Knee Laxity or Loss of Knee Range of Motion after PCL Reconstruction: A Systematic Review and Meta-Analysis by Ferdiansyah Mahyudin **Submission date:** 03-Dec-2021 04:59PM (UTC+0800) **Submission ID:** 1719290792 **File name:** 11. 4 Journal.pdf (811.74K) Word count: 12808 Character count: 65310 ## Knee Laxity or Loss of Knee Range of Motion after PCL Reconstruction: A Systematic Review and Meta-Analysis ## ^{1,2}Sholahuddin Rhatomy*, ^{3,4}Dwikora Novembri Utomo, ^{3,4}Heri Suroto, ^{3,4}Ferdiansyah Mahyudin ¹Department of Orthopedics and Traumatology, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia. ²Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia. ³Department of Orthopaedic and Traumatology, Dr. Soetomo General Hospital, Surabaya, Indonesia. ⁴Faculty of Medicine, Universitas Airlangga, Indonesia. Submitted 16 August 2020; Accepted in final form 26 October 2020. #### ABSTRACT Background. PCL reconstruction is a successful method for enhancing the patient's quality of life but posterior knee laxity and knee stiffness have still occurred surgery. There is no study to evaluate knee laxity or loss of knee range of motion after surgery. Objectives. To assess the outcomes after PCL reconstruction, we: 1) evaluated the range of motion of the knee, 2) evaluated posterior knee laxity, and 3) determined the factors that influence laxity or the loss of range of motion after surgery. Methods. Articles that met the following criteria were enrolled in this review: 1) articles on peer-reviewed level 1 to 4 studies; 2) articles published in English; 3) articles on PCL reconstruction studies; 4) articles on isolated PCL rupture; 5) articles that describe laxity after surgery and 6) articles that describe the degree of range of motion after surgery. Results. Involving a total of 1711 patients. There was a loss of extension and flexion after PCL reconstruction (9.15% and 28.9%, respectively). Knee laxity was still observed at the final examination in the posterior drawer test, KT 1000/2000 test, and Telos radiographic view (64.8%, 42.8%, and 47.9%, respectively). In the subgroup analysis, there was no significant difference in laxity between allograft group vs autograft group using the KT 1000/2000 measurement (mean difference [MD] = -0.42, 95% confidence interval [-1.41, 0.56], p = 0.40), Single Bundle vs Double Bundle (DB) using the KT 1000/2000 measurement (MD = -0.003, 95% CI [-1.35, 1.29], p < 0.00001), and transtibial vs tibial inlay using the Telos radiograph measurement (MD = 0.03, 95% CI [-0.33, 0.39], p = 0.88), but DB significantly improved knee stability using the Telos radiographic measurement (MD = 0.69, 95% CI [0.29, 1.09], p = 0.00008). Conclusion. This study demonstrates that the loss of range of motion or laxity is still a problem after PCL reconstruction. KEYWORDS: Range of Motion, Laxity, Posterior Cruciate Ligament, PCL Reconstruction. #### INTRODUCTION Only a few studies have investigated the outcome after posterior cruciate ligament (PCL) reconstruction, and the outcome of the results after surgery of these studies vary and need further depth research. Recent studies revealed that PCL reconstruction is a successful method for enhancing the patient quality of life and that it has a significant impact on patients' activity of daily living and back to the normal pre-injury activity, because can stabilize knee joint (1). However, in daily practice, we still observed and founded posterior knee laxity or knee stiffness after PCL reconstruction. Posterior knee laxity or knee stiffness still always a problem after surgery and a challenge for doctors and physiotherapists to prevent and manage it. There are many systematic reviews and meta-analyses on PCL reconstruction that have been reported before (1-8); however, none focused on laxity or stiffness after PCL reconstruction. This study aims to produce a systematic review and metaanalysis about laxity or stiffness of the knee after PCL reconstruction based on published literature. #### MATERIALS AND METHODS **Review of Protocol.** Our review question was "What is the incidence rate of posterior knee laxity or loss of range of motion of the knee after PCL reconstruction and what factors influence it?" Outcomes Measure. To assess the outcomes after PCL reconstruction, we: 1) evaluated the range of motion of the knee, 2) evaluated posterior knee laxity, and 3) determined the factors that influence laxity or the loss of range of motion after surgery. Literature Search and Study Selection. In May 2020, we carried out a literature search using Cochrane Library, PubMed (Medline), Web of Science, and Scopus to identify all the studies published in English that describe the outcomes after PCL reconstruction. All studies were reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (9). The keywords used for the search included "laxity," "stiffness," "range of motion," "PCL," "Posterior Cruciate Ligament," "PCL Reconstruction," and "outcome" alone and in various combinations using the Boolean operator "AND" or "OR." Eligibility Criteria. Inclusion criteria were: 1) articles on peer-reviewed level studies; 2) articles published in English; 3) articles on PCL reconstruction studies; 4) articles on isolated PCL rupture; 5) articles that describe laxity after surgery using the posterior drawer test, KT-1000/KT-2000 test, and radiographic stress (Telos) view; and 6) articles that describe the degree of range of motion after surgery. Articles that met these inclusion criteria were enrolled in this systematic review. Non-English articles, articles on multiple ligament reconstruction, articles on studies that involved PCL reconstruction combined with other techniques, duplicate articles, literature reviews, articles on studies that involve in vitro, animals, until the cadaveric investigation, biomechanical study, letters to editors, instructional courses, and technical notes were excluded. We also excluded articles with incomplete information on diagnosis, imaging, arthroscopic or surgical assessment of the associated lesions, clinical examination, follow-up duration, clinical postoperative outcomes, and no statistical analysis. **Data Extraction.** To avoided bias, the following data were identified and recorded independently by all of the investigators: study design, types of graft, types of surgical technique, outcome after surgery, degree of knee laxity, range of motion, interventions, comparisons, duration of follow-up, main outcomes of studies, and complications. Methodological Quality Assessment and Risk of Bias. The methodological quality of the included studies was assessed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (9). Two authors (D.N.U and S.R.) independently performed all the assessments. Coleman Methodology Score (CMS) was used to quantify the quality of the article. The article's methodology was assessed by CMS with a total score ranging from 0 to 100. The higher the CMS score of the article, the more valid its article because it spared from biases and confounding factors (10). To avoid bias on the included and excluded articles were reviewed and re-assessed by all authors. If there was any disagreement between each author, the problem was solved by D.N.U. as a senior investigator. Data Synthesis. We used RevMan 5 software (Version 5.3, the Cochrane Collaboration) and Stata 12.0 software for meta-analysis statistical analyses. The following tests were performed: the posterior drawer displacement test, KT 1000/2000 test, and the radiographic stress (Telos) view. The 95% confidence interval (CI) and Mean Difference (MD) were counted for continuous data. The Odds Ratio (OR) and 95% CI were calculated for dichotomous data. An alpha level of < 0.05 was considered statistically significant. The heterogeneity among the included studies was tested using the I-square tests and Chi-Square tests. The chi-square test was performed to quantify heterogeneity significance. The I-square test was performed to quantify the estimation of variability in the effect that occurred because of its heterogeneity. The result interpretation of the I-square test was quantified based on the Cochrane Handbook of Systemic Reviews. The result has its interpretation (0-40%, might not be important; 40-60%, may represent moderate heterogeneity; 60-90%, may represent substantial heterogeneity; 90- 100%7 considerable heterogeneity). When there was no significant heterogeneity was present (1² < 50%, P > 0.1), the fixed-effect model was used. If the result was significant heterogeneity, we were used a random effect model. Sensitivity analyses were conducted by individually removing each study to assess the heterogeneity and robustness of the pooled results. Datasets that caused significant changes in the pooled results were further analyzed to assess the cause of the changes. Subsequently, the results were evaluated for stability and laxity. If the heterogeneity was significantly large for analysis, descriptive analyses were presented. Subgroup analyses were performed on the laxity outcome at different comparisons. #### RESULTS Study Selection. A total of 2041 articles were obtained from the database literature search and 1207 articles were excluded based on the title or due to duplication. A total of 834 articles were eligible for further screening. Seven-hundred-and-twenty-six articles were excluded because they did not match the inclusion criteria resulting in a total of 108 articles. Sixty-one articles were excluded after the full-text screening was performed. We excluded these articles due to: the range of motion or laxity after surgery was not clearly stated (n = 49), they were either technical notes, short communications, or reviews (n =6), they were cadaveric, laboratory, or biomechanical studies (n = 3), or they were
nonoperative studies (n = 3). Thus, 47 full articles were included in this systematic qualitative review. The flow chart of the article enrolling was provided in Figure 1. Figure 1. Flow Chart of Study Process Selection Demographics and Characteristics of Selected Studies. Twenty-three studies (48.9%) were retrospective, 14 were prospective studies, six were case series, four were randomized control trials, and one was a non-randomized control trial. This systematic review included 1711 patients (1713 knees). There were 1293 male (75.5%) and 385 female (22.5%) patients. Two studies did not describe the gender distribution (33 patients). The average age at the time of reconstruction was 30.4 years (range, 16-64 years). The average follow-up duration was 44.85 months (range, 12-148 months) (Table 1). In all studies, the indication for surgery was the failure of conservative treatment or symptomatic PCL rupture with a minimum 2 positive (2+) on posterior drawer test. Follow Un Dowlood Table 1. Summary of Characteristics of the Included Studi | No | Author and Year | Study Type | Sample Size | Follow-Up Period | |----|---|--------------------------------|---|---| | 1 | P. P. Mariani et al,1997 (11) | Retrospective
Study | 24 | 26.5 months (range 24–53 months) | | 2 | Sung-Jae Kim et al,2000
(12) | Prospective Study | 55 (Two incision group: 10; One incision group: 45) | 45 months in Group I and 36
months in group II | | 3 | John Nyland et al,2002 (13) | Retrospective
Study | 19 | 2 years | | 4 | Chih-Hwa Chen et al,2002
(14) | Prospective Study | 9 | 2 years | | 5 | Chih-Hwa Chen et al,2002
(15) | Case Series Study | 49 (22 quadriceps tendon group
and 27 hamstring tendon group) | 2 years | | 6 | Ching-Jen Wang et al,2003
(16) | Retrospective
Study | 30 | 40 (range: 24–108) months | | 7 | Yasumitsu Ohkoshi et
al,2003 (17) | Nonrandomized
Control Study | 51(The 2-incision group: 22
patients, and endoscopic group:
29 patient) | 1 year | | 8 | Ching-Jen Wang et al,2004
(18) | Prospective Study | 55 (group 1 autogenous graft: 23,
group 2 allogenous: 32) | 34 months | | 9 | Ching-Jen Wang et al,2004
(19) | Prospective Study | 35 (19 single bundle group and 16 double-bundle groups) | 2 years | | 10 | Thomas Houe et al,2004 (20) | Prospective Study | 16 | 35 (25-51.5) months | | 11 | Young bok Jung, et al,2004
(21) | Retrospective
Study | 11 | 52 month | | 12 | Jin Hwan Ahn et al,2005
(22) | Retrospective
Study | 36 (18 patients received
autogenous double-loop
hamstring /group I and 18
Achilles tendon allograft /group
II). | 2 years | | 13 | Kyoung Ho Yoon et al,2005
(23) | Prospective Study | 26 | 25 months (range, 12 to 48 months). | | 14 | LCDR Jon K. Sekiya et
al,2005 (24) | Retrospective
Study | 21 | Mean 59 years (range, 2.6 to
4 11 years), | | 15 | John D. MacGillivray et
al,2006 (25) | Retrospective
Study | 20 (13 traditional endoscopic
transtibial group and 7 tibial inlay
group). | Mean follow-up of 5.7 years
(range, 2 to 15 years) | | 16 | Yi-Sheng Chan et al 2006
(26) | Prospective Study | 20 | 40 months (range, 36 to 50 months | | 17 | Raffaele Garofalo et al., 2006
(27) | Case Series | 15 | mean follow-up of 3.2 years
(range, 2 to 5 years) | | 18 | Chih-Hwa Chen et al,2006
(28) | Prospective Study | 52 | 4 years | | 19 | Jong-Keun Seon et al,2006
(29) | Retrospective
Study | 43 (21 The transtibial tunnel-
group /group and 22 the tibial
inlay group /group B) | 2 years | | 20 | Nobuo Adachi et al ,2007
(30) | Prospective Study | 29 (22/7) | 2 years | | 21 | Chin-Hsien Wu et al,2007
(31) | Prospective Study | 22 | 66 months (range, 60-76) | | 22 | Jinzhong Zhao et al,2007
(32) | Retrospective
Study | 43 (22 patients 7-strand hamstring
graft (7SHG) group and 21
patients 4-strand hamstring graft
(4SHG). | 2 years | ### Knee Laxity or Loss of Knee Range of Motion after PCL Reconstruction | 1227 | 20 21 2 2222 | | 41 | 9 1000 | |------|---|-----------------------------|---|---| | 23 | Bin Li et al, 2008 (33) | Retrospective
Study | 36 (4SHG group (n = 15) and a
LARS group (n = 21)). | 2 years | | 24 | W. F. M. Jackson et al 2008
(34) | Prospective Study | 26 | 10 years | | 25 | To Wong et al,2008 (35) | Prospective Study | 55 (28 A-M trans-tibia group and
27 A-L trans-tibia group) | 48 § 15.9 months for A-M
and 45.0 § 13.7 months for
A-L. | | 26 | Jinzhong Zhao et al,2008
(36) | Case Series | 18 | 2 years | | 27 | Jin-Zhong Zhao et al., 2009
(37) | Randomized
Control Trial | 42 (21 Medial Side Augmentation
group and 21 Lateral Side
Augmentation group) | 2 years | | 28 | Sung-Jae Kim et al,2009
(38) | Retrospective
Study | 29 (8 Transtibial single bundle
group; 11 inlay single-bundle
group; 10 inlays double-bundle
group) | 46.4 months in Group T,
36.3 months in Group 11,
and 29.4 months in Group 12 | | 29 | Baicheng Chen et al, 2009
(39) | Case Series | 22 | 2 years | | 30 | Stijn Hermans et al ,2009
(40) | Case Series | 25 (9 with a bone-patellar tendon-
bone autograft (BPTB), 15 with a
semitendinosus gracilis (STG)
autograft, and 1 with an Achilles
tendon allograft) | Mean follow-up of 9.1 years (range, 6.5-12.6). | | 31 | Oog Jin Shon et al,2010 (41) | Retrospective
Study | 30 (14 Single bundles tibial
inlay/group A and 16 Double
bundles tibial inlay/ group B) | Group A mean 90.5 months
and group B mean 64
months | | 32 | Odd Arve Lien et al ,2010
(42) | Retrospective
Study | 43 | 48 month (17–109) | | 33 | Kyoung Ho Yoon et al,2011
(43) | Randomized
Control Trial | 53 (25 Single bundle group and
28 Double bundle group) | 2 years | | 34 | Rachad Zayni et al., 2011
(44) | Retrospective
Study | 21 | 29 months (range 12–48) | | 35 | Yu-Chuan Lin et al 2013
(45) | Retrospective
Study | 59 (25 Bone-patellar tendon-bone
autograft and 34 hamstring
autograft) | 51.6 months in pPT group
and 51.1 months in HT
group | | 36 | Sang Hak Lee et al ,2013 (46) | Retrospective
study | 89 (34 Transtibial groups 40 SB
inlay group, and 15 DB inlay
group) | 24 month | | 37 | Bin Li et al, 2014 (47) | Retrospective
Study | 37 (18 Hamstring autograft group
and 19 Tibialis anterior allograft) | 2 years | | 38 | Seyed Taghi Norbakhsh et
al.,2014 (48) | Prospective Study | 52 | 3 years | | 39 | Eun-Kyoo Song et al, 2014
(49) | Cohort Study | 66 (transtibial with a hamstring
(36 patients) and tibial inlay with
the patellar tendon (30 patients) | 148 months (range, 98-196 months). | | 40 | Daifeng lu et al,2014 (50) | Randomized
Control Trial | 32 (17 improve tibial inlay and 15 traditional tibial inlay) | 1 year | | 41 | Xiujiang Sun et al,2015 (51) | Retrospective
Study | 71 (36 Autograft group and 35
allograft group) | The autograft group was 3.2 ± 0.2 years and the allograft group was 3.3 ± 0.6 years | | 42 | Vineet Jain et al,2016 (52) | Retrospective
Study | 40 (18 Double bundle group and
22 Single bundle group) | 24 month | | 43 | Jia Li et al,2016 (53) | Randomized
Control Trial | 80 (26 patients in the autograft
group, 27 in the hybrid graft
group, and 27 in the g-irradiated
allograft group) | 5 years | | 44 | Terence Wai-kit Chan et
al,2016 (54) | Retrospective
Study | 21 | 50 months (24-60 months) | | 45 | Rodrigo Salim et al., 2017
(55) | Retrospective
Study | 21 | 4.4 years (0.6–11 years) | | 46 | Rhatomy et al,2019 (56) | Retrospective
Study | 25 | 2 years | | 47 | D. Saragaglia et al,2019 (57) | Retrospective | 16 (8 hamstring group;8 LARS | 24 month | Range of Motion. Seventeen studies (511 patients, 29.8%) did not describe the range of motion after surgery. Thus, only 30 studies (1079 patients, 63.06%) reported a range of motion after surgery. Knee extension deficit was evaluated using three categories; grade 1: nearly normal $< 3^{\circ}$, grade 2: 3-5°, and grade 3: $> 6^{\circ}$. Among the studies that reported range of motion outcomes, 96 patients (9.15%) experienced the loss of extension ($< 3^{\circ} = 59 (61.4\%), 3-5^{\circ} = 29 (30.2\%),$ $> 6^{\circ} = 2$ (0.2%), and the degree of the loss of extension was not reported for five patients). Knee flexion deficit was evaluated using four categories; grade 1: nearly normal $< 5^{\circ}$, grade 2: 6-15°, grade 3: 16-25°, and grade 4 (severe flexion deficit) $>25^{\circ}$. Three hundred and twelve patients (28.9%) experienced the loss of flexion ($< 5^{\circ} = 134$ (42.9%), 6-15° = 60 (19.2%), 16-25° = 4 (1.2%), severe flexion deficit ($> 25^{\circ} = 8$ (2.5%)), and the degree of the loss of range of motion was not reported for 106 patients (Table 2). Table 2. Outcomes Measures of Posterior Cruciate Ligament Reconstruction. | | | Table 2. Outcom | es Measures of Posterio | 7971 | | | |----|---------------------------------------|--|---|------------------------------|--
--| | No | Author and
Year | Graft Type | PCLR Technique
and Fixation Device | Sample Size
(male/female) | Range of
Motion
Outcome | Knee Laxity Outcome | | 1 | P. P. Mariani
et al., 1997
(11) | BPTB Autograft | Single bundle PCL
reconstruction Both
ends of the graft
were secured with
interference screws | 24 (16/8) | 18 patients (75%) complete ROM 2 patients (8%) experienced a lack of extension of between 3° and 5° 6 patients (25%) loss of flexion, between 6° and 15°4 pts loss of extension of less than 3°. | KT 2000 Measurement 0-2mm: 6;3-5 mm: 13; 6-10: 3 > 10: 2 | | 2 | Sung-Jae
Kim et al,
2000 (12) | Group 1; BPTB
autograft Group
2: 11BPTB
allograft and 34
BPTB autograft | Single Bundle PCL
Reconstruction
Femoral Fixation:
Interference Screw
Tibial Fixation:
Interference Screw | 55 (42/13) | 1 patient in group I and 10 patients in group II lost terminal flexion, an average of 10° (range, 5° to 20°). There was no extension loss or extension lag at the last follow-up. | KT-1000 or KT-2000
arthrometer (testing at
20-lb force) was 2.10
mm (range, 1 to 4 mm)
in group I and 2.38
mm (range, 0 to 6 mm)
in group II | | 3 | John Nyland
et al,2002
(13) | allograft (anterior tibialis tendon <i>n</i> =17, semitendinosus- gracilis tendon <i>n</i> =2) | double-bundle PCL
reconstruction (using
allograft tissue)
Biodegradable
interference screws
were used for all
graft fixation
procedures. | 19 (14/5) | All patients had normal (n=19) or near normal (n=1) passive knee joint extension (<3°) and flexion (0–5° deficient) compared to the opposite knee joint. | Posterior drawer tests at 70° knee flexion revealed all normal (n=11) or nearly normal results (n=8) Knee arthrometry measurements showed 2.4±2 mm posterior displacement. | | 4 | Chih-Hwa
Chen et
al ,2002 (14) | Hamstring
tendon autograft | Single bundle PCL
reconstruction Both
ends of the graft
were secured with
interference screws | 27 (18/9) | Eighty-five
percent (n: 23)
of the patients
had full ROM, a
3-degree or less
difference A 3- | Posterior drawer and
posterior sag testing
and KT-1000
examination
demonstrated: 8 (29%)
the patients exhibited a | | | | | | | | *** | |---|---|--|---|------------|---|---| | | | | and screw and
washer | | to the 5-degree difference in extension or a 6- to a 15- degree deficit in flexion from the opposite limb was recorded for 11% (n: 3) of the patients. An extension deficit of more than 6 degrees or a flexion deficit of more than 16 degrees was found in one patient (4%). | 0- to 2-mm total
anteroposterior
translation. 15 (56%)
percent revealed a 3- to
5-mm ligament laxity.
4 patients (15%)
demonstrated a 6- to
10-mm laxity. | | 5 | Chih-Hwa
Chen et
al.2002 (15) | Quadriceps
tendon autograft
and quadruple
hamstring
tendon
autograft. | Single bundle PCL reconstruction Femoral: titanium interference screw Tibia: Bicortical screw and washer and bioscrew | 49 (32/17) | The normal rating was recorded for 77% (N:17) of the quadriceps tendon group and 85% (N: 23) of the hamstring tendon group. The nearly normal rating was recorded for 18% (N: 4) of the quadriceps tendon group and 11% (N: 3) of the hamstring tendon group. The abnormal present for 5% (N:1) of quadriceps tendon group. The abnormal present for 5% (N:1) of quadriceps tendon patients and 4% (N: 1) of hamstring tendon patients. | Posterior drawer and posterior sag testing and KT-1000 examination showed that 32% (N: 7) of the 2quadriceps tendon group and 29% (N: 8) of the hamstring tendon group exhibited a 0- to 2-mm total anterior-posterior translation. 56% percent (N: 13) of the patients in the quadriceps tendon group and 56% (N: 15) in the hamstring tendon group revealed a 3- to 5-mm ligament laxity. Two patients (9%) with quadriceps tendon graft and 4 patients (15%) with hamstring tendon grafts showed a 6- to 10-mm laxity. | | 6 | Ching-Jen
Wang et
al,2003 (16) | Autografts (patellar bone- tendon-bone and quadriceps tendon) Allografts (Achilles tendon and patellar bone-tendon- bone). | Single bundle PCL
reconstruction Both
ends of the graft
were secured with
interference screws | 30 (22/8) | rendon parents. | Posterior drawer test 0:
16 (51.6%); 1:12
(38.7%); 2:3 (9.7%);
3:0 | | 7 | Yasumitsu
Ohkoshi et
al,2003 (17) | Autogenous
hamstring
tendons, | Single bundle PCL
reconstruction
Femoral side: endo
button. Tibial side:
screw and spiked
washer. | 51 (33/18) | | KT-1000, the manual maximum was 3.95 ± 1.96 mm in the 2-incision group and 2.38 ± 1.42 mm in the endoscopic group | | 8 | Ching-Jen
Wang et
al,2004 (18) | Autogenous
grafts (
quadriceps
tendon- patellar
bones and
quadruple
hamstrings
Allogenous
grafts (Achilles
tendon and
anterior tibial
tendons 0 | Single Bundle PCL
Reconstruction
Femoral Fixation:
Bioabsorbable Screw
Tibial Fixation:
Bioabsorbable
Screw, titanium
screw | 55 (41/14) | Range of
Motion:
Autograft
group: Mean:
125 ± 14°
Range 80-140°
Allograft group:
mean: 127 ± 6°
range 115-135° | Posterior Drawer: 1.Autograft group: 0.92 ± 0.69 (0-3) 2. Allograft group: 0.61 ± 0.58 (0-2) KT-1000 1.Autograft group: 3.16 ± 2.60 (1-10) 2. Allograft group: 2.83 ± 1.70 (1-6) | |----|---------------------------------------|--|--|------------|--|--| | 9 | Ching-Jen
Wang et
al 2004 (19) | Hamstring
tendon autograft | Single and double-
bundle posterior
cruciate ligament
(PCL) Both ends of
the graft were
secured with
bioabsorbable
interference | 35 (26/9) | SB: 126 ± 12
(90-140) DB:
124 ± 14 (80-
140) | Posterior drawer: SB:
1.16 ± 0.6 (0-2); DB:
1.13 ± 0.6 (0-2) KT
1000: SB: 7.1 ± 3.7 (3-
15); DB: 6.7 ± 4.5 (2-
16) | | 10 | Thomas
Houe et
al,2004 (20) | BPTB Autograft
Hamstring
tendon autograft | A posterior cruciate ligament (PCL) with one versus two tunnels femoral One tunnel-group both ends of the graft were secured with interference screws Two tunnel-group; femoral side: endobutton, tibial side: interference screw | 16 (6/8) | | One tunnel group:: 30 deg: 2 (2-4); 70 deg: 2 (2-4) Two tunnel group: 30 deg: 3 (1.3-3.8); 70 deg: 3 (1.3-4) | | 11 | Young bok
jung.et
al.,2004 (21) | BPTB Autograft | Single bundle PCL
reconstruction
Femoral Fixation:
Interference Screw
Tibial Fixation:
Screw and washer | 11 | Ť | The mean side-to-side difference in displacement (and standard deviation) was 3.4 +/- 2.4 mm on the stress radiographs and 1.8 +/- 1.2 mm as measured with the KT-1000 arthrometer. | | 12 | Jin Hwan
Ahn et
al ,2005 (22) | Autogenous
double-loop
hamstring
tendon (group I)
and Achilles
tendon allograft
(group II). | Single bundle PCL
reconstruction Both
ends of the graft
were secured with
button bioabsorbable
interference screws | 36 (27/9 | 1 patient who had received Achilles tendon allograft (group II) had knee joint stiffness (range of motion, 0° to 90°). | Telos stress test The
group I mean was 2.2
mm (range, 0 to 7 mm;
SD, 1.8) and the group
II mean was 2.9 mm
(range, 1 to 7 mm; SD,
1.9) | | 13 | Kyoung Ho
Yoon et
al,2005 (23) | Achilles
allograft | Arthroscopic double-
bundle technique
using a split Achilles
allograft AL bundle
is fixed with 1
1 bioabsorbable
interference screw
using an outside-in
method. PM bundle
is fixed with
bioabsorbable
interference screw
and outside-in
method. The 2 | 26 (19/7) | 200 | Radiographic Side-to-
Side Differences of
Posterior Tibial
Translation 0–2 mm:
18;3–5 mm: 6; 6–10
mm: 3; >
10mm: 0 | | | | | tendon ends are additionally fixed by a 6.5-mm cancellous screw and washer. Tibial tunnel is fixed to the tibial tunnel with a metal interference screw | | | 3 | |----|---|---|---|-----------|---|--| | 14 | LCDR Jon
K. Sekiya et
al,2005 (24) | Achilles tendon
allograft | Single bundle PCL R Femoral Fixation: Metal Interference Screw Tibial Fixation: screw and soft tissue washer | 21 (15/6) | The average loss of flexion 5°± 5° (range, -1° to 18°). The average loss of extension 1°± 3° (range, 6° more extension to 5° loss of extension on the involved side). | No patient had a normal posterior drawer test. 50% had a nearly normal posterior drawer 50% had an abnormal posterior drawer. KT-1000 posterior laxity measurement: 62% had less than a 3-mm sideto-side difference, 31% had a 3- to 5-mm sideto-side difference 8% had a 6- to 10-mm side-to-side difference. | | 15 | John D.
MacGillivray
et al,2006
(25) | Bone-patellar
tendon-bone
[BPTB]
autograft, BPTB
allograft, and
Achilles tendon
allograft | Single bundle PCL reconstruction Tibial inlay group versus transtibial group Femoral fixation was consistent for both groups, with primary interference screw fixation backed up with either a ligament button, a screw, and washer, or a staple. | 20 (15/5) | * | Posterior Drawer Test 1. Tibial Tunnel Group: Grade 1:3; Grade 2:6; Grade 3:4 2. Tibial Inlay Group: Grade 1:3; Grade 2:2; mGrade 3:2 KT-1000 1. Tibial Tunnel Group: Grade 1:6; Grade 2:5; Grade 3:1 2. Tibial Inlay Group: Grade 1:4; Grade 2:3; Grade 3:0 | | 16 | Yi-Sheng
Chan et
al,2006 (26) | Hamstring
tendon autograft | Single bundle PCL reconstruction Femoral side: BioScrew and washer Tibia side: bicortical screw and washer and BioScrew | 20 (15/5) | 17 (85%) patients with a difference at full extension of 3° or less, or full flexion of 5° or less, One patient (5%) with 3° to 5° difference in extension. Two (10%) patients with a 16° to 25° deficit in flexion. No patient had a severely abnormal rating (an extension deficit > 10° or a flexion deficit > 25°). | Posterior Drawer Test
Grade I (0–5 mm) 16;
Grade II (6–10 mm) 3;
Grade III (11–15 mm)
1; Grade IV (□15 mm)
1° 0 KT-1000 Test
Normal (0–2 mm): 10;
Nearly normal (3–5
mm) 7; Abnormal (6–
10 mm) 3; Severely
abnormal (> 10 mm) 0 | | 17 | Raffaele
Garofalo et
al, 2006 (27) | Autograft bone-
patellar tendon-
bone (BPTB) | Double-bundle
posterior cruciate
ligament (PCL)
reconstruction. Both
bundles were secured
with bioresorbable
interference screws
and 3.5-mm AO | 15 (14/1) | Loss of flexion
between 5° and
10° in 4 patients
(26.4%). | Posterior Drawer Test:
3 patients (20%) had a
normal posterior
drawer 10 (67%) had a
grade 1 posterior
drawer 2 (13%) had a
grade 2 posterior
drawer Telos | cortical screw with a metallic washer at the tibia. Radiography: the mean value of posterior translation was 8.06 mm (range, 5 to 13 mm; SD, 3.7 mm) and | | | | | | 8 | the mean side-to-side
difference was 5.9 mm
(range, 2 to 12 mm;
SD, 2.63 mm). | |----|--------------------------------------|---|---|------------|--|---| | 18 | Chih-Hwa
Chen et
al,2006 (28) | Quadruple
hamstring
tendon autograft | Single bundle PCL reconstruction Both ends of the graft were secured with interference screws and screw and washer | 52 (35/17) | 34 (65%) patients were rated as having normal status. 11 (21%) patients who presented 3 flexion deficit 6 (11%) patients presented extension deficit were rated as nearly normal. 1 patient (2%) had a 16° 25° deficit in flexion. | Posterior drawer test
Grade I (0-5 mm): 42;
Grade II (6-10 mm):
10; Grade III (11-15
mm): 0; Grade IV ([15
mm) 0 KT-1000
measurement Normal
(0-2 mm): 32; Nearly
normal (3-5 mm): 10;
Abnormal (6-10 mm):
8; Severely abnormal
(>10 mm): 2 | | 19 | Jong-Keun
Seon et
al,2006 (29) | Quadrupled
hamstring
autograft, bone-
patellar tendon-
bone autograft | Single bundle PCL reconstruction Fixation Transtibia group Femoral side using an LA Screw Tibia side: bioabsorbable interference screw Tibial inlay Femoral side: interference screw and washer | 43 (36/7) | | Posterior Drawer Transtibia: Grade I (0-5 mm): 19; Grade II (6-10 mm): 2; Grade III (>10 mm): 0 Tibia inlay: Grade II (0-5 mm): 20; Grade III (5-10 mm): 2; Grade III (6-10 mm): 0 Telos Device (20 N) Mean side-to-side differences were 3.7 ± 2.1 at the final follow-up in group A and 3.3 ± 1.6 mm in group B Transstibia: 0-2 mm: 2; 3-5 mm: 14; 6-10 mm: 5;>10 mm: 0 Tibial inlay: 0-2 mm: 3; 3-5 mm: 15; 6-10 mm: 4>10 mm: 0 | | 20 | Nobuo
Adachi et
al ,2007 (30) | Hamstrings
tendon
autografts | Single bundle PCL
reconstruction
Femoral side: Button
Tibia side: double
spike staples | 29 (22/7) | #1146200 | Stress radiology: mean
3.5 mm ± 2.7 Posterior
laxity measured by
KT-2000 mean 3.7 mm
±2.4, | | 21 | Chin-Hsien
Wu et
al,2007 (31) | Quadriceps
tendon autograft | Single bundle PCL
reconstruction with a
quadriceps Femoral
side: titanium
interference screw
Tibial side: bicortical
screw and washer
and Bioscrew | 22 (17/5) | Knee ROM was
normal in 18
(82%) Near
normal (3°-
5° difference in
extension) in 1
patient (4.5%)
Abnormal (one
in 6° to 10°
difference in
extension and
one in 16° to
15° deficit in | KT-1000 examination:
Grade 0 - 2 mm: 10
(46%) patients, grade 3
to 5 mm: 8 (36%)
patients, grade > 5-
mm: 4 (18%) patients. | | | | | | | flexion) in 2
patients (9%).1
patient (4.5%)
severely
abnormal (a
flexion deficit
of more than
25°). | | |----|--|--|--|------------|---|---| | 22 | Jinzhong
Zhao et
al,2007 (32) | Hamstring
tendon autograft | Single bundle
posterior cruciate
ligament (PCL) The
femoral side: mini-
plate Tibial side
titanium button or
screw post | 43 (34/9) | Normal hyperextension of 5° was lost in two 4SHG patients and one 7SHG, Loss of 5° of full flexion occurred in two 4SHG patients and one 7SHG | Posterior Drawer 4HS Group: Grade 1: 11; Grade: 2 5; Grade 3: 4; Grade 4: 1 7HS Group: Grade 1: 15; Grade 2: 5; Grade 3: 2; Grade 4: 0 KT 1000 Examination: 4HS Group: Grade 1: 12; Grade 2: 5; Grade 3: 4; Grade 4: 0 7HS Group: Grade 1: 17; Grade 2: 4; Grade 3: 1; Grade 4: 0 | | 23 | Bin Li et al,
2008 (33) | Fur-strand
hamstring graft
autograft and a
LARS artificial
ligament. | Single bundle PCL
reconstruction Both
ends of the graft
were secured with
interference screws
and screw and
washer | 36 (30/6) | | Posterior Drawer - 4HS Group: Grade 1: 6; Grade 2:5; Grade 3: 4; Grade 4: 0 - LARS Group: Grade 1: 16; Grade 2: 5; Grade 3: 0; Grade 2: 5; Grade 3: 0; Grade 4: 0 KT 1000 Examination 4HS Group: Grade 1: 4; Grade 2: 3; Grade 3: 6; Grade 4: 2 ARS Group: Grade 1: 10; Grade 2: 8; Grade 3: 3; 25 Grade 4: 0 | | 24 | W. F. M.
Jackson et
al 2008 (34) | Hamstring
Tendon
autograft | Single bundle PCL
reconstruction
Femoral fixation:
titanium round-head
cannulated
interference screw
Tibial fixation: RCI
screw | 26 (25/1) | 21 patients had
less than 3° of
loss of
2extension 20
patients had less
than 5° of loss
of
flexion | 8 patients had grade 0
laxity. 12 patients had
grade 1 laxity 2
patients had grade 2
laxity. The mean side
to side difference in
posterior translation
was 1.1 mm (SD 1.9) | | 25 | To Wong et al ,2008 (35) | Hamstring
tendon autograft | Single-bundle PCL
reconstruction Both
bundles were secured
with bioresorbable
interference screws | 55 (41/14) | | Posterior Drawer:
Anteromedial Group:
0.9 ± 0.5 (0–3)
Anterolateral group:
0.9 ± 0.7 (0–3) KT-
1000 Examination:
Anteromedial Group:
2.8 ± 1.6 (1–6)
Anterolateral group:
3.3 ± 2.8 (1–10) | | 26 | Jinzhong
Zhao et
al 2008 (36) | Autogenous
hamstring
tendons | Single bundle PCL
reconstruction The
femoral tunnel side:
Button Tibia side:
titanium button | 18 (14/4) | 1 patient lost the
normal 5° of
hyperextension
2 patients had a
5° flexion
limitation. | The side-to-side difference in posterior laxity was 0.7 ± 0.9 mm. 17 (94.4%) had a negative posterior drawer test and KT-1000 examination (90° of flexion and 30 lb), < 3 mm. 1 patient had a 1+ posterior drawer test and a KT-1000 | | | | | | | | 11 - 11 100 | |----|---------------------------------------|--|---|-----------|--|--| | | | | | | 7 | side-to-side difference
of 5 mm. | | 27 | Jin-Zhong
Zhao et al,
2009 (37) | Seven strands of
hamstring
tendon
Autógraft | Single bundle PCL
reconstruction The
femoral side Button
Tibia side titanium
button | 42 (33/9) | 1 patient in each of the MSA and LSA group had 5° extension limitation; 2 patients in each of the MSA and LSA groups had 5° flexion limitation | KT-1000 examination showed MSA group: 0 to 2 mm: 15 patients (78.9%); 3 to 5 mm: 3 (15.8%) and 6 to 10 mm: 1 (5.3%), with an average of 1.6 ±1.2 mm. LSA group: 0 to 2 mm: 14 patients (82.3%); 3 to 5 mm: 2 (11.8%) and 6 to 10 mm: 1 (5.9%), with an average of 1.5 ± 1.3 mm. The posterior drawer test: MSA Group; Grade 1+: 4 and Grade 2+: 1; LSA Group; Grade 1+: 1; Grade 2+: 2 | | 28 | Sung-Jae
Kim et
al.2009 (38) | Achilles tendon
allograft | Transtibial single
bundle group (group
T); Arthroscopic
inlay single-bundle
procedure group
(Group I1),
Arthroscopic inlay
double-bundle
procedure (Group I2)
Femoral Fixation:
Bioabsorbable
interference Screw.
Tibial Fixation:
Bioabsorbable
Interference Screw | 29 (20/9) | Final examination with a Sgoniometer knee flexion to be 2.8° ± 0.70° in Group T, 4.1° ± 2.59° in Group 11, and 3.4° ± 0.84° in Group 12. | The mean side-to-side differences in posterior tibial translation as measured with Telos stress radiography were 5.6 ± 2.00 mm in Group T; 4.7±1.62 mm in Group I1, and 3.6 ± 1.43 mm in Group I2 | | 29 | Baicheng
Chen et al,
2009 (39) | Autogenous
hamstring
tendons | Double-bundle posterior cruciate ligament (PCL) reconstruction using 8 strands of autogenous hamstring tendon The grafts were fixed by the use of a non- hardware suspension fixation technique. | 22 (17/5) | 1 patient had a 5° flexion limitation, 1 patient had a 10° flexion limitation 1 patient who had a 5° extension limitation | Posterior Drawer Test.
Grade 0: 17 patients
(89.5%); Grade 1+: 1
patient (5.3%); Grade
2+: 1 patient (5.3%)
The mean KT-1000
examination results
mean 1.0 ± 1.0 mm
postoperatively. The
stress radiography
results in 2.0 ± 1.2 mm
postoperatively | | 30 | Stijn
Hermans et
al,2009 (40) | Bone-patellar
tendon-bone
autograft
(BPTB),
Semitendinosus
gracilis (STG)
autograft, and
Achilles tendon
allograft | Anterolateral bundle
reconstruction of the
PCL Femoral side: a
cannulated
interference screw
(RCI) Tibial side:
interference screw
(RCI) and a back-up
staple fixation were
used. | 25 (22/3) | A mean loss of
8° of flexion in
comparison
with the
contralateral
knee was
present. | The posterior drawer test results Grade 0: (n=2),Grade 1(n=15),orGrade 2(n=5) Telos Radiology BpTB mean 6.2 mm (SD: 2.6); Hamstring mean 3.9 mm (SD: 2.6) KT-1000 examination. BpTB: mean 2.1mm (SD:1.9); Hamstring: mean 2,2 mm (SD:1.4) | | 31 | Oog Jin
Shon et
al 2010 (41) | Bone-patellar
tendon-bone
(BPTB)
allografts and | Single bundle tibial
inlay PCL
reconstruction
(Group A) and | 30 (26/4) | 1 patient in
group A and 2
patients in
group B showed | Posterior drawer test
Group A: Grade I (0–5
mm): 13; Grade II (6–
10 mm): 1; Grade III | | | | Achilles tendon allografts, and Achilles tendon allografts. | double-bundle tibial inlay PCL reconstruction (Group B) Fixation. Group A. Femoral Side: absorbable interference screw and a staple with an Achilles allograft and a nonabsorbable interference screw with a BPTB allograft. Tibial side: cancellous screw and washer. Group B; Femoral Side: absorbable interference screw Tibial side: bio-interference screw and a staple | | approximately
10° of knee
flexion
limitation | (11–15 mm): 0; Grade IV ([15 mm): 0 Group B: Grade I (0–5 mm): 15; Grade II (6– 10 mm): 1; Grade III (11–15 mm): 0; Grade IV (>15 mm): 0 TELOS Radiography: Group A 3.0 mm ± 1.1; Group B 2.6 mm ± 0,49 | |----|--------------------------------------|--|--|------------|--|--| | 32 | Odd Arve
Lien et
al,2010 (42) | Bone-patellar
tendon-bone
(BPTB)
autograft,
allografts and
hamstring
autograft | Single bundle
/double bundle PCL
reconstruction Both
ends of the graft
were secured with
interference screws | 43 (29/14) | Maximum
flexion: 133
(SD = 7.5) | KT 1000 (n: 37): 9.2
mm (SD = 4.1) Stress
Radiograph (n: 41): 8.4
mm (SD = 4.8) | | 33 | Kyoung Ho
Yoon et
al,2011 (43) | Achilles
allograft | Single bundle PCL reconstruction 14 Femoral Side: cancellous screw and spiked washer or staples, as well as bioabsorbable interference screws for the double fixation. Tibial side: metal interference screw | 53 (45/8) | SB Group: 138° 6 3.3° DB Group: 136° 6 4.2° Limited range of motion was observed as a postoperative complication in 1 case of the SB group (4%) and 2 cases of the DB group (7%) | Telos posterior stress
radiographs SB Group:
4.5 ± 2.3 DB Group:
3.1 ± 2.4 | | 34 | Rachad
Zayni et al,
2011 (44) | Quadriceps
tendon autograft | Single bundle PCL (anterolateral bundle) reconstruction using a quadriceps tendon autograft Femoral side: resorbable interference screw and non-resorbable bicortical screw inserted proximally Tibial side: resorbable interference screw | 21 (18/3) | 2 patients (9.5%) presented a moderate flexion deficit of 6° - 15°. | The mean side-to-side
differential posterior
laxity was 3.6 mm
(range 0-7) | | 35 | Yu-Chuan
Lin et
al,2013 (45) | Bone-patellar
tendon-bone
autograft and
hamstring
autograft | Single Bundle PCL ReconstructionGroup bone-patellar tendon- bone graft (PT Group) and group hamstring graft (HT Group) Femoral tunnel was fixed first with an interference screw Tibial tunnel was fixed with an | 59 (44/15) | PT Group:
135.9 ± 4.3
(128–145) HT
Group: 133.5 ±
7.2 100–142 | Posterior drawer test
PT Group: Grade 0:
4(16%); Grade 1: 17
(68%); Grade 2:
4(16%); Grade 3:
0(0%) HT Group:
Grade 0: 16 (47%);
Grade 1: 16 (47%);
Grade 2: 2(6%); Grade
3: 0(0%) KT1000 side-
to-side difference | interference screw (metal interference was used in PT group and bioabsorbable interference screws were used in HT group. The fixation in each tunnel was further secured by a post-screw with a washer. (mm) PT Group: 2.8 ± 1.6 (1–6.5), HT Group: 2.6 ± 1.5 (1–7.5) | | | | washer. | | | |----|------------------------------------|---
---|------------|---| | 36 | Sang Hak
Lee et
al 2013 (46) | Achilles tendon
allograft,
autogenous
hamstring
tendon w | Group 1: ALB reconstruction using the transtibial tunnel technique; Group 2: ALB reconstruction using the modified inlay; and Group 3: double-bundle reconstruction using the modified inlay technique Fixation: biodegradable interference screw at the femoral tunnel additionally, and a post and tie were made with a screw and washer in both the tibial and femoral sides | 89 (82/7) | Group 1:Stress radiography: mean 2.3 ± 1.4 mm at the last follow-up, 23 patients (67.1%) less than 3 mm, 8 patients (23.5%) had between a 3 and 5 mm, and 3 patients (8.8%) exceeding 5 mm. One case showed a displacement greater than 10 mm KT-1000 arthrometer: mean 2.2 ± 2.2 mm at the last follow-up Group 2:Stress radiography: mean 2.3 ± 1.5 mm at the last follow-up, 23 patients (57.5%) less than 3 mm, 15 patients (37.5%) had between a 3- and 5-mm displacement, and 2 patients (5.0%) exceeding 5 mm. KT- 1000 arthrometer mean: 2.0 ± 1.4 mm at the last follow- up Group 3 Stress radiography mean 4.0 ± 2.5 mm at the last follow-up, 3 patients (20%) less than 3 mm, 9 patients (60%) had between a 3- and 5- mm displacement, and 3 patients (20%) showed displacement exceeding 5 mm. One case showed a displacement greater than 10 mm KT-1000 arthrometer mean: 3.6 ± 1.9 mm at the last follow-up | | 37 | Bin Li et al,
2014 (47) | Hamstring
autograft group
and tibialis
anterior
allograft | Single Bundle PCL Reconstruction Group A [4-strand hamstring tendon autograft (4SHG), n = 18] and group B [2-strand tibialis | 37 (25/12) | Arthrometer (mm) Group A: 4.1 ± 1.7; Group B: 3.3 ± 1.8 Posterior Drawer: Group A grade 0: 3; grade 1:1; grade 2:4; grade 3:0 Group B | anterior allograft | | | | (2STAG), n = 19]
Femoral Fixation:
endobutton Tibial
Fixation: cannulated
interference screw. | | | grade 0; 8; grade 1:9;
grade 2:2; grade 3:0 | |----|---|---|---|------------|---|---| | 38 | Seyed Taghi
Norbakhsh et
al,2014 (48) | Hamstring
tendon autograft | Single-bundle PCL
reconstruction (the
anterolateral part of
the PCL) Femoral
side: Cross pin femur
Tibial side: bio-
interference Screw | 52 (42/10) | Eighty-five percent (n = 52) full ROM. Seven (13.5 %) of the patients A 3-5- degree difference in extension or 6-15° deficit in flexion. Three patients (5.7 %) reported severely abnormal knee ROM which was defined as a flexion deficit of more than | Posterior drawer test: Grade I (0–5 mm): 41; Grade II (6–10 mm): 9; Grade III (11–15 mm): 2; Grade IV ([15 mm): 19 0 KT-1000 test: Normal (0–2 mm): 25; Nearly normal (3–5 mm): 17; Abnormal (6–10 mm): 10; Se verely abnormal (>10 mm): 0 | | 39 | Eun-Kyoo
Song et al,
2014 (49) | Hamstring and
tibial inlay with
patellar tendon | Single bundle PCL reconstruction Transtibial group Femoral side: the LA screw Tibia side: a bio-interference screw Tibial inlay group Femoral side: interference screw Tibial side: 2 screws and washers. | 66 (58/8) | Some patients
showed an
extension deficit
of less than 5°
(5 transtibial
cases and 6
tibial inlay
cases), | Laxity: Transtibial group: 30 patients (83.3%): grade I (0-5 mm); 6 patients (16.7%): grade II (5-10 mm) Tibial inlay group: 26 patients (86.7%): normal or grade I; 4 patients (13.3%): grade II laxity The mean sideto-side difference (Telos) Transtibial group: 4.1 mm (range, 0-8 mm) Tibial inlay group: 4.2 mm (range, 1-8 mm) | | 40 | Daifeng lu et
al.2014 (50) | Quadricep
Tendon
autograft | Double bundle PCL reconstruction (17 Atroscopic group and 15 traditional tibial inlay group) Tibial with ministeel-plate and tied to fix the plate onto the wall of the anteromedial tibial Femoral with interference screw | 32 (28/3) | 10 | Posterior Drawer test +
in 2 pts group 1 and 1
pts in group 2 | | 41 | Xiujiang Sun
et al 2015
(51) | Hamstring
tendon autograft
and allograft | Single bundle PCL reconstruction (36 Autograft group and 35 allograft group) Both ends of the graft were secured with bioabsorbable interference screws | 71 (54/17) | The average
ROM was 132.3
±2.2° in the
autograft and
134.6 ±1.8° in
the allograft
group | KT-1000 test Autograft group: Grade 0: 23; grade 1: 8:grade 2: 5; grade 3: 0 Allograft group: Grade 0: 11; grade 1: 15;grade 2: 9:grade 3: | | 42 | Vineet Jain
et al,2016
(52) | Hamstring
tendon autograft | PCL reconstruction
Single bundle versus
double-bundle PCL
(18 Double bundle | 40 (40/0) | ÷ | KT-1000 (side-to-side
difference in mm) DB
1.78 mm (range 0–6
mm); SB 2.44 mm | | | | | group and 22 Single
buildle group) all
ends of the graft
were secured with
interference screws | | | (range 0-7 mm)
Average posterior
translation (kneeling X
ray) DB 1.33 mm; SB
1.95 mm | |----|---|--|---|------------|---|---| | 43 | Jia Li et
al,2016 (53) | Allograft (tibialis anterior tendons) Hybrid (irradiated tibialis anterior tendon allograft and semitendinosus tendon autograft) Autograft (Semitendinosus and gracilis) | Single bundle PCL reconstruction 26 patients in the autograft group, 27 in the hybrid graft group, and 27 in the g-irradiated allograft group Femoral side EndoButton Tibia side: bioabsorbable interference screw | 80 (50/30) | | Knee Laxity According to Instrumented Anteroposterior Measurements Autograft 2.1 ± 1.0 Hybrid graft 2.6 ± 1.2 g-Irradiated allograft 3.5 ± 1.1 Posterior Drawer Test Autograft: Grade 0: 11; Grade 1: 15; Grade II:0; Grade III:0 Hybrid: Grade 0: 10; Grade I: 16; Grade II:1; Grade III:0 Allograft: Grade 0: 9; Grade I: 15; Grade II:3; Grade III:0 | | 44 | Terence
Wai-kit
Chan et
al 2016 (54) | Quadrupled
hamstrings
autografts | Arthroscopic transtibial single-
bundle PCL Femoral side: endo button and a bioabsorbable interference screw Tibial side: screw post and a bioabsorbable interference screw | 21 21/0) | 40 | Drawer Test: Grade I
(0-5 mm): 54.5% (12);
grade II (5-10 mm):
18.2% (4/22), | | 45 | Rodrigo
Salim et al,
2017 (55) | Autogenous
hamstring
tendons | Single bundle PCL
reconstruction
Femoral side:
interference screw
Tibia side: screw dan
washer | 21 | No deficit of
extension >4
degrees was
observed in any
patient. The
median range
flexion was 132
degrees | | | 46 | Rhatomy et
al,2019 (56) | Quadrupled
hamstrings
autografts | Single bundle PCL reconstruction Femoral side: button Tibial side:bioabsorbable interference screws | 25 (10/15) | 3 patients (21%)
had ROM
restriction (0-
110°). | None | | 47 | D.
Saragaglia et
al,2019 (57) | Hamstring
tendon autograft
an artificial
ligament
(ligament
advanced
reinforcement
system
(LARS®) | Single bundle PCL reconstruction 8 using a hamstring tendon autograft
(hamstring group), and 8 using an artificial ligament (LARS group) Femoral side: interference screw and two serrated staples. Tibia side: absorbable interference screw | 16 (15/1) | | X-ray posterior drawer
(mm) hamstring group:
7.37 mm (6–8, SD
0.74) and LARS
group: 5.25 mm (3–7,
SD 1.3) | Abbreviation: PBTB: Patellar Bone-Tendon-Bone, SHG/HS: Strand Hamstring Group, MSA: medial side augmentation, LSA: lateral side augmentation, SB: Single Bundle, DB: Double Bundle, ALB: Anterolateral bundle **Posterior Laxity.** In this review, we evaluated laxity using three methods: the posterior drawer displacement test, KT 1000/2000 test, and radiographic stress (Telos) view. Posterior Drawer Displacement Test. The outcome of the test was grouped into four categories: grade 1 (0-5 mm), grade 2 (6-10 mm), grade 3 (11-15 mm), and grade 4 (> 15 mm). Twenty-nine studies involved the posterior drawer displacement test (1051 patients [61 4%]). According to the posterior drawer test, 682 patients (64.8%) still had laxity (grade 1 = 553 (52.6%), grade 2 = 109 (10.4%), grade 3 = 19 (1.8%), and grade 4 = 1(0.09%)). KT 1000/2000 Arthrometer Test. The outcome of the test was grouped into four categories: grade 1 (normal, 0-2 mm), grade 2 (nearly normal, 3-5 mm), grade 3 (abnormal, 6-10 mm), and grade 4 (severely abnormal, > 10 mm). Thirty studies reported the posterior drawer displacement in patients (1202 patients, 70.25%). The various categories and their corresponding numbers of patients are as follows: grade 1 (normal) = 687 (57.1%), grade 2 (nearly normal) = 361 (30.0%), grade 3 (abnormal) = 148 (12.3%), and grade 4 (severely abnormal) = 6 (0.49%). Thus, 515 patients (42.8%) still had laxity (grades 2, 3, and 4). Radiographic Stress (Telos) View. The outcome of the test was grouped into four categories: grade 1 (normal, 0-2 mm), grade 2 (nearly normal, 3-5 mm), grade 3 (abnormal, 6-10 mm), and grade 4 (severely abnormal, >10 mm). Eighteen studies reported the radiographic stress (Telos) outcomes in patients (678 patients/39.6%). The various categories and their corresponding numbers of patients are as follows: grade 1 (normal) = 353 (52.06%), grade 2 (nearly normal) = 228 (33.6%), grade 3 (abnormal) = 95 (14.0%), and grade 4 (severely abnormal) = 2 (0.29%). According to the radiographic stress (Telos) View Measurement, 325 patients (47.9%) still had laxity (grade 2, 3, and 4). Comparison of Knee Laxity between the Autograft and Allograft Groups According to the KT 1000/2000 Measurement. Four studies (one randomized controlled trial, two retrospective studies, and one prospective study) reported laxity using the KT 1000/2000 arthrometer measurement. There was no significant difference in outcome between the autograft and allograft groups (MD = -0.42, 95% CI [-1.41,0.56], p = 0.40, Figure 2), and there was a high heterogeneity in the groups ($I^2 = 81\%$, p < 0.00001). Through the one-by-one elimination of studies, the sensitivity analysis revealed that the heterogeneity remained high. Comparison of Knee Laxity between Single **Bundle and Double Bundle Groups According** to the KT 1000/2000 Measurement. Three articles (two prospective studies and one retrospective study) compared the laxity after surgery following the KT 1000/2000 measurement between the single bundle (SB; n == 49) and double-bundle (DB; n = 42) groups. A random-effects model was applied because of the high statistical heterogeneity ($I^2 = 75\%$, p = 0.02). There was no significant difference in laxity between the SB and DB groups based on the KT 1000/2000 measurements (MD = -0.003, 95% CI [-1.35, 1.29], p < 0.00001, Figure 3). According to the Radiographic Stress (Telos) View. Four articles (three prospective studies and one randomized control trial study) compared the laxity after surgery following the radiographic stress (Telos) view between the SB (n = 69) and DB (n = 72) groups. A fixed-effects model was applied because a low statistical heterogeneity was observed (I² = 34%, P = 0.21). There was a significant difference in laxity outcome between the SB and DB groups based on the radiographic stress (Telos) view (MD=0.69, 95% CI [0.29, 1.09], p = 0.00008, Figure 4). This shows that the laxity outcome was significantly higher in the SB group than in the DB group after surgery. Comparison of Knee Laxity between Transtibial and Tibial Inlay Groups using the Radiographic Stress (Telos) View. Four articles (one prospective study and three retrospective studies) compared laxity after surgery based on the radiographic stress (Telos) view between the Transtibial (TT; n = 99) and Tibial Inlay (TI; n = 103) groups. A fixed-effects model was applied because a low statistical heterogeneity was observed ($I^2 = 0\%$, p = 0.63). There was no significant difference in the laxity outcome between the TT and TI groups based on the radiographic stress (Telos) view (MD = 0.03, 95% CI [-0.33, 0.39], p = 0.88, Figure 5). Figure 2. Comparison of Knee Laxity between Autograft and Allograft Groups According to KT 1000/2000 measurement | | Single | e Bun | dle | Doubl | e Bur | idle | | Mean Difference | Mean Difference | |----------------------------|-----------|--------|--------|----------|-------|-----------|--------|----------------------|---| | Study or Subgroup | Mean | SD | Total | Mean | SD | Total | Weight | IV, Random, 95% CI | IV, Random, 95% CI | | Ching-Jen Wang 2004 | 7.1 | 3.7 | 19 | 6.7 | 4.5 | 16 | 15.7% | 0.40 [-2.36, 3.16] | | | Thomas Houe 2004 | 2 | 1 | 8 | 3 | 1 | 8 | 39.3% | -1.00 [-1.98, -0.02] | | | Vineet Jain 2016 | 2.44 | 1 | 22 | 1.78 | 1 | 18 | 45.0% | 0.66 [0.04, 1.28] | | | Total (95% CI) | | | 49 | | | 42 | 100.0% | -0.03 [-1.35, 1.29] | | | Heterogeneity: Tau2 = 0 | 0.91; Chi | = 7. | 87, df | = 2 (P = | 0.02) | $1^2 = 7$ | 5% | | 4 5 5 1 1 | | Test for overall effect: 2 | 2 = 0.05 | (P = 0 |).96) | | 7 | | | | Favours [Double bundle] Favours [Single bundle] | Figure 3. Comparison of Knee Laxity between Single Bundle and Double Bundle Groups According to the KT 1000/2000 measurement | | Single | Bun | dle | Doub | le Bun | dle | | Mean Difference | Mean Di | fference | |----------------------------|----------|--------|---------|------------|--------|-------|--------|--------------------|-------------------------|-------------------------| | Study or Subgroup | Mean | SD | Total | Mean | SD | Total | Weight | IV, Fixed, 95% CI | IV, Fixed | , 95% CI | | Kyoung Ho Yoon 2011 | 4.5 | 2.3 | 25 | 3.1 | 2.4 | 28 | 10.2% | 1.40 [0.13, 2.67] | | | | Oog Jin Shon 2010 | 3 | 1.1 | 14 | 2.6 | 0.49 | 16 | 41.8% | 0.40 [-0.22, 1.02] | | - | | Sung-Jae Kim 2009 | 5.6 | 2 | 8 | 3.6 | 1.43 | 10 | 6.0% | 2.00 [0.35, 3.65] | | | | Vineet Jain 2016 | 1.95 | 1 | 22 | 1.33 | 1 | 18 | 42.0% | 0.62 [-0.00, 1.24] | | - | | Total (95% CI) | | | 69 | | | 72 | 100.0% | 0.69 [0.29, 1.09] | | • | | Heterogeneity: $Chi^2 = 4$ | 52, df = | 3 (P = | = 0.21) | $1^2 = 34$ | 496 | | | - | - 1. | 1 1 | | Test for overall effect: Z | = 3.35 (| P = 0 | 0008) | | 17 | | | | Favours [Double Bundle] | Favours (Single Bundle) | Figure 4. Comparison of Knee Laxity between Single Bundle and Double Bundle Groups According to Radiographic stress (Telos) View | | Transti | Transtibial Group | | | Tibial Inlay Group | | | Mean Difference | Mean Difference | |----------------------------|-------------|-------------------|-----------|------|--------------------|-------|--------|---------------------|---| | Study or Subgroup | Mean | SD | Total | Mean | SD | Total | Weight | IV, Fixed, 95% CI | IV, Fixed, 95% CI | | Eun-Kyoo Song 2014 | 4.1 | 1 | 36 | 4.2 | 1 | 30 | 55.4% | -0.10 [-0.58, 0.38] | - | | Jong-Keun Seon 2006 | 3.7 | 2.1 | 21 | 3.3 | 1.6 | 22 | 10.4% | 0.40 [-0.72, 1.52] | - | | Sang Hak Lee 2013 | 2.3 | 1.4 | 34 | 2.3 | 1.5 | 40 | 29.7% | 0.00 [-0.66, 0.66] | - • - | | Sung-Jae Kim 2009 | 5.6 | 2 | 8 | 4.7 | 1.62 | 11 | 4.6% | 0.90 [-0.78, 2.58] | - | | Total (95% CI) | | | 99 | | | 103 | 100.0% | 0.03 [-0.33, 0.39] | + | | Heterogeneity: $Chi^2 = 1$ | .73, df = 3 | 3 (P = 6 | 0.63); 12 | = 0% | | | | | 1 | | Test for overall effect: 2 | = 0.15 (P | = 0.8 | 8) | | | | | | Favours [Tibial Inlay] Favours [Transtibia] | Figure 5. Comparison of Knee Laxity between Transtibial and Tibial Inlay Groups using the Radiographic Stress (Telos) View #### DISCUSSION The posterior cruciate ligament (PCL) has an important role as a knee joint stabilizer. Some studies have revealed that PCL reconstruction is contributed to enhancing patient knee function. PCL reconstruction aims to restore the normal knee kinematics to improve joint function and to gain nearly normal objective restrain posterior tibial translation post-operatively (40). The indication for surgery in the studies in this review was the failure of conservative treatment or symptomatic PCL rupture with a minimum of 2 positives (2+) posterior drawer test. The first aim of this review was to evaluate the range of motion after PCL reconstruction. No uniformity was found among studies that evaluated the normal range of motion parameters. There is some agreement to use deficit or loss in knee extension or flexion. In this review, 96 patients (9.15%) experienced the loss of extension $(<3^\circ = 59 (61.4\%), 3-5^\circ = 29 (30.2\%), > 6^\circ = 2 (0.2\%))$, and 312 patients (28.9%) experienced the loss of flexion $(<5^\circ = 134 (42.9\%), 6-15^\circ = 60 (19.2\%), 16-25^\circ = 4 (1.2\%)$ and severe flexion deficit $(> 25^\circ = 8 (2.5\%))$. Some studies stated that knee loss of motion and stiffness post-operative were harder to treat than instability. The patient is encouraged to participate in motion exercises and physical therapy to prevent knee loss of function and stiffness (58). The second aim of this review was to evaluate posterior knee laxity after PCL reconstruction. Posterior knee laxity was
evaluated with multiple modalities such as posterior drawer test, stress radiography (Telos) view, and KT-2000 or KT-1000 arthrometry. Most studies declared a posterior laxity deterioration after PCL reconstruction. According to the posterior drawer test outcomes, even though there was a decrease in the grade of laxity after surgery, 64.8% of the patients still experienced laxity (most patients (52.6%) had grade 1 laxity). Some studies (0.09%), however, reported severe laxity outcomes (grade 4). KT 1000/2000 arthrometer measurement. From these studies, we found that 42.8% of patients still had laxity, and most of them (30%) had grade 2 (nearly normal) laxity. Radiographic stress (Telos) view showed that 47.9% of patients still had laxity. Most of them (33.6%) had grade 2 (nearly normal) laxity. Young Mo Kim et al. (4) reviewed high-grade isolated PCL rupture that was performed with arthroscopic PCL reconstruction using single-bundle transtibial. This procedure can reduce one-grade posterior knee laxity. Normal or nearly normal knee function was reported by approximately 75% of patients. Some studies on SB transtibial PCL reconstruction reported improvement in posterior laxity and no stability restoration. MacGillivray et al. reported that whatever method that has been used in tibial fixation (transtibial or inlay) in SB graft PCL reconstruction, could not restore anteroposterior stability of the knee (25, 42). A study by Fanelli et al. revealed that there was 12 of 41 with chronic PCL/ PLC reconstruction that developed abnormality of posterior drawer test in 2 until 10 years (3). Chen et al. concluded that 56% of patients developed posterior translation of 3 to 5 mm after PCL reconstruction using SB quadruple hamstring tendon autograft with a 2-year follow-up (59). The third goal of this review was to detect the factors that influence laxity or the loss of range of motion after surgery. We performed a sub-group meta-analysis involving the autograft and allograft groups, SB and DB groups, and TT and TI groups. In this review, the laxity of the knee joint in the autograft and allograft groups was assessed using the KT 1000/2000 measurement test. There was no significant difference between the autograft and allograft groups in the outcome (MD = -0.42, 95% CI [-1.41, 0.56], p = 0.40, Figure 2). A study by Ahn et al revealed that there was a significant radiographic stress view (Telos) in patients who were done PCL reconstruction using SB with either double loop hamstring tendon autograft or Achilles tendon autograft. The postoperative mean displacement was no significant between each group, with 2.2 mm (range, 0-7 mm) for autograft and 2.9 mm (range, 1-7 mm) for allograft (p = 0.14) (34). A previous systematic review about the impact of graft origin on joint laxity and activity level post-operative concluded that there was a significant enhancement in functional outcome post-operative, regardless of tendon graft used (2). We also evaluated the laxity of the knee joint in the SB and DB groups after PCL reconstruction. Three articles provided data on the KT 1000/2000 measurement test. There was no significant difference in the laxity outcome between the SB and DB groups (MD = -0.003, 95% CI [-1.35, 1.29], p < 0.00001, Figure 3). However, four articles reported significant differences in laxity outcomes between the SB and DB groups (MD = 0.69, 95% CI [0.29, 1.09], p = 0.00008, Figure 4) based on the radiographic stress (Telos) view. This shows that the laxity outcome was significantly higher in the SB group than in the DB group after surgery. A previous systematic review and metaanalysis study by Jorge Chahla et al. reported that PCL procedures using SB or DB has resulted in identical progress in patient-reported outcomes. DB PCL reconstruction was significantly improved in the posterior tibial translation of the knee stability overall based on a randomized controlled clinical trial (60). Another metaanalysis by Dong Yeong Lee et al. revealed that there were no significant differences in side-toside differences between the SB and DB groups (61). According to our review, there is no significant difference in knee stability if measured using the KT 1000/2000; however, the DB technique significantly improved knee stability if measured using Telos radiography. Four articles (one prospective study and three retrospective studies) evaluated the laxity of the knee joint based on the radiographic stress (Telos) view in groups that were treated using either the transtibial technique (n = 99) or the tibial inlay technique (n = 103). There was no significant difference in the laxity outcome between the Transtibial (TT) and Tibial Inlay (TI) groups (MD=0.03, 95% CI [-0.33, 0.39]). Similar to the previous systematic review by Young-Soo Shin et al., we did not identify any significant difference in residual laxity between TT and TI technique. All seven enrolled studies compared the Telos radiographs in 149 knees with TT technique and 148 knees with TI techniques. There was no difference in residual posterior laxity between the groups. Knee with grade 2 or greater posterior laxity showed no difference between two groups in the analysis of the five studies (7). According to our review, there is a loss of extension and flexion deficit after PCL reconstruction (9.15% and 28.9%, respectively). Knee laxity was still observed at the final examination based on the results of the posterior drawer test, KT 1000/ 2000 test, and Telos radiographs (64.8%, 42.8%, and 47.9%, respectively). In a subgroup analysis that compared the laxity outcome between groups that were treated using allograft and autograft, SB and DB, and TT and TI, we found no significant differences between groups; however, DB significantly improved knee stability based on Telos radiographic measurements. Based on the included studies, the keys to successful PCL reconstruction include identifying and treating all pathologies, using strong graft materials, making accurate tunnels placement in the anatomic insertion sites, using a mechanical graft tensioning device, minimizing graft bending, using primary and back-up graft fixation, and using the suitable postoperative rehabilitation protocol. In conclusion, PCL reconstruction is enhanced with functional outcome scores and joint laxity. Current studies suggest that both the loss of range of motion and laxity still occur after surgery. Further studies are needed to determine the factors that cause the loss of range of motion and laxity and how they can be prevented. This review has some limitations mainly related to the lack of uniformity. Additionally, few of the included studies emphasize the difficulties encountered when treating this pathology and the need for more high-quality studies. #### APPLICABLE REMARKS - PCL reconstruction is enhanced with functional outcome scores and joint laxity. - The loss of range of motion and laxity still occurs after surgery. - Further studies are needed to determine the factors that cause the loss of range of motion and laxity and how they can be prevented. #### ACKNOWLEDGMENT We thank Vita Widyasari, Riky Setyawan, and Faiz Alam Rasyid for their help during the manuscript preparation. #### REFERENCES - Belk JW, Kraeutler MJ, Purcell JM, McCarty EC. Autograft Versus Allograft for Posterior Cruciate Ligament Reconstruction: An Updated Systematic Review and Meta-analysis. Am J Sports Med. 2018;46(7):1752-1757. doi: 10.1177/0363546517713164 pmid: 28636429 - Ansari AS, Dennis BB, Homer NS, Zhu M, Brookes C, Khan M, et al. Influence of Graft Source on Postoperative Activity and Joint Laxity in Posterior Cruciate Ligament Reconstruction: A Systematic Review. Arthroscopy. 2019;35(1):262-274 e266. doi: 10.1016/j.arthro.2018.07.027 pmid: 30297155 - Hudgens JL, Gillette BP, Krych AJ, Stuart MJ, May JH, Levy BA. Allograft versus autograft in posterior cruciate ligament reconstruction: an evidence-based systematic review. J Knee Surg. 2013;26(2):109-115. doi: 10.1055/s-0032-1319778 pmid: 23288765 - Kim YM, Lee CA, Matava MJ. Clinical results of arthroscopic single-bundle transtibial posterior cruciate ligament reconstruction: a systematic review. Am J Sports Med. 2011;39(2):425-434. doi: 10.1177/0363546510374452 pmid: 20702860 - Kohen RB, Sekiya JK. Single-bundle versus double-bundle posterior cruciate ligament reconstruction. Arthroscopy. 2009;25(12):1470-1477. doi: 10.1016/j.arthro.2008.11.006 pmid: 19962075 - Panchal HB, Sekiya JK. Open tibial inlay versus arthroscopic transtibial posterior cruciate ligament reconstructions. Arthroscopy. 2011;27(9):1289-1295. doi: 10.1016/j.arthro.2011.04.007 pmid: 21831568 - Shin YS, Kim HJ, Lee DH. No Clinically Important Difference in Knee Scores or Instability Between Transtibial and Inlay Techniques for PCL Reconstruction: A Systematic Review. Clin Orthop Relat Res. 2017;475(4):1239-1248. doi: 10.1007/s11999-016-5176-6 pmid: 27896678 - Tian P, Hu WQ, Li ZJ, Sun XL, Ma XL. Comparison of autograft and allograft tendons in posterior cruciate ligament reconstruction: A meta-analysis. *Medicine (Baltimore)*. 2017;96(27):e7434. doi: 10.1097/MD.0000000000007434 pmid: 28682908 - Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 pmid: 19621072 - 10.Longo UG, Rizzello G, Loppini M, Locher J, Buchmann S, Maffulli N, et al. Multidirectional Instability of the Shoulder: A Systematic Review. Arthroscopy. 2015;31(12):2431-2443. doi: 10.1016/j.arthro.2015.06.006 pmid: 26208802 - 11.Mariani PP, Adriani E, Santori N, Maresca G. Arthroscopic posterior cruciate ligament reconstruction with bone-tendon-bone patellar graft. Knee Surg Sports Traumatol Arthrosc. 1997;5(4):239-244. doi: 10.1007/s001670050057 pmid: 9430574 - 12.Kim SJ, Shin SJ, Kim HK, Jahng JS, Kim HS. Comparison of 1- and 2-incision posterior cruciate ligament
reconstructions. Arthroscop. 2000;16(3):268-278. doi: 10.1016/s0749-8063(00)90051-3 - Nyland J, Hester P, Caborn DN. Double-bundle posterior cruciate ligament reconstruction with allograft tissue: 2-year postoperative outcomes. Knee Surg Sports Traumatol Arthrosc. 2002;10(5):274-279. doi: 10.1007/s00167-002-0300-4 pmid: 12355300 - 14.Chen CH, Chen WJ, Shih CH. Arthroscopic reconstruction of the posterior cruciate ligament with quadruple hamstring tendon graft: a double fixation method. J Trauma. 2002;52(5):938-945. doi: 10.1097/00005373-200205000-00020 pmid: 11988663 - 15.Chen CH, Chen WJ, Shih CH. Arthroscopic reconstruction of the posterior cruciate ligament: a comparison of quadriceps tendon autograft and quadruple hamstring tendon graft. Arthroscopy. 2002;18(6):603-612. doi: 10.1053/jars.2002.32208 pmid: 12098121 - 16. Wang C, Chen H, Huang T. Outcome of arthroscopic single bundle reconstruction for complete posterior cruciate ligament tear. *Inj Int J Care Inj*, 2003;34:747-751. doi: 10.1016/S0020-1383(02)00197-3 - 17.Ohkoshi Y, Nagasaki S, Yamamoto K, Shibata N, Ryosuke Ishida PT, Hashimoto T, et al. Description of a New Endoscopic Posterior Cruciate Ligament Reconstruction and Comparison With a 2-Incision Technique. Arthroscop. 2003;19:825-832. doi: 10.1016/S0749-8063(03)00733-3 - 18. Wang CJ, Chan YS, Weng LH, Yuan LJ, Chen HS. Comparison of autogenous and allogenous posterior cruciate ligament reconstructions of the knee. *Injury*. 2004;35(12):1279-1285. doi: 10.1016/j.injury.2003.12.017 pmid: 15561118 - 19.Wang CJ, Weng LH, Hsu CC, Chan YS. Arthroscopic single- versus double-bundle posterior cruciate ligament reconstructions using hamstring autograft. *Injury*. 2004;35(12):1293-1299. doi: 10.1016/j.injury.2003.10.033 pmid: 15561120 - Houe T, Jorgensen U. Arthroscopic posterior cruciate ligament reconstruction: one- vs. two-tunnel technique. Scand J Med Sci Sports. 2004;14(2):107-111. doi: 10.1111/j.1600-0838.2003.00318.x pmid: 15043632 - 21.Jung YB, Tae SK, Jung HJ, Lee KH. Replacement of the torn posterior cruciate ligament with a midthird patellar tendon graft with use of a modified tibial inlay method. *J Bone Joint Surg Am*. 2004;86(9). doi: 10.2106/00004623-200409000-00004 pmid: 15342748 - 22.Ahn JH, Yoo JC, Wang JH. Posterior cruciate ligament reconstruction: double-loop hamstring tendon autograft versus Achilles tendon allograft-clinical results of a minimum 2-year follow-up. Arthroscopy. 2005;21(8):965-969. doi: 10.1016/j.arthro.2005.05.004 pmid: 16084294 - 23. Yoon KH, Bae DK, Song SJ, Lim CT. Arthroscopic double-bundle augmentation of posterior cruciate ligament using split Achilles allograft. Arthroscopy. 2005;21(12):1436-1442. doi: 10.1016/j.arthro.2005.09.002 pmid: 16376231 - 24.Sekiya JK, West RV, Ong BC, Irrgang JJ, Fu FH, Harner CD. Clinical outcomes after isolated arthroscopic single-bundle posterior cruciate ligament reconstruction. *Arthroscopy*. 2005;21(9):1042-1050. doi: 10.1016/j.arthro.2005.05.023 pmid: 16171628 - 25.MacGillivray JD, Stein BE, Park M, Allen AA, Wickiewicz TL, Warren RF. Comparison of tibial inlay versus transtibial techniques for isolated posterior cruciate ligament reconstruction: minimum 2-year follow-up. Arthroscopy. 2006;22(3):320-328. doi: 10.1016/j.arthro.2005.08.057 pmid: 16517317 - 26.Chan YS, Yang SC, Chang CH, Chen AC, Yuan LJ, Hsu KY, et al. Arthroscopic reconstruction of the posterior cruciate ligament with use of a quadruple hamstring tendon graft with 3- to 5-year follow-up. Arthroscopy. 2006;22(7):762-770. doi: 10.1016/j.arthro.2006.03.020 pmid: 16843813 - 27.Garofalo R, Jolles BM, Moretti B, Siegrist O. Double-bundle transtibial posterior cruciate ligament reconstruction with a tendon-patellar bone-semitendinosus tendon autograft: clinical results with a minimum of 2 years' follow-up. *Arthroscopy*. 2006;22(12):1331-1338 e1331. doi: 10.1016/j.arthro.2006.08.003 pmid: 17157733 - 28.Chen CH, Chuang TY, Wang KC, Chen WJ, Shih CH. Arthroscopic posterior cruciate ligament reconstruction with hamstring tendon autograft: results with a minimum 4-year follow-up. *Knee Surg Sports Traumatol Arthrosc*. 2006;14(11):1045-1054. doi: 10.1007/s00167-006-0113-y pmid: 16816985 - 29.Seon JK, Song EK. Reconstruction of isolated posterior cruciate ligament injuries: a clinical comparison of the transtibial and tibial inlay techniques. Arthroscopy. 2006;22(1):27-32. doi: 10.1016/j.arthro.2005.08.038 pmid: 16399457 - 30. Adachi N, Ochi M, Uchio Y, Iwasa J, Ishikawa M, Shinomiya R. Temporal change of joint position sense after posterior cruciate ligament reconstruction using multi-stranded hamstring tendons. *Knee Surg Sports Traumatol Arthrosc.* 2007;15(1):2-8. doi: 10.1007/s00167-006-0127-5 pmid: 16799825 - 31.Wu CH, Chen AC, Yuan LJ, Chang CH, Chan YS, Hsu KY, et al. Arthroscopic reconstruction of the posterior cruciate ligament by using a quadriceps tendon autograft: a minimum 5-year follow-up. Arthroscopy. 2007;23(4):420-427. doi: 10.1016/j.arthro.2006.12.011 pmid: 17418336 - 32.Zhao J, Huangfu X. Arthroscopic single-bundle posterior cruciate ligament reconstruction: Retrospective review of 4- versus 7-strand hamstring tendon graft. *Knee*. 2007;14(4):301-305. doi: 10.1016/j.knee.2007.03.008 pmid: 17482468 - 33.Li B, Wen Y, Wu H, Qian Q, Wu Y, Lin X. Arthroscopic single-bundle posterior cruciate ligament reconstruction: retrospective review of hamstring tendon graft versus LARS artificial ligament. *Int* Orthop. 2009;33(4):991-996. doi: 10.1007/s00264-008-0628-6 pmid: 18654776 - 34.Jackson WF, van der Tempel WM, Salmon LJ, Williams HA, Pinczewski LA. Endoscopically-assisted single-bundle posterior cruciate ligament reconstruction: results at minimum ten-year follow-up. J Bone Joint Surg Br. 2008;90(10):1328-1333. doi: 10.1302/0301-620X.90B10.20517 pmid: 18827243 - 35. Wong T, Wang CJ, Weng LH, Hsu SL, Chou WY, Chen JM, et al. Functional outcomes of arthroscopic posterior cruciate ligament reconstruction: comparison of anteromedial and anterolateral trans-tibia approach. Arch Orthop Trauma Surg. 2009;129(3):315-321. doi: 10.1007/s00402-008-0787-3 pmid: 19034466 - 36.Zhao J, Xiaoqiao H, He Y, Yang X, Liu C, Lu Z. Sandwich-style posterior cruciate ligament reconstruction. Arthroscopy. 2008;24(6):650-659. doi: 10.1016/j.arthro.2008.01.005 pmid: 18514108 - 37.Zhao JZ, Huang-Fu XQ, He YH, Yang XG. Single-bundle posterior cruciate ligament reconstruction with remnant preservation: lateral versus medial-sided augmentation technique. *Orthop Surg*. 2009;1(1):66-73. doi: 10.1111/j.1757-7861.2008.00012.x pmid: 22009784 - 38.Kim SJ, Kim TE, Jo SB, Kung YP. Comparison of the clinical results of three posterior cruciate ligament reconstruction techniques. J Bone Joint Surg Am. 2009;91(11):2543-2549. doi: 10.2106/JBJS.H.01819 pmid: 19884425 - 39.Chen B, Gao S. Double-bundle posterior cruciate ligament reconstruction using a non-hardware suspension fixation technique and 8 strands of autogenous hamstring tendons. *Arthroscopy*. 2009;25(7):777-782. doi: 10.1016/j.arthro.2009.01.017 pmid: 19560642 - 40.Hermans S, Corten K, Bellemans J. Long-term results of isolated anterolateral bundle reconstructions of the posterior cruciate ligament: a 6- to 12-year follow-up study. Am J Sports Med. 2009;37(8):1499-1507. doi: 10.1177/0363546509333479 pmid: 19451096 - 41.Shon OJ, Lee DC, Park CH, Kim WH, Jung KA. A comparison of arthroscopically assisted single and double bundle tibial inlay reconstruction for isolated posterior cruciate ligament injury. Clin Orthop Surg. 2010;2(2):76-84. doi: 10.4055/cios.2010.2.2.76 pmid: 20514264 - 42.Lien OA, Aas EJ, Johansen S, Ludvigsen TC, Figved W, Engebretsen L. Clinical outcome after reconstruction for isolated posterior cruciate ligament injury. *Knee Surg Sports Traumatol Arthrosc*. 2010;18(11):1568-1572. doi: 10.1007/s00167-010-1176-3 pmid: 20571763 - 43. Yoon KH, Bae DK, Song SJ, Cho HJ, Lee JH. A prospective randomized study comparing arthroscopic single-bundle and double-bundle posterior cruciate ligament reconstructions preserving remnant fibers. Am J Sports Med. 2011;39(3):474-480. doi: 10.1177/0363546510382206 pmid: 21098819 - 44.Zayni R, Hager JP, Archbold P, Fournier Y, Quelard B, Chambat P, et al. Activity level recovery after arthroscopic PCL reconstruction: a series of 21 patients with a mean follow-up of 29 months. *Knee*. 2011;18(6):392-395. doi: 10.1016/j.knee.2010.11.005 pmid: 21144755 - 45.Lin YC, Chen SK, Liu TH, Cheng YM, Chou PP. Arthroscopic transtibial single-bundle posterior cruciate ligament reconstruction using patellar tendon graft compared with hamstring tendon graft. Arch Orthop Trauma Surg. 2013;133(4):523-530. doi: 10.1007/s00402-013-1679-8 pmid: 23344423 - 46.Lee SH, Jung YB, Lee HJ, Jung HJ, Kim SH. Remnant preservation is helpful to obtain good clinical results in posterior cruciate ligament reconstruction: comparison of clinical results of three techniques. Clin Orthop Surg. 2013;5(4):278-286. doi: 10.4055/cios.2013.5.4.278 pmid: 24340147 - 47.Li B, Wang JS, He M, Wang GB, Shen P, Bai LH. Comparison of hamstring tendon autograft and tibialis anterior allograft in arthroscopic transtibial single-bundle posterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):3077-3084. doi: 10.1007/s00167-014-3267-z pmid: 25193568 - 48.Norbakhsh ST, Zafarani Z, Najafi A, Aslani H. Arthroscopic posterior cruciate ligament reconstruction by using hamstring tendon autograft and transosseous screw fixation: minimal 3 years follow-up. Arch Orthop Trauma Surg. 2014;134(12):1723-1730. doi: 10.1007/s00402-014-2082-9 pmid: 25186074 - 49. Seon JK, Song EK, Park H. Comparison of Transtibial and Tibial Inlay Techniques for Posterior Cruciate Ligament Reconstruction with an Average of 10 Year- Follow-up. Orthopaed J Sport Med. 2014;2(2):2325967114S2325900071. doi: 10.1177/2325967114S00071 - 50.Lu D, Xiao M, Lian Y, Zhou Y, Liu X. Comparison of the operation of arthroscopic tibial inlay and traditional tibial
inlay for posterior cruciate ligament reconstruction. *Int J Clinic Experiment Med*. 2014;7(10):3193-3201. - 51.Sun X, Zhang J, Qu X, Zheng Y. Arthroscopic posterior cruciate ligament reconstruction with allograft versus autograft. Arch Med Sci. 2015;11(2):395-401. doi: 10.5114/aoms.2015.50971 pmid: 25995757 - 52.Jain V, Goyal A, Mohindra M, Kumar R, Joshi D, Chaudhary D. A comparative analysis of arthroscopic double-bundle versus single-bundle posterior cruciate ligament reconstruction using hamstring tendon autograft. Arch Orthop Trauma Surg. 2016;136(11):1555-1561. doi: 10.1007/s00402-016-2512-ypmid: 27438377 - 53.Li J, Kong F, Gao X, Shen Y, Gao S. Prospective Randomized Comparison of Knee Stability and Proprioception for Posterior Cruciate Ligament Reconstruction With Autograft, Hybrid Graft, and gamma-Irradiated Allograft. Arthroscopy. 2016;32(12):2548-2555. doi: 10.1016/j.arthro.2016.04.024 pmid: 27282110 - 54.Chan TW, Kong CC, Del Buono A, Maffulli N. Acute augmentation for interstitial insufficiency of the posterior cruciate ligament. A two to five year clinical and radiographic study. *Muscles Ligaments Tendons J.* 2016;6(1):58-63. doi: 10.11138/mltj/2016.6.1.058 pmid: 27331032 - 55.Salim R, Nascimento FMD, Ferreira AM, Oliveira LFL, Fogagnolo F, Kfuri M. Tibial Onlay Posterior Cruciate Ligament Reconstruction: Surgical Technique and Results. J Knee Surg. 2018;31(3):284-290. doi: 10.1055/s-0037-1603336 pmid: 28582784 - 56.Rhatomy S, Saspraditya E, Setyawan R. Arthroscopic Standard Anterior and Posteromedial Portal Posterior Cruciate Ligament Reconstruction With Remnant Preservation: 2-Year Follow-up. Open Sports Sci. 2019;12:44-49. doi: 10.2174/1875399X01912010044 - 57. Saragaglia D, Francony F, Gaillot J, Pailhe R, Rubens-Duval B, Lateur G. Posterior cruciate ligament reconstruction for chronic lesions: clinical experience with hamstring versus ligament advanced reinforcement system as graft. *Int Orthop*. 2020;44(1):179-185. doi: 10.1007/s00264-019-04434-7 pmid: 31673741 - 58.Cooper DE, Stewart D. Posterior cruciate ligament reconstruction using single-bundle patella tendon graft with tibial inlay fixation: 2- to 10-year follow-up. Am J Sports Med. 2004;32(2):346-360. doi: 10.1177/0363546503261511 pmid: 14977658 - 59. Fanelli GC, Beck JD, Edson CJ. Arthroscopic double-bundle posterior cruciate ligament reconstruction surgical technique. *J Knee Surg*. 2010;23(2):89-94. doi: 10.1055/s-0030-1267467 pmid: 21141685 - 60.Chahla J, Moatshe G, Cinque ME. Single-Bundle and Double-Bundle Posterior Cruciate Ligament Reconstructions: A Systematic Review and Meta-analysis of 441 Patients at a Minimum 2 Years' Followup. Arthroscop. 2017;33(11):2066-2080. doi: 10.1016/j.arthro.2017.06.049 - 61.Lee DY, Park YJ. Single-Bundle versus Double-Bundle Posterior Cruciate Ligament Reconstruction: A Meta-Analysis of Randomized Controlled Trials. Knee Surg Relat Res. 2017;29(4):246-255. doi: 10.5792/ksrr.17.050 pmid: 29172385 # Knee Laxity or Loss of Knee Range of Motion after PCL Reconstruction: A Systematic Review and Meta-Analysis **ORIGINALITY REPORT** 19% SIMILARITY INDEX 13% INTERNET SOURCES 16% PUBLICATIONS U% STUDENT PAPERS **PRIMARY SOURCES** "Results of Treatment of Posterior Cruciate Ligament Surgery", Posterior Cruciate Ligament Injuries, 2015. 1 % **Publication** Seon, J.K.. "Reconstruction of Isolated Posterior Cruciate Ligament Injuries: A Clinical Comparison of the Transtibial and Tibial Inlay Techniques", Arthroscopy: The Journal of Arthroscopic and Related Surgery, 200601 1 % Sekiya, J.K.. "Clinical Outcomes After Isolated Arthroscopic Single-Bundle Posterior Cruciate Ligament Reconstruction", Arthroscopy: The Journal of Arthroscopic and Related Surgery, 200509 1 % Publication 4 lib.bioinfo.pl Internet Source % S.-J. Kim. "Comparison of the Clinical Results of Three Posterior Cruciate Ligament 1 % # Reconstruction Techniques", The Journal of Bone and Joint Surgery, 11/01/2009 Publication 12 | 6 | docksci.com
Internet Source | 1 % | |----|--|-----| | 7 | Jin-zhong Zhao. "Single-bundle posterior cruciate ligament reconstruction with remnant preservation: lateral versus medial-sided augmentation technique", Orthopaedic Surgery, 02/2009 Publication | 1 % | | 8 | link.springer.com Internet Source | 1 % | | 9 | www.ais.up.ac.za Internet Source | 1 % | | 10 | www.termedia.pl Internet Source | 1 % | | 11 | Yu-Chuan Lin, Shen-Kai Chen, Teng-Hsiang Liu, Yuh-Min Cheng, Paul Pei-Hsi Chou. "Arthroscopic transtibial single-bundle posterior cruciate ligament reconstruction using patellar tendon graft compared with hamstring tendon graft", Archives of Orthopaedic and Trauma Surgery, 2013 Publication | 1 % | Yoon, K.H.. "Arthroscopic Double-Bundle Augmentation of Posterior Cruciate Ligament # Using Split Achilles Allograft", Arthroscopy: The Journal of Arthroscopic and Related Surgery, 200512 Publication Wang, C.J.. "Comparison of autogenous and allogenous posterior cruciate ligament reconstructions of the knee", Injury, 200412 <1% Kyoung Ho Yoon, Dae Kyung Bae, Sang Jun Song, Hyung Jun Cho, Jung Hwan Lee. "A Prospective Randomized Study Comparing Arthroscopic Single-Bundle and Double-Bundle Posterior Cruciate Ligament Reconstructions Preserving Remnant Fibers", The American Journal of Sports Medicine, 2010 <1% - Publication - Ahn, J.H.. "Posterior Cruciate Ligament Reconstruction: Double-Loop Hamstring Tendon Autograft Versus Achilles Tendon Allograft-Clinical Results of a Minimum 2-Year Follow-up", Arthroscopy: The Journal of Arthroscopic and Related Surgery, 200508 <1% www.pubmedcentral.nih.gov <1% www.thieme-connect.de Internet Source <1% | 18 | mspace.lib.umanitoba.ca Internet Source | <1% | |----|--|-----| | 19 | abjs.mums.ac.ir
Internet Source | <1% | | 20 | www.borhan.org.sa Internet Source | <1% | | 21 | Jin Zhang, Hui Zhang, Zhijun Zhang, Tong Zheng, Yue Li. "No difference in subjective and objective clinical outcomes between arthroscopic transtibial and open inlay posterior cruciate ligament reconstruction techniques in the treatment of multiligamentous knee injuries", The Knee, 2021 | <1% | | 22 | www.researchgate.net Internet Source | <1% | | 23 | Chen, C.H "Arthroscopic reconstruction of
the posterior cruciate ligament", Arthroscopy:
The Journal of Arthroscopic and Related
Surgery, 200207
Publication | <1% | | 24 | assets.researchsquare.com Internet Source | <1% | | 25 | online.boneandjoint.org.uk Internet Source | <1% | | 26 | Gregory C. Fanelli, John D. Beck, Craig J. Edson. "Double Bundle Posterior Cruciate Ligament Reconstruction", Sports Medicine and Arthroscopy Review, 2010 Publication | <1 % | |----|---|------| | 27 | www.dovepress.com Internet Source | <1% | | 28 | Shen, G "Arthroscopic Posterior Cruciate
Ligament Reconstruction Using LARS Artificial
Ligament: A Retrospective Study", Journal of
Surgical Research, 201203 | <1% | | 29 | www.mdpi.com Internet Source | <1% | | 30 | Joshua Hudgens, Blake Gillette, Aaron Krych, Michael Stuart, Jedediah May, Bruce Levy. "Allograft Versus Autograft in Posterior Cruciate Ligament Reconstruction: An Evidence-Based Systematic Review", Journal of Knee Surgery, 2012 Publication | <1% | | 31 | orthopedics.researchtoday.net Internet Source | <1% | | 32 | dokumen.pub
Internet Source | <1% | | | | | | 33 | Bin Li. "Arthroscopic single-bundle posterior cruciate ligament reconstruction: retrospective review of hamstring tendon graft versus LARS artificial ligament", International Orthopaedics, 07/25/2008 Publication | <1% | |----|---|-----| | 34 | spcare.bmj.com
Internet Source | <1% | | 35 | pesquisa.bvsalud.org Internet Source | <1% | | 36 | worldwidescience.org Internet Source | <1% | | 37 | www.researchsquare.com Internet Source | <1% | | 38 | jbjs.org
Internet Source | <1% | | 39 | linknovate.com Internet Source | <1% | | 40 | thieme-connect.com Internet Source | <1% | | 41 | www.cmorthopaedic.com Internet Source | <1% | | 42 | Eun-Kyoo Song, Hyeong-Won Park, Yeong-
Seub Ahn, Jong-Keun Seon. "Transtibial Versus
Tibial Inlay Techniques for Posterior Cruciate | <1% | ## Ligament Reconstruction", The American Journal of Sports Medicine, 2014 Publication | 43 | tcr.amegroups.com
Internet Source | <1% | |----|---|-----| | 44 | www.ncbi.nlm.nih.gov Internet Source | <1% | | 45 | Stijn Hermans, Kristoff Corten, Johan
Bellemans. "Long-term Results of Isolated
Anterolateral Bundle Reconstructions of the
Posterior Cruciate Ligament", The American
Journal of Sports Medicine, 2017 | <1% | | 46 | kearneyne.usl.myareaguide.com Internet Source | <1% | | 47 | www.ajronline.org Internet Source | <1% | | 48 | www.bmj.com Internet Source | <1% | | 49 | toledo.overdrive.com Internet Source | <1% | | 50 | Jakobsen,
Rune Bruhn, and Bent Wulff
Jakobsen. "Posterior Cruciate Ligament
Injury", Evidence-Based Orthopedics
Bhandari/Evidence-Based Orthopedics, 2011. | <1% | | 51 | journals.lww.com
Internet Source | <1% | |----|---|-----| | 52 | Abdus Samad Ansari, Brittany B. Dennis,
Nolan S. Horner, Ming Zhu, Charlotte Brookes,
Moin Khan, John A. Grant. "Influence of Graft
Source on Postoperative Activity and Joint
Laxity in Posterior Cruciate Ligament
Reconstruction: A Systematic Review",
Arthroscopy: The Journal of Arthroscopic &
Related Surgery, 2019
Publication | <1% | | 53 | Zhao, J "Arthroscopic single-bundle posterior cruciate ligament reconstruction: Retrospective review of 4- versus 7-strand hamstring tendon graft", The Knee, 200708 Publication | <1% | | 54 | academic.oup.com Internet Source | <1% | | 55 | serval.unil.ch
Internet Source | <1% | | 56 | meetinglibrary.asco.org Internet Source | <1% | | 57 | www.healio.com Internet Source | <1% | | 58 | www2.arthroscopyjournal.org Internet Source | <1% | | 59 | eprints.aihta.at Internet Source | <1% | |----|---|------| | 60 | j-nn.org
Internet Source | <1 % | | 61 | www.briancolemd.com Internet Source | <1 % | | 62 | www.research-collection.ethz.ch Internet Source | <1% | | 63 | www.science.gov Internet Source | <1 % | Exclude quotes Off Exclude bibliography On Exclude matches < 10 words # Knee Laxity or Loss of Knee Range of Motion after PCL Reconstruction: A Systematic Review and Meta-Analysis | Reconstruction: A Systematic Review and Meta-Analysis | | | | | |---|------------------|--|--|--| | GRADEMARK REPORT | | | | | | FINAL GRADE | GENERAL COMMENTS | | | | | /100 | Instructor | | | | | | | | | | | PAGE 1 | | | | | | PAGE 2 | | | | | | PAGE 3 | | | | | | PAGE 4 | | | | | | PAGE 5 | | | | | | PAGE 6 | | | | | | PAGE 7 | | | | | | PAGE 8 | | | | | | PAGE 9 | | | | | | PAGE 10 | | | | | | PAGE 11 | | | | | | PAGE 12 | | | | | | PAGE 13 | | | | | | PAGE 14 | | | | | | PAGE 15 | | | | | | PAGE 16 | | | | | | PAGE 17 | | | | | PAGE 18 PAGE 19 | PAGE 20 | | |---------|--| | PAGE 21 | | | PAGE 22 | | | PAGE 23 | | | PAGE 24 | |