 850 oC and  
900 oC slightly decrease the hardness values indicating that only small amount of stored strain energy 
is being released. This condition was not enough to reach recrystallization kinetic to allow nucleation 
of new grain. Higher thermal cycling temperature at 950 oC had resulted in lower hardness as a 
massive amount of stored strain stress is being released and accelerating recrystallization process by 
which deformed grains are consumed and nucleation of new finer grain was taking places. Thermal 
cycling at 950 oC reduces the hardness to 253 HV0.3 which is 38% lower as compared to the cold 
rolling at 52% thickness reduction. 
 

Thermal cycling at 850, 
900 and 950 for 35 s, n=4 

52% cold 
rolling 

Solution 
annealing 

Small new grain due 
to recrystallization 

Investment 
casting 316L 
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Fig. 4. The hardness value of thermally cycled samples as compared to investment casting and cold-rolled 

samples. 
 
The microstructures evaluation of thermally cycled samples at 850, 900 and 950 oC presented in Fig. 
5 reveals that only after exposure to 950 oC that the grain becomes much finer with an angular shape. 
This condition can only happen if the recrystallization process had taken place as the stored strain 
energy was massively relieved aiding nucleation of new grain from the grain boundary of deformed 
microstructures. By limiting the exposure time to 35 seconds, there were not enough energy available 
to allow grain growth thus keeping the grains in finer size. The number of cycles was meant to allow 
the nucleation of the new grain in each cycle process until all the deformed grain was fully converted.  
 

   
a b c 

Fig. 5. Microstructures of thermally cycled samples after 4 cycles at (a) 850 oC for 35 seconds (b) 900 oC for 
35 seconds and (c) 950 oC for 35 seconds. Note that the recrystallization only happens at 950 oC thermal 

cycling. 
 
The calculated grain size measurement of thermal cycling at 850 oC and 900 oC was providing value 
rather similar to cold rolling at 52% reduction condition. This was in accordance with the hardness 
measurement results in Fig. 4. Based on the microstructures in Fig. 5, the finer grain size of 22 µm 
on average was calculated after thermally cycled at 950 oC. This value is more than ten times smaller 
as compared to the investment casting grain size of 290 µm on average. 
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Fig. 6. The average grain size of thermally cycled samples at different temperatures exposures as compared 
to investment casting and cold-rolled samples. 

 

Fig. 6 shows the comparison of calculated grain size of thermally cycled samples at different 
temperatures exposures with investment casting and cold-rolled samples grain size. The 
recrystallization process that led to finer grain size only happen after thermally cycled at 950 oC. This 
thermal cycling temperature was found to be higher as compared to Nanda [6] finding. In their 
experiments, the recrystalization has mostly occurred at 900 oC thermal cycling temperatures 
regardless of the amount of cold rolling reduction [6].  

Conclusion 
Thermal cycling treatment at 950 oC following cold rolling at 52% thickness reduction had resulted 
in recrystallization mechanism that initiates nucleation of a new finer grain of 22 µm as compared to 
investment casting grain of 290 µm size and cold rolling 52% grain of 198 µm in size. The decrease 
in hardness after thermal cycling exposure indicates that stored strain energy generated during cold-
rolling process was gradually dispersed. Unfortunately, lower thermal cycling temperature than  
950 oC only able to slightly relieved the strain and not able to initiate nucleation of new finer grain 
led to recrystallization. 
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